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ABSTRACT
Background: Gliomas are the most common type of malignant brain tumor. 

Clinical outcomes depend on many factors including tumor molecular characteristics. 
Mutation of the isocitrate dehydrogenase (IDH) gene confers significant benefits in 
terms of survival and quality of life. Preoperative determination of IDH genotype can 
facilitate surgical planning, allow for novel clinical trial designs, and assist clinical 
counseling surrounding the individual patient’s disease.

Methods: In this study, we aimed to evaluate a novel approach for non-invasively 
predicting IDH status from conventional MRI via connectomics, a whole-brain 
network-based technique. We retrospectively extracted 93 connectome features from 
the preoperative, T1-weighted MRI data of 234 adult patients (148 IDH mutated) 
and evaluated the performance of four common machine learning models to predict 
IDH genotype.

Results: Area under the curve (AUC) of the receiver operator characteristic 
were 0.76 to 0.94 with random forest (RF) showing significantly higher performance 
(p < 0.01) than other algorithms. Feature selection schemes and the addition of age 
and tumor location did not change RF performance.

Conclusions: Our findings suggest that connectomics is a feasible approach for 
preoperatively predicting IDH genotype in patients with gliomas. Our results support 
prior evidence that RF is an ideal machine learning method for this area of research. 
Additionally, connectomics provides unique insights regarding potential mechanisms 
of tumor genotype on large-scale brain network organization.

INTRODUCTION

Gliomas originate in the brain and are the most 
common type of malignant primary brain tumor. High grade 
gliomas are comprised of histologic grade III (anaplastic 
astrocytoma, and anaplastic oligodendroglioma) and grade 
IV (glioblastoma multiforme) tumors and account for the 
majority of diffuse gliomas. Despite being histologic grade 
II, low-grade gliomas eventually progress and transform to 
a higher grade. Therefore, it is increasingly appreciated that 
histologic grade alone does not account for the variability 

in outcome among patients with these cancers. In fact, 
disease prognosis depends on multiple factors including 
both clinical and molecular features of the tumor.

Patients with mutation of the isocitrate dehydrogenase 
(IDH) gene demonstrate markedly improved clinical 
outcomes compared to those with the wild-type tumor [1]. 
IDH status has been recognized to be of central biologic and 
prognostic import, and is now incorporated in the diagnostic 
deifinition of diffuse gliomas in the updated Word Health 
Organization diagnostic compendium for CNS tumors [2]. 
The presence of IDH mutation plays a significant role in 
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response to treatment including extent of surgical resection 
[3] and chemoradiation [4]. Stratification of patients based 
on IDH status in certain clinical trials may be indicated [5]. 
Patients with wild type tumors also show lower cognitive 
function compared to the mutant variant [6]. Therefore, 
baseline prediction of IDH status is of great clinical 
importance for therapeutic decision making, including choice 
of therapeutic intervention such as IDH inhibitors and the 
decision to initiate treatment early. Additionally, presurgical 
knowledge of IDH genotype would be invaluable for risk 
stratification in clinical research and clinical counseling 
surrounding the individual patient’s disease.

IDH genotype is typically determined from biopsy 
or resection. However, several studies have demonstrated 
that conventional, pre-operative MRI can be used to non-
invasively predict IDH status [7–10]. These radiomic 
approaches involve extracting relevant radiographic 
features believed to be associated with aspects of tumor 
phenotype. Multimodal imaging sequences are typically 
employed including FLAIR, T2, T1 pre-contrast, T1 post-
contrast and DWI. Feature extraction focuses on tumor 
regions of interest. Other methods include MRS detection 
of 2-hydroxyglutarate accumulation in the tumor, which is 
associated with mutation [11].

However, our group and others have demonstrated 
that focal tumors are accompanied by widespread 
disruption of the entire brain [6, 12]. Importantly, we have 
shown a discriminable pattern of large-scale connectome 
organization associated with IDH status suggesting that 
brain networks reflect the molecular properties of the tumor 
[6]. The brain incorporates both biologic and environmental 
processes in a bidirectional manner, providing a uniquely 
parsimonious and sometimes more sensitive summary 
of key diagnostic and prognostic features. Brain network 
organization is highly associated with age, gender, 
education level and socioeconomic status [13–16] and 
reflects effects of cancer pathogenesis and treatment [17]. 
These are all known prognostic factors in diffuse glioma 
represented within whole-brain network organization.

Connectomes are graphs that model the brain as 
a network of nodes (regions) and edges (connections). 
Nodes typically reflect some discrete parcellation of 
cortical and subcortical processing units and can be 
defined microscopically to macroscopically. Edges are 
defined anatomically (e.g. measurable white matter 
pathway) and/or statistically (e.g. correlation between 
functional time series). Our group and others have 
demonstrated significant connectome disorganization in 
patients with diffuse glioma [6, 12]. One previous study 
showed that pre-surgical, whole brain connectome features 
were accurate predictors of high grade glioma survival 
[18] and another indicated that connectome properties 
were correlated with progression-free survival [12].

For this study, we aimed to use gray matter 
connectomes obtained from non-contrast, T1-weighted 
MRI scans. T1 MRI is routinely acquired pre-surgically 

as part of standard of care for patients with brain tumors. 
T1 MRI is used ubiquitously in neuroimaging research 
to measure brain volumes and there exist coordinated 
variations in gray matter volumes that make connectome 
construction possible [19]. These structural covariance 
networks are highly heritable and are believed to reflect 
underlying axonal connections as well as common 
neurodevelopmental and neuroplastic processes [19]. 
Robust alterations in gray matter connectomes are regularly 
observed in various neurologic syndromes [20]. As noted 
above, we demonstrated that gray matter connectomes can 
be used to distinguish between IDH variants of high grade 
glioma [6]. We hypothesized that pre-surgical gray matter 
connectome features would accurately predict IDH status 
in patients with diffuse glioma.

RESULTS

As shown in Table 1, the mean age of patients was 
43.85 +/– 15.12 years and 62% of patients were male. 
All histologic grades of diffuse glioma were represented: 
grade II (43%), grade III (27%), and grade IV (30%). 
The majority were of astrocytic histology (73%), and 
over half were IDH mutant (63%). Glioma involvement 
of the frontal lobe was most common (50%) followed by 
temporal lobe (28%) and 14% of patients had a multifocal 
tumor. A minority (N = 41, 18%) had MGMT status 
available and only 21% had available preoperative KPS 
(within 3 days prior to surgery).

MLP and RF classifiers demonstrated the best 
performance in predicting IDH genotype with AUCs of 
0.85 and 0.94, respectively. LR and SVM showed lower 
accuracies with AUCs of 0.76 and 0.77, respectively 
(Table 3, Figure 1).

The RF AUC was significantly higher than that of 
LR (p < 0.001), SVM (p < 0.001) and MLP (p = 0.012). 
MLP AUC was moderately higher than SVM (p = 0.042).

Feature selection did not seem to affect RF 
performance. Mean AUC for RFE was 0.91 +/– 0.05 and 
0.92 +/– 0.04 for elastic net (Figure 2).

Adding age and tumor location to the RF model 
slightly increased accuracy (AUC = 0.95) but not 
significantly (p = 0.413). An RF model with only age and 
tumor location yielded an AUC of 0.87 (Table 3, Figure 1), 
which was significantly lower than the connectome RF 
model (p = 0.004).

DISCUSSION

We innovatively evaluated whole-brain connectome 
features with common machine learning algorithms to 
predict IDH genotype in 234 patients with diffuse glioma. 
Classifiers achieved AUCs of 0.76 to 0.94, with RF 
demonstrating the best performance. Our approach yielded 
results that were highly similar to those of radiomic 
methods. Zhang et al. reported an RF AUC of 0.92 for 
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predicting IDH status from preoperative MRI radiomic 
features in 120 patients with grades III or IV glioma [8]. 
A study of 165 patients with low grade tumors showed 
an RF AUC of 0.79 [21]. Lu and colleagues reported 
higher accuracies (89–92%) for their RF radiomic models 
but in small, separate samples of high (N = 18) and low 
grade (N = 12) glioma [22]. Distinct from these studies, 
our method was applied across all histologic grades and 
phenotypes of diffuse gliomas. A recent radiomics study 
that also combined patients with low and high grade 
gliomas (N = 126) demonstrated a comparable RF AUC 
of 0.93 [10].

In addition to the equal or better performance of 
our models, our connectome approach presents potential 
advantages. Our method requires a single, standard of 
care, non-contrast MRI sequence that can be acquired 
in 5 minutes or less. Tumor segmentation required for 
radiomics feature extraction is typically manual or semi-
manual which can be very time-consuming and complex. 
There are established, open source connectome software 
tools currently available [23] that could be integrated 
into clinical workflows and connectome measurement 
is computationally efficient. Connectome properties can 
provide insight regarding other factors important for 

clinical management of patients with glioma including 
cognitive outcomes. However, connectome features 
are affected by factors including choice of parcellation 
scheme, topological property and thresholding method, 
which should be carefully considered.

Our findings support the assertion by Wu et al. that 
RF be the preferred approach for predicting IDH genotype 
in patients with gliomas [10]. In addition to the advantages 
listed in Table 2, RF models are versatile, have low 
computational cost, involve simplistic implementation, 
are able to handle nonlinear data, high dimensional data 
and small sample sizes, and exhibit high performance even 
without parameter tuning [24]. The main disadvantage 
of RF is the “black box” nature, meaning the resultant 
models are very difficult to interpret given that they 
reflect a combination of multiple decision trees. We did 
not observe an advantage for using feature selection in 
the RF model. Radiomics tends to produce a much larger 
feature set necessitating feature reduction in most cases. 
However, the use of larger parcellation schemes and/or 
smaller sample sizes may require feature reduction when 
predicting IDH status from connectomes in patients with 
gliomas. The addition of age and tumor location to the 
RF model resulted in a marginal, nonsignificant change 

Table 1: Patient characteristics
N = 234

IDH (Mutant) 148 (63%)
Age Mean = 43.85 +/– 15.12

Range = 18–82
Sex (Male) 146 (62%)
Grade II 101 (43%)
Grade III 63 (27%)
Grade IV 70 (30%)
Oligodendroglioma 57 (24%)
Astrocytoma 170 (73%)
Oliogoastrocytoma 7 (3%)
Tumor Hemisphere (Left) 168 (72%)
Tumor Location (Primary)

Frontal 117 (50%)
Insular 17 (7%)
Occipital 1 (.4%)
Parietal 34 (15%)
Temporal 65 (28%)

Multifocal Tumor 33 (14%)
MGMT Promoter Methylation (N = 41) Positive: 24 (59%)

Negative: 17 (41%)
KPS (N = 51) 100: 15 (29%)

90: 21 (41%)
80: 11 (22%)
70: 4 (8%)
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in accuracy, consistent with a previous radiomics study 
showing that age had no effect on model accuracy [7]. 
The connectome RF model showed a 10% improvement in 
sensitivity over the clinical RF model (age, tumor location 
only), a difference that was statistically significant and 
also likely clinically meaningful to clinicians and patients. 
However, the clinical model’s performance was excellent 
and could potentially be improved in future studies such 
that imaging features are unnecessary. It is also important 
to note that the highest performance involved a combined 
connectome and clinical model. Imaging models are 
inherently more computationally intensive than clinical 

only models, but it cannot be concluded currently if one 
approach is robust enough to dismiss the other. All of 
our models, including the clinical model, require further 
validation in independent samples.

In addition to novel methods that contribute 
to ongoing refinement of preoperative IDH status 
prediction, applying connectomics to this line of 
research also provides insights regarding the potential 
neurobiologic effects of IDH mutation. As noted above, 
our previous study of patients with high grade astrocytoma 
demonstrated significantly greater connectome disruption 
and cognitive dysfunction in patients with an IDH 

Table 2: Machine learning approaches
Classifier Description Advantages Tuning Parameters

Random Forest 
(RF) [44]

Ensemble of decision trees 
each trained on a random 
subset of features 

Aggregates multiple independent 
classifiers, scale invariant, implicit  
feature selection, resistant to overfitting

ntree = 1000
mtry = 7 
[log2(nfeats)+1]

Support Vector 
Machine (SVM) 
[45]

Defines an optimal hyperplane 
that maximizes the margin 
between classes

Kernel trick can solve complex problems, 
can handle imbalanced classes by 
weighting misclassification penalty

C = 1.0

Logistic Regression 
(LR) [46]

Multinomial logistic regression 
model with a ridge estimator Simple, highly interpretable ridge value = 1.0E-8

Multilayer 
Perceptron (MLP) 
[47]

Simple model of a biological 
brain that implements 
backpropagation 

Can generalize in non-local ways akin 
to intelligent behavior, inherent feature 
selection

learning rate = 0.3
momentum = 0.2

Figure 1: Receiver operator characteristic (ROC) curves for machine learning models predicting IDH genotype from 
connectome features. RF = random forest, MLP = multilayer perceptron, LR = logistic regression, SVM = support vector machine.
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wild type tumor compared to those with a mutant 
tumor, suggesting that differences in lesion momentum 
and infiltration can affect the entire connectome [6]. 
The specific mechanisms for these differential effects 
are currently unclear but may involve known molecular 
aspects of IDH mutation.

Genes that influence vascular biology, such as 
VEGF and TGF-β2, are highly expressed in IDH wild type 
tumors [25]. As a result, these tumors are more angiogenic, 
show greater cerebral blood volume, higher permeability, 
and alterations in pericyte and endothelial cell function 
in comparison to their IDH mutant counterparts [26]. 
While cerebral vessel disease affects brain structural 
connectivity [16], it remains to be proven that the vascular 
phenotype of IDH wild type gliomas contribute to 

disrupted connectivity differently than that of the mutant 
variant. IDH mutant tumors are more immunologically 
quiescent, with fewer tumor infiltrating lymphocytes and 
less PD-L1 receptors [27], and have reduced expression 
of genes fundamental to mounting a T-cell response in 
and around the tumor bed [28]. Inflammatory response 
is associated with a range of neuropathologies and is 
thought to contribute to neurodegeneration [29–31]. As 
activated immune cells are neurotoxic in the absence 
of any antigen specificity [32, 33], the contribution of a 
relatively inflammatory microenvironment in IDH wild 
type gliomas to brain connectivity and integrity warrants 
further exploration.

D(2)-hydroxyglutarate, a metabolite of IDH mutant 
cells, exerts an excitatory impact on cultured normal 

Table 3: Machine learning model performance
Features Model Accuracy Sensitivity Specificity AUC
90 connectome efficiencies, brain 
volume, network degree, network size

RF 86% 89% 83% .94
SVM 77% 79% 75% .77
LR 78% 84% 73% .76
MLP 80% 84% 77% .85

90 connectome efficiencies, brain 
volume, network degree, network size, 
age, tumor hemisphere, tumor lobe

RF 89% 90% 89% .95

Age, tumor hemisphere, tumor lobe RF 77% 79% 76% .87

RF = random forest, SVM = support vector machine, LR = logistic regression, MLP = multilayer perceptron, AUC = area 
under the curve.

Figure 2: Violin plots for RF model AUCs including nested recursive feature elimination (RFE) or elastic net (EN) 
regression.



Oncotarget6489www.oncotarget.com

neurons through activation of NMDA receptors [34]. This 
finding was novel in our understanding of the relationship 
between glioma cells and the surrounding brain and 
supports the concept of oncometabolites influencing 
normal neuronal activity. Mutant IDH reduces the 
production of NADPH in gliomas [35]. NADPH oxidase 
has been identified as a major contributor to disease 
pathology in several neurologic conditions, including 
amyotrophic lateral sclerosis, Alzheimer’s disease, 
and Parkinson’s disease. Inhibition pharmacologically 
of NADPH oxidase enzymes is neuroprotective [36], 
whether the neurologic insult is degenerative, ischemic, 
or traumatic [37, 38]. As such, it may be inferred that 
IDH mutant gliomas, with less NADPH, may have less 
oxidative toxicity to the surrounding neurons.

In summary, non-invasively predicting IDH 
status in patients with gliomas from preoperative MRI 
is a promising line of research with significant clinical 
relevance. Connectomics is state-of-the art methodology 
in neuroimaging and neuroscience to date but few if any 
prior studies have evaluated connectomes to predict IDH 
genotype. Given the distinct trajectory dependent on 
IDH status, focusing on molecular profiles rather than 
histologic grade to determine clinical trials eligibility may 
become increasingly common, making early definition of 
IDH subtype imperative. Retrospective data also suggests 
that patients with IDH mutant gliomas may derive greater 

benefit from gross total resection than their wild type 
counterparts [39]. As such, knowledge of IDH subtype 
pre-operatively may have important implications for 
preoperative planning, and influence the neurosurgeon’s 
aggressiveness in removing all visible disease.

We examined four classic machine learning 
algorithms but there are many others that might apply. 
We were very vigilant regarding spatial normalization 
and did not experience any normalization failures, which 
many studies ignore or fail to mention. However, future 
connectome studies may require problematic scans 
to be considered for repair via lesion masking or even 
exclusion. We focused on connectome features based 
on prior literature but other connectome properties may 
be more important. There are also alternative methods 
for constructing connectomes with respect to node/edge 
definition, and thresholding, among others, and it is 
possible that multi-modal neuroimaging models would 
provide an advantage for prediction. Next generation 
sequencing for IDH genotype was not available for 
this retrospective sample and therefore some patients 
with mutation may have been misidentified. Finally, 
our connectome, clinical and connectome/clinical 
classification models require further validation using 
an independent dataset to determine their values in 
predicting IDH status relative to computational effort. 
Despite these limitations, our findings suggest that 

Figure 3: MRI preprocessing and connectome construction steps. First, voxel-based morphometry (VBM) involves 
standard procedures to extract gray matter volumes including reorientation to anterior and posterior commissure for improved spatial 
normalization, automated removal of skull, probabilistic segmentation into tissue classes (gray, white, CSF), creation of a sample-
specific template via DARTEL, spatial normalization to standard Montreal Neurologic Institute (MNI) space, modulation using jacobian 
determinant and quality assurance checks. Second, modulated and normalized gray matter volumes were used to construct a connectome 
map for each patient as the correlation coefficients, r, between voxel values captured by all pairs of 3 × 3 × 3 voxel cubes (nodes) 
spanning the entire volume. This correlation, or similarity matrix was then thresholded to remove false positives resulting in a binary 
matrix where a connection (edge) between two nodes = 1. Third, the binary similarity matrix was submitted to graph theoretical analysis. 
Efficient information exchange is assumed to follow the shortest path between regions. As illustrated here, the shortest, most efficient 
path from node a to c is marked in red. Efficiency (E) is defined as the average inverse shortest path length across all regions in the 
network where n is the number of nodes and d(vi,vj) is the length of the shortest path between nodes i and j. Efficiencies were averaged 
across all cubic nodes with MNI coordinates within one of 90 discrete anatomic regions defined by the Automated Anatomical Labeling 
Atlas (AAL).
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connectomics is a promising approach for predicting IDH 
genotype from conventional MRI. Importantly, given 
the prognostic and biologic information supplied by the 
connectome, it may serve as a valuable tool to follow 
therapeutic response through the disease course, offering 
greater depth of what is occurring with the tumor and 
surrounding brain than standard MRI sequences and 
clinical data alone.

MATERIALS AND METHODS

Patient characteristics

We retrospectively identified adult (age 18 or older) 
patients with histopathologically confirmed WHO grade 
II–IV gliomas and known IDH genotype from biopsy/
resection who were newly diagnosed and first treated at 
The University of Texas MD Anderson Cancer Center. 
A total of 234 patients met these criteria and also had 
an available pre-surgical, T1 MRI acquired at 3 Tesla. 
Patients were treated during the years of 1996–2018. 
MRI, demographics, genotype and other clinical data 
were extracted from the electronic medical record as well 
as the IRB-approved prospective Department of Neuro-
Oncology protocol (PROACTIVE, 2012–0441). IDH 
status was determined via immunohistochemistry. This 
study was approved by the MD Anderson Cancer Center 
Institutional Review Board.

MRI preprocessing and connectome construction

Figure 3 summarizes MRI analysis procedures. Gray 
matter volumes were segmented from pre-surgical, T1-
weighted MRI using voxel-based morphometry (VBM) 
via VBM8 Toolbox and Statistical Parametric Mapping 
8 software (Wellcome Trust Centre for Neuroimaging, 
London, UK). We employed DARTEL, which uses a 
large deformation framework to preserve topology and 
employs customized, sample-specific templates resulting 
in superior image registration, even in lesioned brains, 
compared to other automated methods [40]. Successful 
normalization was confirmed using visual and quantitative 
quality assurance methods [6].

Gray matter covariance networks were constructed 
for each patient using a similarity-based extraction 
method [41]. Matrices were then submitted to graph 
theoretical analysis using Brain Connectivity Toolbox 
(https://sites.google.com/site/bctnet/) and in-house code 
(https://github.com/srkesler/bNets.git) implemented 
in Matlab v2016b (Mathworks, Inc, Natick, MA). We 
calculated connectome efficiency [42] for each node 
given that this property is consistently observed to be 
affected in patients with diffuse glioma [6]. We also 
computed total brain volume, network size (number 
of nodes) and degree (number of nodal connections) 

as these can influence connectome measurements. 
Network size naturally varies across individuals (mean 
= 7,158 +/– 43 nodes) so gray matter volumes were 
collapsed across 90 cortical and subcortical regions [43] 
to facilitate analyses [6]. Models included all 90 nodal 
efficiency values plus brain volume, size and degree for a 
total of 93 features. Random minority oversampling was 
employed to balance classes.

Prediction of IDH status

We evaluated the performance of four established 
machine learning classifiers (Table 2) to predict IDH 
genotype from pre-surgical MRI connectome features: 
random forest (RF), support vector machine (SVM) with 
a polynomial kernel, logistic regression (LR) and neural 
network (multilayer perceptron - MLP). These algorithms 
are routinely used in radiomic prediction of IDH status 
[8–10]. All models were implemented in the Waikato 
Environment for Knowledge Analysis (Weka) software 
v3.8.3 (Waikato University, New Zealand), an open source 
workbench for practical, accessible machine learning 
applications. Classifier performance was tested using 
leave-one-out cross-validation and quantified with the area 
under the receiver operator characteristic curve (AUC). 
Default Weka tuning parameters were used for simplicity 
and to increase reproducibility with the exception that 
number of trees for RF was set to 1000 vs. 100 as the 
latter is an uncommonly low number of trees in our 
experience (Table 2). We compared model AUCs using a 
bootstrapping method implemented in the R Environment 
for Statistical Computing v3.5.3 (R Foundation, Vienna, 
Austria), using the “pROC” library.

For the best performing model, we tested whether 
feature selection would further improve performance. 
We employed two common strategies, recursive feature 
elimination (RFE), a type of backward selection, and 
elastic net regression, a regularization technique that yields 
a sparse model (tuning parameter alpha = 0.5). Feature 
selection was nested within the cross-validation loop and 
the outer loop repeated 50 times. We then calculated the 
mean AUC across the 50 iterations. RFE was conducted 
in the “caret” library and elastic net was conducted using 
the “glmnet” library in R. Finally, we evaluated whether 
adding age and tumor location (lobe, hemisphere) would 
improve the best performing model and/or yield a best 
performing model independently of connectome features.

Abbreviations

IDH: isocitrate dehydrogenase; AUC: area under the 
curve; RF: random forest; MLP: multilayer perceptron; 
SVM: support vector machine; LR: linear regression; 
RFE: recursive feature elimination; VBM: voxel-based 
morphometry.

https://sites.google.com/site/bctnet/
https://github.com/srkesler/bNets.git
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