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Abstract

The bacterial pathogen Salmonella enterica serovar Typhimurium is one of the most com-

mon causes of foodborne disease in humans and is also an important model system for bac-

terial pathogenesis. Oral inoculation of C57Bl/6 mice, which are genetically susceptible to

Salmonella, results in systemic infection but the murine intestine is not efficiently colonized

unless the intestinal microbiota is disrupted. Pretreatment of C57Bl/6 mice with streptomy-

cin, followed by oral inoculation with Salmonella Typhimurium results in colitis resembling

human intestinal Salmonellosis. The predominant method of delivery of bacteria is oral

gavage, during which organisms are deposited directly into the stomach via a feeding nee-

dle. Although convenient, this method can be stressful for mice, and may lead to unwanted

tracheal or systemic introduction of bacteria. Here, we developed a method for oral infection

of mice by voluntary consumption of regular mouse chow inoculated with bacteria. Mice

readily ate chow fragments containing up to 108 CFU Salmonella, allowing for a wide range

of infectious doses. In mice pretreated with streptomycin, infection with inoculated chow

resulted in reproducible infections with doses as low as 103 CFU. Mice not treated with

streptomycin, as well as resistant Nramp1 reconstituted C57Bl/6J mice, were also readily

infected using this method. In summary, voluntary consumption of chow inoculated with Sal-

monella represents a natural route of infection for foodborne salmonellosis and a viable

alternative to oral gavage.

Introduction

Bacteria belonging to the genus Salmonella enterica subsp. enterica are common causes of

foodborne diarrheal disease [1] and a leading cause of death due to foodborne pathogens glob-

ally [2] and in the US [3]. Transmission occurs primarily via the fecal-oral route. Salmonella
enterica serovar Typhimurium (hereafter Salmonella) is one of the serovars most commonly

isolated from human gastrointestinal infections and is one of the most studied human bacterial

pathogens. This, combined with its simple growth requirements, has led to its frequent use as a

model organism for in vivo studies of the pathogenesis of gastrointestinal infections.

The most widely used animal model for Salmonella infection is the mouse [4]. Strains of

mice differ in their susceptibility to Salmonella, with C57Bl/6J (B6) and BALB/c mice being
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highly susceptible and other strains, including 129/Sv, being very resistant [5–8]. Suscepti-

bility is multifactorial, but one major resistance factor is the Nramp1 protein encoded by

the Slc11a1 gene [9]. Nramp1 is an ion transporter responsible for the transport of divalent

cations out of phagosomes, thus limiting the availability of iron and other ions for ingested

microbes and impairing their growth in phagocytes [10]. Many susceptible mouse strains,

including B6, harbor a point mutation in the Slc11a1 gene resulting in a non-functional

Nramp1 protein [11, 12]. Oral infection of susceptible mouse strains with Salmonella leads

to a systemic infection without efficient colonization of the intestine and the mice succumb

within 5–6 days [13]. However, if the intestinal microbiota is disrupted by antibiotic treat-

ment mice do develop intestinal inflammation more similar to human intestinal salmonel-

losis [14, 15]. Transgenic B6 mice expressing a fully functional allele of Nramp1 (B6N) are

an alternative mouse model for host innate and adaptive responses to Salmonella. These

mice develop a strong inflammatory response following oral infection and survive for sev-

eral weeks [6, 16].

In the above models of oral Salmonella infection, the mice are almost always infected by

oral gavage (OG), during which a blunt end gavage needle is used to deposit bacteria directly

into the stomach. OG is widely used as a substitute for oral delivery since it allows for precise

delivery of inoculum. However, there are drawbacks. Performing OG requires a moderate

degree of technical expertise and can induce stress in mice, including raising corticosteroid

levels in the blood or increasing blood pressure, which may affect study outcome [17–20]. Fur-

thermore, mice may regurgitate delivered substances or infectious agents following gavage,

resulting in tracheal or nasal administration [21, 22]. Lastly, gavage may induce pharyngeal or

esophageal trauma, leading to the inadvertent delivery of substances or infectious agents

directly into the blood stream as has been shown for Listeria monocytogenes [22–24].

Improvements to OG have been suggested, such as precoating needles with sucrose, which

improved gavage success rate and reduced stress of animals [25]. Alternatively, a more natural

method would be consumption of food or water containing a pathogen, which mimics the

foodborne route of infection for Salmonella and would circumvent many of the drawbacks

associated with OG. Indeed, when inoculated food was used to infect mice with L. monocyto-
genes systemic spread was delayed, compared to inoculation by OG, probably by avoiding

direct systemic infection [24, 26]. However, to our knowledge, food as a vehicle of delivery for

Salmonella infection has not been reported.

In this paper, we describe a foodborne infection method using regular mouse chow inocu-

lated with Salmonella. This voluntary consumption (VC) mode of infection leads to consistent

colonization in mice and eliminates many of the possible drawbacks associated with OG.

Importantly, this method represents a natural route of infection with Salmonella.

Results and discussion

Salmonella survival on mouse chow

As a first step in testing whether mouse chow can be used for foodborne infection of mice,

we tested the survival of Salmonella on chow. Fragments (30–45 mg each) of chow, prepared

from pellets using a small hammer and forceps (Fig 1A), were inoculated with 10 μl of Sal-
monella suspended in sterile pharmaceutical grade saline (SPGS) and then incubated at

room temperature for 1 or 3 h. The chow fragments were then homogenized, diluted and

plated to enumerate colony forming units (CFUs). For comparison, bacteria were inocu-

lated in SPGS alone. No decrease in viability of Salmonella was observed over the course of

3 h (Fig 1B and 1C).

Foodborne infection of mice with Salmonella
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Comparison of OG and VC inoculation methods

To compare VC with infection by OG, we started with the method described by Barthel et al

[14] for oral infection of streptomycin treated (hereafter referred to as strep+) B6 mice, a

model that is now widely used. In addition to changing the inoculation method to VC, we

made three other significant changes. First, since we were concerned that high levels of Salmo-
nella might affect the palatability of chow, we used a low inoculum (104) of Salmonella,

although the dose most frequently used for oral infection is approximately 108 [14, 27, 28]. Sec-

ond, for mice infected by VC only, the streptomycin pretreatment was administered in the

drinking water (final dilution of 5 mg/ml) for 24 h instead of by gavage (20 mg/mouse) 24 h

prior to infection. B6 mice drink approximately 6 ml of water per 24 h [29], which results in an

approximate total dose of 30 mg streptomycin. Third, whereas mice infected by OG were

fasted for 4 h prior to each gavage (streptomycin pretreatment and infection) the mice infected

by VC were fasted once for approximately 20 h before being given inoculated chow. A sche-

matic comparing the two infection protocols is shown in Fig 2A. The experiment was designed

to compare the two protocols (standard OG method vs VC method) rather than any individual

step.

To infect mice by VC, single mice, which had been fasted for 20 h, were placed in a clean

cage with no bedding and a fragment of Salmonella-inoculated chow was put on the floor of

the cage. Chow was found, and consumed, more quickly if it was placed at the side of the cage

due to the propensity of mice to run around the edge. After consuming the chow, mice were

either returned to their original cage or transferred to a clean cage with bedding. For infection

by OG, mice, which had been fasted for 4 h, were inoculated with Salmonella in SPGS (100 μl

total vol) using a blunt gavage needle. All mice were euthanized at 3 days p.i. at which time

they displayed very mild, if any, clinical signs of disease, although feces was frequently found

on the walls of the cage, indicating wet stool. While all mice displayed similar colonization (Fig

2B), there were some differences, which may be due to the VC inoculation, the prolonged

streptomycin treatment in the drinking water, the prolonged fasting period or any combina-

tion of these [30, 31]. Bacterial loads in tissues varied by 1–3 logs, with the exception of the

feces and lungs of mice infected by OG which varied from below the limit of detection to

3.4×108.and 8.7×103 respectively. The presence of Salmonella in the lungs is not usually

assessed but is not very surprising given the susceptibility of strep+ B6 mice to disseminated

Salmonella infection. Strikingly, two mice infected by OG contained particularly high bacterial

Fig 1. Salmonella survival on mouse chow. (A) Representative image of a regular mouse chow pellet and prepared chow fragments. Ruler scale in

centimeters. (B, C) Survival of Salmonella on chow and in SPGS, 1 and 3 h after inoculation. Original inoculum added as a comparison. Data represent

the mean ± SD of three independent experiments (n = 1 per experiment).

https://doi.org/10.1371/journal.pone.0215190.g001
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numbers in the lungs suggesting possible unintended tracheal delivery of bacteria [21].

Decreased systemic spread of L. monocytogenes following inoculation by contaminated food

compared to OG, has been reported [24]. Similarly, decreased systemic spread was observed in

mice infected by VC of water contaminated with Salmonella compared to OG [32]. Altogether,

these three studies indicate that infection by VC is a viable alternative to OG.

Inoculation of resistant mice by VC

Transgenic B6N mice, which express a functional allele of Nramp1, or B6 mice not pretreated

with antibiotic are more resistant to Salmonella than strep+ B6 mice, and higher inocula are

used for infection by OG [6, 16]. Therefore, to test whether VC is compatible with higher inoc-

ula of Salmonella we first compared a dose range of 103 to 106 CFU in strep+ B6 mice. For

doses of 105 and 106, the bacteria were rinsed once by centrifugation before dilution since we

Fig 2. Comparison of tissue loads in mice infected by VC and OG. (A) Schematic representation of the OG (top)

and VC (bottom) infections. (B) Bacterial numbers in tissues from mice infected either by OG or VC 3 days p.i. n = 10

mice. Symbols represent individual mice. Error bars represent the mean ± SD. Tissues where bacterial load was below

the level of detection are given a value of “1” for visualization purposes.

https://doi.org/10.1371/journal.pone.0215190.g002
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observed in preliminary experiments that otherwise mice were hesitant to consume chow

inoculated with high doses (data not shown). By 3 days p.i. all mice were infected and the bac-

terial loads in organs revealed no dose dependence (Fig 3A), similar to what has been reported

for mice given streptomycin in drinking water and infected by OG [33]. Bacterial loads were

more variable in the gastrointestinal tract, particularly in the ileum (3×105 to 5×108 CFU/g),

but there was no correlation with infectious dose.

In B6N mice a dose of 104 resulted in variable colonization of systemic tissues, with CFUs

below the limit of detection in the spleen and liver in 1 and 3 of 5 mice respectively, while 105

resulted in consistent colonization, indicating that 105 is the minimum dose required for 100%

systemic colonization. As expected, the bacterial loads in general were lower in the B6N mice

(Fig 3B), nonetheless, they followed the same trends seen in B6 mice, with the highest number

of bacteria in the feces followed by the cecum, ileum, spleen, liver and blood similar to what

has been shown previously [34].

Mice with an intact microbiota are also much less susceptible to oral infection with Salmo-
nella. Therefore, we also infected B6 and B6N mice that were not pretreated with streptomycin

(hereafter referred to as strep-) by VC. For these experiments mice were infected with 108 bacte-

ria, the standard dose used in oral infections of mice with Salmonella (see e.g. [14, 28, 35]), using

rinsed bacteria as in the previous experiment. At 3 days p.i. the intestinal tract of both B6 and

B6N mice was colonized although B6N mice had lower bacterial loads (p< 0.05 for ileum and

feces) apart from the cecum (Fig 4). In systemic tissues, no bacteria were detected in B6N mice

and bacterial numbers were variable in B6 mice, with bacteria detectable in four out of five mice.

In summary, Salmonella infections of strep+ and strep- B6 and B6N mice by VC are in

agreement with studies using OG. While it is difficult to determine the dose of nontyphoidal

Fig 3. Colonization of B6 and B6N mice following VC inoculation. (A) Bacterial loads in tissues 3 days p.i. in strep

+ B6 mice infected with indicated CFUs. (B) Bacterial loads in tissues 3 days p.i. in strep+ B6N mice infected with 104

or 105 CFUs. n = 5 mice and symbols represent individual mice. Tissues where bacterial load was below the level of

detection are given a value of “1” for visualization purposes.

https://doi.org/10.1371/journal.pone.0215190.g003
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Salmonella required to cause gastroenteritis in humans, the dose is generally considered to be

approximately 105 to 106 CFUs, although lower doses in susceptible individuals have been

reported [36, 37]. Here we achieved colonization of strep+ mice using only 103 organisms,

indicating that this foodborne infection model can be used to investigate a range of relevant

infection doses.

Disease progression in mice infected by VC

We next compared the disease progression in B6 and B6N mice infected by VC. Previously we

showed that all B6 mice, infected via OG with no streptomycin pretreatment, developed clini-

cal disease within 10 days (108 CFU) compared to less than 30% of B6N by day 21 p.i. [16].

Here we obtained similar results with B6 and B6N mice infected by VC (Fig 5A and 5B). All

B6 mice developed clinical signs and were euthanized on days 7 (4/5) and 8 (1/5) whereas only

1 out of 5 B6N mice developed clinical disease (day 15) and the rest (4/5) were clinically

healthy when euthanized at day 21. At the time of euthanasia, all of the B6 were infected, while

in B6N mice bacterial loads were sometimes below the limit of detection (Fig 5C and 5D). In

contrast, when mice were pretreated with streptomycin and inoculated with 104 CFU, both B6

and B6N mice developed clinical disease although this was slower in B6N (day 11–13 com-

pared to day 5–6) (Fig 5A and 5B). All of these mice had systemic disease with detectable

CFUs in the spleen and liver as well as in the intestine (Fig 5E and 5F). These data, together

with the results of the early colonization studies (Figs 3 and 4), show that inoculation by VC

does not alter the course of infection compared to inoculation by OG [6, 35, 38].

Impact of fasting duration on foodborne infection

Mice are routinely fasted before oral inoculation with Salmonella, although the fasting times

vary from 2–16 h [6, 14, 16, 39, 40]. In their paper describing VC inoculation with L. monocy-
togenes Ghanem et al fasted mice for 16–24 h in cages with elevated wire flooring to prevent

coprophagy [24, 26]. They also showed that 0–4 h of fasting was not sufficient to get bacterial

colonization of the intestine but when food was withheld overnight (16 h) the colons of all

mice were colonized [24]. Based on their findings we used a 20 h fast (initiated between 12-

4pm) for the initial experiments, although mice were fasted in a clean cage with bedding

instead of an elevated wire floor. While fasting overnight is a standard procedure, the noctur-

nal eating pattern of mice can lead to weight loss and stress [41]. Therefore, to determine

whether a reduced fasting period could be used, without significantly affecting the time taken

Fig 4. Infection of strep- mice. Bacterial numbers in tissues 3 days p.i. in strep- B6 and B6N mice infected with 108

CFU Salmonella. n = 5 mice. Filled symbols represent individual B6 mice and open symbols represent individual B6N

mice. Tissues where bacterial load was below the level of detection are given a value of “1” for visualization purposes.

Asterix indicates statistical significance; � p< 0.05, �� p< 0.01, ns, not statistically different, two-tailed Mann-Whitney

U test.

https://doi.org/10.1371/journal.pone.0215190.g004

Foodborne infection of mice with Salmonella

PLOS ONE | https://doi.org/10.1371/journal.pone.0215190 August 8, 2019 6 / 12

https://doi.org/10.1371/journal.pone.0215190.g004
https://doi.org/10.1371/journal.pone.0215190


to consume inoculated chow, mice were fasted for 14 h (6pm– 8am) or 4 h (8am– 12pm)

before inoculation (104 CFUs). Mice fasted for 14 h consumed chow within 2 min, while those

fasted for 4 h took up to 12 min (Fig 6A). Mice eat more in dark phase vs light phase so the

short consumption time after 14 h may, at least in part, be due to fasting taking place overnight

rather than during the day. However, since animal facilities generally discourage “after hours”

access, unless necessary for animal welfare, we were unable to compare the effect of shorter

night time fasting. To minimize the time taken to eat chow after 4 h fasting we slightly modi-

fied the feeding procedure. Mice were moved into individual clean cages, given a fragment of

chow and then left undisturbed until consuming the whole chow fragment.

To determine whether mice would eat a higher inoculum after a short period of fasting, B6

mice were fasted for 4 h, and given chow inoculated with 108 CFUs. Despite the higher inocu-

lum, these mice consumed the fragments of chow in a time frame similar to mice fed 104

Fig 5. Kinetics of disease progression in mice inoculated by VC. Survival and bacterial loads of B6 (A, C, E) and B6N

(B, D, F) mice. Strep- (not pretreated with antibiotic) and strep+ (pretreated with antibiotic in drinking water) mice

were infected with 108 or 104 CFU respectively. n = 5 mice in each experiment and symbols represent individual mice.

Open symbols in Fig 5D indicate the B6N mouse that was euthanized 15 days p.i. Tissues where bacterial load was

below the level of detection are given a value of “1” for visualization purposes.

https://doi.org/10.1371/journal.pone.0215190.g005
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CFUs (Fig 6B, left panel). Comparison of the bacterial loads in tissues from mice fasted for 4 h

(Fig 6B, right panel) with mice fasted for 20 h (Fig 4) revealed less systemic dissemination at 3

days p.i. Since these experiments were not performed side by side the differences in organ

loads may be due to experimental variation but overall these data indicate that shorter fasting

times result in delayed, or less efficient, dissemination of Salmonella. In the method described

for VC inoculation of mice with L. monocytogenes the mice sometimes had to be left undis-

turbed for up to 2 h to eat the offered food, even after 24 h of fasting [26]. In contrast, the mice

in our study showed no reluctance to eat inoculated food, possibly because we used their regu-

lar chow rather than food they were unfamiliar with (buttered bread).

In summary, oral infection of mice by VC mimics the natural route of infection for Salmo-
nella and results in reproducible colonization of tissues. This method is straightforward to

carry out and may avoid the stress and potential adverse side effects of OG. Further refine-

ments to the method are possible, such as; adjusting fasting times; the concentration of strepto-

mycin in drinking water; and the time allowed for mice to access water containing

streptomycin. This approach should also work for other intestinal pathogens.

Materials and methods

Ethics statement

All animal studies were carried out following the recommendations in the Guide for the Care

and Use of Laboratory Animals, 8th Edition (National Research Council), and were approved

by the Rocky Mountain Laboratories Animal Care and Use Committee. Protocol number

2017-021-E. Animals were euthanized either before the development of clinical disease or at

the defined humane endpoint (development of clinical disease: ruffled fur, hunched posture,

lethargy).

Bacterial strains and growth conditions

Salmonella Typhimurium strain SL1344 was used for all experiments. For infections, bacteria

were grown in a 125 ml Erlenmeyer flask in 10 ml LB-Miller containing 100 μg/ml streptomy-

cin for 18 h at 37˚C, with shaking at 225 RPM. Bacteria were diluted in sterile SPGS to get the

correct inoculum in 10 μl (e.g. to get 104 CFU an overnight culture was diluted 1:5000). For

inoculation of 105 CFU or higher, a wash step was included prior to dilution. 1 ml of the

Fig 6. Fasting duration affects consumption time and bacterial loads. (A) Time required for mice to completely consume

fragments of chow with the indicated inoculum and fasting time. Symbols represent individual mice and error bars

represent the mean ± SD. 5 mice per experiment. (B) Consumption time (left panel) and bacterial loads (right panel) in

tissues 3 days p.i. following 4 h of fasting and an inoculum of 108 CFU Salmonella. n = 5 mice, symbols represent individual

mice, error bars represent the mean ± SD.

https://doi.org/10.1371/journal.pone.0215190.g006
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overnight culture was centrifuged at 8000 X G for 2 min, and the bacterial pellet resuspended

in 1 ml SPGS (105−107) or 0.5 ml (108).

Preparation of chow fragments for infection

Mouse chow pellets (2016 Teklad Global 16% Protein Rodent Diet, Envigo, Madison, Wiscon-

sin USA), were broken into smaller fragments of about 4–5 mm in diameter and 30–45 mg by

gentle tapping with a small hammer followed by trimming with forceps. Selected fragments

were gently tested for physical integrity, by dropping from a height of 4–5 inches, before 10 μl

of inoculum was pipetted onto the surface. Prepared pieces were kept separated in a petri dish

during transport to the animal facility. One fragment of inoculated chow was retained for esti-

mation of the dose by plating.

Mouse infection by VC

The B6 mice used in this study were either from a colony of mice originally purchased from

The Jackson Laboratory (Bar Harbor, ME) and maintained at the Rocky Mountain Laborato-

ries or purchased from The Jackson Laboratory and used immediately after arrival. The B6N

mice were from a colony maintained at the Rocky Mountain Laboratories [9]. Except where

specified, mice had unlimited access to food and water. For streptomycin pretreatment the

antibiotic (5 mg/ml) was added to drinking water 42–46 h prior to infection for 24 h. Mice

were then moved to a clean cage (to limit coprophagy and access to cached food), containing

normal drinking water but no chow. After a period of 18–22 h (typically 20 h) individual mice

were put in a clean empty cage (without bedding material) and a fragment of inoculated chow

placed on the floor of the cage next to a side. Typically, mice ate the fragment of chow immedi-

ately or within a couple of min. For the 4 h fasting mice were left undisturbed until the chow

was eaten. Immediately after the inoculated chow was consumed, mice were returned to their

cage with unlimited access to food and water.

Mouse oral gavage infections

Mice were streptomycin treated 24 h before infection, using a blunt end straight size 20 gavage

needle with 100 μl SPGS containing 200 mg/ml streptomycin. For Salmonella infection, mice

were gavaged with bacteria in 100 μl SPGS. Mice were fasted for 4 h prior to all gavages. For

infections without streptomycin treatment, mice were only fasted prior to feeding.

Tissue collection and processing

Mice were euthanized by isoflurane inhalation followed by exsanguination. Tissues were col-

lected in screwcap tubes containing 500 μl SPGS and 3–4 2.0 mm zirconia beads (BioSpec

Products) and homogenized using a Bead Mill 24 (Fisher Scientific, 4.85 m/s for 20 seconds).

Tubes were weighed before and after organ collection. CFUs were estimated by 10 μl spot plat-

ing of 10-fold dilutions on LB agar plates containing the appropriate antibiotic.
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