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Abstract
Network-based intervention has been a trend of curing systemic diseases, but it relies on regimen optimization and
valid multi-target actions of the drugs. The complex multi-component nature of medicinal herbs may serve as valu-
able resources for network-based multi-target drug discovery due to its potential treatment effects by synergy.
Recently, robustness of multiple systems biology platforms shows powerful to uncover molecular mechanisms and
connections between the drugs and their targeting dynamic network.However, optimization methods of drug com-
bination are insufficient, owning to lacking of tighter integration across multiple ‘-omics’ databases. The newly de-
veloped algorithm- or network-based computational models can tightly integrate ‘-omics’ databases and optimize
combinational regimens of drug development, which encourage using medicinal herbs to develop into new wave of
network-based multi-target drugs. However, challenges on further integration across the databases of medicinal
herbs with multiple system biology platforms for multi-target drug optimization remain to the uncertain reliability
of individual data sets, width and depth and degree of standardization of herbal medicine. Standardization of the
methodology and terminology of multiple system biology and herbal database would facilitate the integration.
Enhance public accessible databases and the number of research using system biology platform on herbal medicine
would be helpful. Further integration across various ‘-omics’ platforms and computational tools would accelerate de-
velopment of network-based drug discovery and network medicine.
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INTRODUCTION
In recent decades, the decreased efficiency of new

drug invention has alarmed the pharmaceutical in-

dustry, especially by giving considerable investment

in research and development [1, 2]. The reductionist

approach in medical research can yield only a limited

understanding of complicated pathogenesis and

multi-target pathologies of systemic diseases, and it
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has difficulty in identifying relevant interventions to

target such complexities. Clearly, bullet-based or

mono-target drug intervention cannot effectively

combat the complex pathologies of systemic diseases

like cancers, cardiovascular diseases and neurodegen-

erative disorders [2], because those diseases are regu-

lated by complex biological networks and depend on

multiple steps of genetic and environmental chal-

lenges to progress [1–3]. In clinic, many

mono-therapies have been shown to have limited

effects or too many adverse effects in long-term

treatment for systemic diseases because of the disease

nature of natural evolution of feedback loop and

pathway redundancy. For example, mono-target

treatment in cancer therapy may give adequate

time for cancer cells to develop acquired resistance

by evolution to the drug [1–3]; while multi-target

therapeutics might be more efficacious or less vul-

nerable to allowing adaptive drug resistance because

the biological system is less able to simultaneously

compensate for multiple actions produced by two

or more drugs [1–3].

Those clinical drugs which have been found with

multi-target actions are encouraged to explore new

rounds of drug repositioning [2]. One excellent ex-

ample is metformin. It is a first-line drug for Type II

diabetes [2], but recently found to have cancer in-

hibiting properties [4]. Another example is berber-

ine. This is a classic anti-microbial drug derived from

a medical plant that has been also shown to lower

cholesterol levels in human [5]. Such examples sug-

gest that currently marketed drugs may have add-

itional, but as yet unknown physiological actions

valuable in treating other conditions. Traditional

Chinese Medicine (TCM) has been using herbal for-

mulas to treat complex diseases for thousands of

years. A herbal formula is often composed of several

herbs with multiple chemical ingredients that may

have multiple targets and treatment functions

which were unknown in the past. Now, it is possible

to link the network-based treatment principle of

herbal medicine with the pathological target net-

work and optimize the combined-dosage of the es-

sential components. All in all, network-based drug

discovery is taking the pharmaceutical industry into a

new age where efficient use of systems biology and

computational technologies for medicinal herbs in-

vestigation will function as a powerful engine for

multi-target drug discovery and development of net-

work medicine.

STRATEGIES FORMULTI-
TARGETING
Multi-target intervention drugs have been proven

effective and better to those complex diseases than

the conventional mono-target drugs that are mostly

marketed today. Multi-target drugs can be produced

with one single chemical or with a composition of

several chemicals; however, most are multi-

component and able to comprehensively target the

characteristic pathological network of a disease

(Table 1).

For designing network-based multi-target drugs,

the strategies can be classified into three types [6].

The first type is formulating a drug with multiple

chemical components that could tackle the multiple

major pathogens or pathologies of a disease. For

example, antiretroviral triple cocktail therapy for

AIDS control can effectively defend against resist-

ance by simultaneously suppressing HIV fusion and

interfering with viral protein translation and tran-

scription by using an HIV fusion inhibitor, a pro-

tease inhibitor and a reverse transcriptase inhibitor

together in one drug. This combined therapy not

only reduces a patient’s viral load down to almost

an undetectable level but also restores white and red

blood cells toward normal levels [7]. A second type

of strategy is to design drugs to produce overall

therapeutic synergy based on mutual complements,

by which one component may perform the major

function while others act as adjuvants to enhance

efficacy of the major component or reducing tox-

icity of the drug. Berberine significantly inhibits

growth of Staphylococcus aureus and Microcystis aerugi-
nosa when it is used with 50-methoxy-hydnocarpin

(50-MHC). The latter acts as a multi-drug resistance

(MDR) inhibitor and therefore greatly potentiates

the antimicrobial effect of the former [8].

Augmentin, one of the most widely used commer-

cial antibiotics is in fact composed of two chemicals,

namely amoxicillin and clavulanic acid. Amoxicillin

is a b-lactam antibiotic that acts by inhibiting bio-

synthesis of bacterial cell-wall mucopeptide.

Potassium clavulanate, as an adjuvant of the drug,

inhibits b-lactamase and prevents the degradation of

amoxicillin. With such a combination, optimum

anti-bacterial synergy has been successfully pro-

duced [9]. The third type of strategy, often found

in cancer treatment regimens, is to design a drug

that interferes with multiple avenues of pathological

cross-talk of cancer cells and thereby reduces

chances of the cancer cells developing drug
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resistance. For instance, a four-drug combination,

cyclophosphamide, doxorubicin, vincristine and

prednisone, known as ‘CHOP’, has been used to

treat non-Hodgkin’s lymphoma with more effective

outcomes and less toxicities than any single drug

[10, 11]. And, Dasatinib or Nilotinib and T315I

inhibitor in combination with Gleevec are proposed

to treat chronic myelogenous leukemia (CML) by

targeting BCR–ABL fusion proteins [12]. V600E

BRAF mutation and MEK activation are com-

monly found in melanoma; and therefore a com-

bined use of BRAF inhibitor PLX4032 and MEK

inhibitor has been used to increase therapeutic effi-

cacy [12, 13].

NETWORK-BASEDDRUG
DISCOVERY FROMHERBS
Medicinal herbs are by nature complex, and their

efficacy relies on multi-target intervention via their

multiple active components. Thus, they can be

examined for developing network-based

multi-component drugs [14, 15]. The active compo-

nents of medicinal herbs may have synergistic effect

with currently marketed chemical drugs. For in-

stance, a combination of the HIV triple cocktail

therapy with Tannin, a polyphenolic fraction derived

from a medicinal herb, has been shown to produce a

significant, synergistic and long lasting effect in sta-

bilizing HIV virus propagation by tackling the

Table 1: Examples of multi-target drugs/preparations for treatment of human diseases

Actions Diseases Action characteristics or mechanism Drugs/preparations References

Anti-viral AIDS Targeting different steps in the HIV-1
replication cycle

Highly Active Antiretroviral
Therapy (HAART)

[7]

Inhibiting HIV-1 entry into cells by
interfering with the gp41 six-helix bundle
formation, thus blocking HIV-1 fusion.
At the same time, inhibiting HIV-1reverse
transcriptase, protease and integrase
activities

Tannin-a polyphenolic
compound extracted from
a Chinese medical herb

[16]

Anti-microbial Malaria Potentiating the anti-microbial action of
Berberine by acting as Multi-Drug
Resistance (MDR) inhibitor via inhibition
of MDR efflux

Berberine,
50 -methoxy-hydnocarpin

[8]

Acting at different stages of the asexual
parasite cycle

Artemisinin, meflorquine,
fansidar

[19]

Infections Inhibiting b-lactamase of the bacteria by
potassium clavulanate and then prevent-
ing degradation of amoxicillin

Augmentin (amoxicillin and
clavulanic acid)

[9]

Anti-cancer Non-Hodgkin’s
lymphoma

Reducing toxicity and increasing overall
survival by using CHOP than using indi-
vidual drugs

Combination regimen of
‘CHOP’-Cyclophosphamide,
Doxorubicin,Vincristine,
Prednisone

[10, 11]

Chronic myelogenous
leukemia (CML)

Targeting BCR-ABL Dasatinib, Nilotinib, T315I [12]

Melanoma Targeting V600E BRAF mutation and
increasing cancer killing efficacy

PLX4032, MEK inhibitor [12, 13]

Colon cancer Increasing the anti-tumor potency as well
as reducing toxicity of CPT-11 by PHY906

PHY906-a four herb Chinese
medicinal formula and
CPT-11

[25]

Immuno-modulation Rheumatoid arthritis Producing synergy in immunotolerance
induction by inhibiting PKCy and aug-
menting NFAT pathway of T cells

Cocktail preparation for
immunotolerance induction

[20]

Influencing the pharmacokinetic behavior
and metabolism of paeonol by QFGJS,
an herbal preparation derived from a
Chinese herbal formula

QFGJS and paeonol [26]

Improving intestinal transport and
absorption of paeoniflorin by sinomenine

Paeoniflroin and sinomenine [27]

Reducing acute toxicity of aconitine via
alternating its pharmacokinetics by
paeoniflroin

Paeoniflroin and aconitine [28]
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complex multiple components of HIV-1. Tannin

suppresses HIV-1 reverse transcriptase, protease and

intergrase activities and blocks virus fusion and virus

entry to the host cells [16]. Another typical example

is artemisinin, an anti-malarial drug purified from the

Chinese medicinal herb Qinghao; its discoverer won

the Lasker Award in 2011. However, effective treat-

ment relies on combinational use of artemisinin and

other chemical drugs. Combined use of artemisinin

and chloroquine reverses drug resistance in malaria to

against Plasmodiumfalciparum, the anti-malarial activity

of artemisinin was significantly enhanced [17, 18]. In

addition, combinational use of meflorquine, fansidar

and artemisinin were found to be more effective

through influences of multiple stages of the asexual

parasite cycle in chloroquine-resistant patients [19].

Recently, we proposed to develop cocktail prepar-

ations for immunetolerance induction in T cells by

using two chemicals derived from medical plants, of

which one targets the PKCy pathway while another

targets the NFAT pathway [20].

Traditional medicinal herbal formulas and indivi-

dualized treatment concept may provide the major

sources for developing multi-target drugs. While

traditional medicinal treatment is based on holistic

treatment principle, herbal formulas are usually for-

mulated based on long-term experiences of practi-

tioners. Network-based multi-target drugs could be

developed from herbal formulas by firstly evaluating

the efficacy of the original herbal formula, followed

by isolation of the major bioactive components from

each herb and then redevelopment of a completely

new multi-component formulation composed of the

major bioactive components in order to reach a syn-

ergistic and optimal combination [6, 21]. In addition,

the ‘personalized’ concept of herbal medicine is piv-

otal element of effective herbal formula design to

cure individual patients’ disease pattern. Thus, with-

out selecting the right group of patients, the real

effect of herbal formula could not be shown.

Recently, we proposed that prescribing tailored-

made personalized multi-target regimen specifically

targeting individual molecular dynamics network

profiles; and new design of personalized randomized

clinical trials (PRCTs) are fundamentally important

for proving the real clinical treatment efficacy of

network-based treatment strategy of herbal medicine

[22]. Now, it is also recognized that personal ‘-omics’

profiling may be crucial factor affecting the results of

RCTs, thus the recent Crizotinib trial no longer

relied on control arm for placebo treatment, drug

arm enrollments are based on patients’ genetic

makeup by which NSCLC patients with the pres-

ence of Crizotinib sensitive EML4^ALK fusion gene

mutation are selected [23, 24]. Such patient

pre-selection has shortened the FDA approval time

for crizontinib. Hence, the revolution of network-

based drug discovery can be strengthened by inte-

grating modern systems biology technologies and

personalized multi-target treatment concept of

herbal medicine.

As pioneer investigators of multi-target action of

medicinal herbs, Lam et al. recently demonstrated a

four-herb formula (PHY906) can increase anti-

tumor activity of CPT-11 and reduce toxicity and

side effects in murine colon 38 allograft model [25].

PHY906 contains multiple components that can in-

hibit multiple inflammatory responses like

TNF-a-induced NF-k-B-mediated transcriptional

activity, COX-2 and iNOS enzyme activities, and

simultaneously reduce intestinal damage caused by

CPT-11. This drug is undergoing clinical trials as

an adjuvant remedy with chemotherapy of

CPT-11 [25].To elucidate synergy of herbal compo-

nents, we previously demonstrated that the anti-

arthritic herbal formula QFGJS could markedly

influence pharmacokinetic behavior and metabolism

of paeonol in rats [26], while combinational use of

paeoniflroin and sinomenine purified from two in-

dividual herbs contained in QFGJS could produce

pharmacokinetic synergy in vivo [27]. As such, the

bioactive components in QFGJS may interact and

then produce synergistic effect for treating arthritis,

at least by alternating pharmacokinetic behavior of

those components [28].

UTILIZINGMULTIPLE ‘-OMICS’
PLATFORMS
Uncover the target network with
‘-omics’ technologies
‘-omics’ technologies have been shown as the most

powerful technical platforms for uncovering dy-

namic correlations within the multi-target networks

and drug actions (Table 2). Also, they can provide

efficient tools to better define the global picture of

disease status and dynamic interaction of pathological

targets at the molecular network level; while all of

these information can be used for drug design based

on network targeting. The ‘-omics’ technologies can

also serve as new tools for identifying the target net-

work of a herbal formula.
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Table 2: Current ‘-omics’ platforms in systems biology for elucidating multiple targets and network of human dis-
eases and drug actions

Platforms Techniques Applications Findings References

Genomic platform Array comparative
genomic hybridization
array

Analysis of DNA copy number gain or loss Global analysis of DNA copy number
change across chromosomes between
normal and pathological samples

[29]

Single cell exome
sequencing

Analysis the mutational profiles of the
whole exome of intratumoral cells

Spectrumsclear cell renal cell carcinoma
(ccRCC) tumor did not contain any
significant clonal subpopulations and
mutations that had different allele
frequencies within the population also
had different mutation

[30]

RNAi platform Multiplex RNAi screening Analyzing accumulated genetic alternation
of loss-of-function phenotypes in vitro

Profiling the essential genes in human
mammalian cells by multiplex RNAi
screening

[31]

Transcriptomic
platform

Gene expression array Discovery of whole genome gene expres-
sion profile of a disease

Rheumatoid arthritis (RA) patients
diagnosed withTCM Heat or Cold
pattern

[32]

Gene expression array Examining the action of Si^Wu^Tang
(SWT) in treating women menstrual
discomfort, climacteric syndrome, peri-
or postmenopausal syndrome and other
ostrogen-related diseases

Identifying the nuclear factor erythroid
2-related factor 2 (Nrf2) cytoprotective
pathway is the most significantly
affected by Si^Wu^Tang (SWT)

[33]

Clinical sample
platform

Tissue array/cellular array Identifying specific cellular components
within tissue or single cells

Identifying the proteomic profiles of
preeclampsia tissue and normal placenta
tissue using recombinant antibody
microarrays

[34]

Proteomic platform 2D gel-MS/MS Detecting global targets and candidate
proteins

Identifying proteomic profiles of human
pathogenesis for molecular targeting

[35]

2D gel-MS/MS Detecting network targets response to
drug

Identifying a network of 21 differentiated
regulated core proteins response to
Ganoderic acid D

[36]

Metabolomic platform GC-MS/MS Studying the effect of drugs from
metabolites

Identifying the differential metabolic
profiles of the Xiaoyaosan-treated
chronic unpredictable mild stress rats
and control rats

[37]

LC-MS/MS Detecting metabolomics markers from
serum

Identifying pentol glucuronide as relevant
serum biomarkers of epithelium ovarian
cancer

[38]

Microbiome platform Large scale
sequencing-based
analysis of microbial
genomes

Global genomic analysis of human
microbiome and earth microbiome

Identification of specific contribution of
symbiotic-pathogen in human and earth
to host’s pathology and drug metabolism

[39^44]

Gut-Microbiota-mediated
drug metabolism

Gut-Microbiota-Drug interaction analysis Identification of new compound K, which
is a gingseng metabolite metabolized by
human gut microbiota, possess signifi-
cant stronger cancer prevention activity

[55]

Pharmacogenomics
platform

SNP analysis Identification of subgroup of patients
receiving particular types of treatment
or drug dosage

Determining a maintenance dose for
warfarin based on the CYP2C9 and
VKORC1 genotypes

[46]

Identification of SNP that is associated to
drug treatment outcome

Identification of BIM polymorphic deletion
is associated with shorter
progression-free survival in NSCLC
patients with EGFR activating mutation
afterTKI therapy

[49]

Mutation analysis Identifying a subgroup of patients receiving
treatment benefit based on individual
mutational profiles

Identifying a subgroup of non-small cell
lung cancer patients receiving Gefitinib
treatment benefit based on EGFR
mutation pattern

[47, 48]

Chemical screening
platform

High-throughput screening
of natural products for
cancer therapy and data
collection

High-throughput screening of useful
biological active small molecules from
natural products

Discovering drugs for cancer therapy and
screening bioactive components from
medicinal herbs

[50, 51]

Herbalomics Identifying potential benefit and toxicity of
the components in herbals

Herbalome chips in which arrays of
compounds are screened for their
binding to key peptides as well as doing
the multi-component multi-target
coordination research

[52, 53]
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At the genomic level, the method of array com-

parative genomic hybridization (aCGH) is used for

global analysis of DNA copy number gain or loss

across chromosomes between normal and patho-

logical clinical samples [29]. Whole exome sequen-

cing analysis also speeds up the discovery of novel

molecular targets at single cell level, the diverse mu-

tational profiles across different single cells of a tumor

suggests that multiple drugs are needed to target

intratumoral heterogeneity [30]. The RNAi plat-

form profiles gene functions using multiplex RNAi

screening and analyzes the accumulated genetic al-

ternations in loss-of-function phenotypes [31]. In the

last decade, gene expression microarray platform was

widely employed for candidate gene discovery.

Recently, differential genomic profiles of blood

plasma samples from rheumatoid arthritis (RA) pa-

tients who were diagnosed with either ‘Heat’ or

‘Cold’ pattern according to TCM theories were suc-

cessfully identified, and two distinct genomic net-

work pathways were found in close association

with those two patterns [32]. Genomic analysis of

the molecular target network of the herbal formula

Si–Wu–Tang (SWT) which is traditionally used to

treat menstrual discomfort found that the nuclear

factor erythroid 2-related factor 2 (Nrf2), a cytopro-

tective pathway, was significantly affected [33].

Target network could also be explored on pro-

teins and protein–protein interactions level. A tissue

array platform using recombinant antibody micro-

arrays is often used to identify proteomic profiles

and validate molecular targets from clinical samples

in a multiplexed manner [34]. This platform can

be also used for validating research information

collected from genomic studies. The mass spectro-

metry-based proteomic platform is robust that it has

been widely used for identifying correlations be-

tween proteomic profiles and pathogenesis of certain

human illnesses. Currently, proteomic analysis is in-

creasingly applied for identifying molecular network

targets and response markers sets affected by herbal

medicine [35]. For example, Yue et al. [36] per-

formed MALDI-MS/MS analysis of an interactome

map and identified a network of 21 differentiated

regulated core proteins which are responsible for

mediating apoptotic response to Ganoderic acid D

treatment in Hela cells. MS-based technology has

also been used in metabolomics studies. Gao et al.
compared the metabolomics profiles between a con-

trol group and a Xiaoyaosan-treated group of rats

subjected to chronic, unpredictable mild stress

using gas chromatography coupled with mass spec-

trometry. Results showed significant changes in

metabolomics like glycine, glucose and hexadecanoic

acid which are related to the disturbance of amino

acid metabolism, energy metabolism and glycometa-

bolism [37]. In another study, serum metabolomics

analysis has identified a panel of disease biomarkers

[38] which provides possibilities for tracing corres-

ponding regulatory kinase networks of relevant

drugs. One disadvantage of metabolomics, however,

is that results are easily be affected by diet, and

the technology and database capacity are not suffi-

ciently large for deeper analysis at this moment.

Nevertheless, connections between proteomic and

metabolomics profiles should not be neglected, par-

ticularly because integration of proteomic and meta-

bolomics platforms is essential for identifying the

network targets of multi-component drugs and the

metabolism of herbal will eventually affect treatment

efficacy. The dynamic interaction of the Gut

Microbiota was shown to interact with one another

and with human immune system that can influence

the phenotype and treatment outcome of diseases

including susceptibility to influenza, retrovirus trans-

mission and colon cancer [39–42]. The influence of

symbiotic-pathogen could be better investigated

with the advanced large scale sequencing projects

such as the Human Microbiome Project [43] and

the Earth Microbiome Project [44].

Speed up multi-target drug discovery
by integration
Individual system biology platform is robust but not

informative enough to link drug response with per-

sonalized ‘-omics’ profile. Tighter integration across

different systems biology platforms could provide

mutual-support and validate data as well as eliminate

irrelevant ‘noise’ for elucidating the trans-omics con-

nections, and speed up multi-target drug discovery.

By linking the pharmacological actions of the

tested drug with population genetics, integrated sys-

tems biology platforms can lead to better drug per-

formance in individuals. For example, integrative

research on drug responses and genomic connections

in pharmacogenomics has led to a number of iden-

tifications, measurements and evaluations of the gen-

etic networks responsible for drug treatment at

personalized level [45]. For example, CYP2C9 and

VKORC1 genotypes, which were found to be the

responding biomarkers for better determining the

maintenance dosage of Warfarin, a difficult-to-dose
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anticoagulant, led to a strong awareness for the need

of personalized prescription [46]. This led to aware-

ness of the need for personalizing prescriptions of this

drug. Indeed, it is important to identify genetic fac-

tors associated with the therapeutic responses as well

as the toxic susceptibilities of the tested or prescribed

drug. For lung cancer, Gefitinib is a kinase inhibitor

that inhibits epidermal growth factor receptor

(EGFR) signaling in non-small cell lung cancer

(NSCLC). However, in cancer molecular targeting

therapy, the results of Gefitinib clinical trials were

negative initially because none of these trials selected

patients based on their EGFR kinase dependence.

The real clinical response was proven only after the

identification of subgroups of patients based on mo-

lecular analysis of EGFR mutation status [47, 48].

Furthermore, recent germline mutation study re-

vealed that polymorphic deletion of BIM in

Eastern Asian is common and BIM has a central

role in Gefitinib-induced apoptosis in NSCLC har-

boring activating EGFR mutations. Patients with

BIM deletion had a significantly shorter progres-

sion-free survival time after TKI treatment, the find-

ings implies that germline mutation or SNP database

should also be included for integrative analysis for

final drug prescription decision [49].

Traditionally, high-throughput screening of nat-

ural products libraries was used for cancer drug dis-

covery by either a cell-based or in vitro screening

method [50, 51]. Recently, by combining a trad-

itional chemical screening platform with

network-based genomic and proteomic technolo-

gies, ‘herbalome projects’ have been launched.

Chips with arrays of compounds were screened for

their binding affinity to key peptides, then the bind-

ing affinity database was analyzed to link the correl-

ations between active components contained in

herbs and their multi-target network actions [52,

53]. The ultimate chemical structure or forms of

active components of herbal medicine may vary

after enzymatic digestion and pH challenges after

passing through the digestion tract of host and with

the gut microbiota [54]. Thus, a breakthrough idea

of biotransformation of herbal will generate new sets

of in vivo mimic herbal libraries by digesting the ori-

ginal herbal formula with different known human

microbiota or perhaps microbiota of individual to

reach personalized medicine need, these biotrans-

formed new structures may be the new active

multi-target drug components. For example, it was

recognized that the gut microbiota-mediated

metabolism of ginsenosides in ginseng may alter

the pharmacokinetics of ginseng and enhance their

biologically activity. The newly generated gingseng

metabolite, which is called Compound K, possesses

significantly stronger cancer prevention activity than

the parent compounds [55]. Overall, better integra-

tion of the data derived from multiple ‘-omics’ tech-

nologies can lead to optimization of the treatment by

taking advantage of molecular synergy [56].

TIGHT-INTEGRATIONWITH
COMPUTATIONALTOOLS
Computational models for multi-target
drug design in network perspective
‘-omics’ technologies have produced massive

amounts of data, and the databases keep growing.

Such data is useful, however, only if we have com-

putational tools that can find and integrate relevant

information. Hence, development of bioinformatics

resources or computational tools has become critic-

ally important for screening these vast databases for

effective drug combinations in a cost-effective and

timely manner. The computational and mathemat-

ical models currently available for network-based

multi-component drug design in both western medi-

cine and herbal medicine are summarized in Table 3.

The systematic experimental design and analysis

using algorithm-based computational program aid

identification of an optimized drug combination

and the core disease causative pathways. Algorithm

is used to step by step calculate a function and per-

form data process effectively based on a finite list of

well-defined instructions [57]. Algorithm can be

applied for drug combination optimization using

the definition of synergism. For example, Loewe

additivity and Bliss additivism were commonly

used to distinguish drug additive and synergistic ef-

fects [58, 59]. Bliss additivism models can predict the

combined response C for two single compounds

with effect A and B. Loewe additivity is measured

based on the combinational index which is

dose-based and applies only to activity levels

achieved by the single agents [60]. The highest

single agents (HAS) model is also applied to measure

the larger effects produced of combination than the

effects of single agent. Using these three standard

reference models, the best combination across 435

possible two-component combination of 30 com-

pounds were systematically screened using an algo-

rithm to design all possible combinational doses of
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Table 3: The newly developed computational tools or models for optimizing intervention of multi-targets drugs
and elucidating interactive mechanisms among multiple dynamic targets and networks

Computational
tools

Models Applications Findings References

Algorithm-based Systematic combination
screening

Combination optimization Statically analyzing drug efficacy by
denoting matrix of scores across
435 possible two-component
combinations of 30 compounds,
three optimized drug combination
were found

[60]

Stochastic search algorithm
using Gur Game

Combination optimization Closed-loop control of cellular
functions using combinatory drugs

[61, 62]

Medicinal algorithmic
combinational screen
(MACS)

Combination optimization Identifying a combination of four
drugs from 72 combinations that
are the most effective to kill 8
non-small cell lung cancer

[63]

Extensive search algorithm
model for examining the
quantitative
composition-activity
relationship (QCAR) of
herbal formulae

Combination optimization Optimizing a combination regimen
of three components of TCM
formula Shenmai and Qi^Xue^
Bing^Zhi^Fang

[67, 68]

Algorithm-based computa-
tional program link with
SteinerTree method

Multi-layer correlation analysis of
trans-omics

Linking the gene expression array
and proteomic data to expand the
understanding of the underlying
cellular mechanism

[69, 70]

Network-based Network-based study on
three drug combinational
analysis using combination
index

Multi-target mechanistic study Identifying six core proteins from a
protein network which responds
to the Chinese herbal preparation,
Realgar-Indigo Naturalis
Formula-RIF

[72]

Integrative multiple systems
biology platforms

Multi-target mechanistic study Identifying the key pathways under-
lying the synergistic effects of
combined imatinib and arsenic
sulfide

[73]

Network target-based
identification of multicom-
ponent synergy (NIMS)
model

Solving a stochastic relationship
of drugs and combination
optimization

Transferring the relations between
drugs to the interactions among
their targets of a specific disease
network and prioritizing synergis-
tic pairs from 63 manually
collected agents for a disease
instanced by angiogenesis

[74]

Network-based multi-target
estimation by combining
docking scores

Combination optimization Screening anticoagulant activities of
a series of argatroban intermedi-
ates and eight natural products
based on affinity predictions

[76]

Distance-based Mutual
Information Model (DMIM)

Combination optimization and
target network deduction

Optimizing dosage of two ingredi-
ents derived from a Chinese
herbal formula Liu^Wei^Di^
Huang (LWDH), the actions of
LWDH was deducted to be
associated with interaction with
cancer pathways and
neuro-endocrine-immune
pathways

[77]

Systematically target
network analysis

Disease crosstalk and herbal
mechanism of action analysis

Ingredients of anti-Alzheimer’s
disease (AD) herbs interact
closely with therapeutic targets
that showed crosstalk with
multiple diseases. Furthermore,
pathways of Ca2þ equilibrium
maintaining, upstream of cell pro-
liferation and inflammation were
densely targeted by the herbal
ingredients

[78]
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multiple drugs, three optimized drug combinations

were discovered [60].

Algorithm with other computational method,

such as closed-loop control, can be used to decide

and minimize the number of drug combinations in a

screening protocol. For example, actions of the drug

cocktails were systematically analyzed using

closed-loop control of cellular functions guided by

a stochastic search algorithm. The algorithm can

minimize the required number of trial experiments

from tens of iterations out of one hundred thousand

possible trials [61]. NIH3T3 cells were stimulated by

a drug mixture from a predetermined set of concen-

trations, then the anti-viral activity is measured and

the results were interpreted with a stochastic search

algorithm (Gur Game) to determine the next drug

combination to be tested in the next iterative cycle.

Gur Game is a classic algorithm used to score a new

combination by rewarding or penalizing it after

comparing with the anti-viral effect of the original

drug combination [61, 62].

Zinner et al. developed another drug combination

screening model called Medicinal Algorithmic

Combinational Screen (MACS) and have screened

72 combinations of arbitrary size and formed a

19-element drug pool across four generations. The

combination of fenretinide, suberoylanilide hydroxa-

mic acid and bortezomib was found to be most ef-

fective in killing eight NSCLC cell lines [63].This

method is based on assessing synergy of dose com-

binations using combination index calculated by the

Chou–Talalay equation [64–66]. The fitness values

were calculated based on the observation that each

drug dosed at IC10 added to a cocktail could cause an

increase or decrease inhibition by percentage, then

the fitness value was subtracted or added by that

percentage, respectively [63]. The optimal number

of drugs in a combination was determined when the

fitness value reach maximum after comparing the

parent drug combination with the random alterations

of the generation [63].

Obviously, the application of algorithm for

multi-target drug optimization in herbal medicine

is yet limiting, the above models should be encour-

aged to be used for optimizing the number of and

the dose of herbal components. Recently, Cheng

et al. [67] attempted to use method based on lattice

experimental design and multivariate regression

with extensive search algorithm model for examin-

ing the quantitative composition-activity relationship

(QCAR) of the Chinese medicinal formula Shenmai.

The algorithm is designed based on three factor sim-

plex lattice method to optimize the dosage of the

three key components (PD, PT and OP) in

Shenmai Formula. Ten groups of mice were treated

with the proportion of the three components de-

signed with the three factor simplex lattice method,

and their levels of cardioprotective activity were

determined accordingly. The data were subjected

to fit an equation which can predict the properties

of all possible combinations. The optimal proportion

of PD, PT and OP was found to be 21.6, 39.2 and

39.2%, respectively [67]. Similarly, they have also

used the method to optimize the proportion of

two active components of Qi–Xue–Bing–Zhi–

Fang [68].

Synergy usually can be achieved with lower dose

of individual component but overall may exhibit

new form of toxicity or side-effect, therefore

algorithm-based combination screen is useful but is

still limited. Only by cooperation with network ana-

lysis could show the overall phenotypic effect of the

drugs. Combining use of algorithm with Steiner

Tree can elucidate the connection between

trans-omics platforms in order to generate a valid

disease network. For example, using an algorithm

model solving the Steiner tree problem can integrate

the data set of gene expression array and proteomic

studies by analyzing the highest degree of correl-

ations and associations of both mRNA and protein

expression data. The optimal and possible core dis-

ease causative pathways could be identified by calcu-

lating the probability of the highest correlation and

shortest path [69, 70]. The generated disease network

information will help herbal cocktails design in net-

work perspective.

Hence, network-based computational tools are in-

creasingly applied in herbal synergy study through

mathematical modeling of specific biological pro-

cesses or pathways to study global cellular effects of

multi-target drugs or multi-component therapies

[71]. Wang et al. [72] demonstrated the multi-target

actions and the synergy of the Chinese herbal for-

mula Realgar-Indigo Naturalis Formula (RIF) for

treating acute promyelocytic leukemia (APL) by per-

forming small-scale combinational study using Chou

and Talalay combination index method, and identi-

fied the three main active components of RIF and

their interactive behavior of six core proteins in

mediating the cancer inhibiting effect. Chen’s team

later on applied multiple-omics technologies and

demonstrated that combinational use of Imatinib
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and the toxic herbal remedy arsenic sulfide exerted

stronger therapeutic effect in a BCR/ABL-positive

mouse model of chronic myeloid leukemia (CML)

than a single remedy [73]. The key pathway net-

work underlying this synergistic effect was

identified by integrating cDNA array, proteome,

phosphoproteome and transcriptome profiles in

K562 cells [73].

Furthermore, the topological properties of

biological network was used based on the

integrated Network Target-based Identification of

Multicomponent Synergy (NIMS) model which

can transfer correlations between drugs to the inter-

actions among their molecular targets [74]. NIMS

were performed based on two elements, Topology

Score (TS) and Agent Score (AS) which were used

for evaluating agent interactions with the biological

targets [75]. TS is derived from the topological fea-

tures of the background network related to certain

disease condition while AS is used to quantify the

effects of two agents on disease phenotype by text

mining on OMIM. NIMS synergy was calculated by

multiplying TS with AS. The higher the synergy

score, the greater probability of synergy of the drug

combination [74].

Also, a biological network-based multi-target

computational estimation scheme was used for

screening anticoagulant activity of a series of argatro-

ban intermediates and eight natural products based

on affinity predictions from their multi-target dock-

ing scores and network efficiency analysis [76]. This

scheme has been evolved from the traditional single

agent virtual screening method which relies on eval-

uating binding affinity of the agent to single target,

on the other hand, this model has focused on a net-

work screening strategy based on phenotypic data of

drug molecules against a complex disease by general

network estimation.

Li et al. has established another method called

Distance-based Mutual Information Model

(DMIM) to find the target network and optimal in-

gredient and dosage of a Chinese herbal formula

Liu–Wei–Di–Huang (LWDH), a new anti-

angiogenic herbal combination composing of

Vitexicarpin and Timosaponin A-III was discovered.

Herb network was constructed by DMIM from 3865

Collateral-related herbal formulae and the action of

LWDH formula was deduced from a co-module, the

action of LWDH was found to be related to the

cancer pathways and neuro-endocrine-immune

pathways [77].

Recently, we have also presented a systematically

target network analysis framework by integrating

bioinformatics databases, and used this model to ex-

plore the mechanism of anti-Alzheimer’s disease

(AD) herb ingredients searched by a large-scale text

mining of PubMed and the clinical trial database.

Our results indicate that ingredients of anti-AD

herbs also interact closely with a number of reported

therapeutic targets which are associated crosstalk to

other diseases such as inflammation, cancer and dia-

betes. Furthermore, pathways of Ca2þ equilibrium

maintaining, upstream of cell proliferation and in-

flammation were densely targeted by the anti-AD

herbal ingredients [78].

Challenges of interpreting and
integrating ‘-omics’ and herbal databases
Expanding the translational capacity of ‘-omics’ plat-

forms for network-based drug discovery depends on

developing relevant computational tools to interpret

databases and correlations across genomics, transcrip-

tomics, proteomics, metabolomics, microbiome,

pharmacogenomics and clinical samples (Figure 1).

Such computational tools would largely facilitate

translational research by high-throughput identifica-

tion and fast optimization of regimes of the

network-based multi-target drugs with multiple

‘-omics’ platforms. The application of system biology

and computational models starts to be realized to be

essential to uncover the potentials and optimize the

use of herbal medicine. However, three major chal-

lenges need to be overcome. First, the accuracy of

these models largely depends on the reliability of the

constructed network. As the network is actually

highly dynamic and completely cross-linked, there

is still large space for quantitative prediction of syn-

ergistic combination based on static network

[69, 70]. Specifically, the sensitivity, accuracy and

reproducibility are needed to be improved signifi-

cantly. The ‘-omics’ data sometimes are difficult to

be reproduced which are mainly due to biological

variations and variation of ‘capture time slot’ of the

samples [69, 70]. Also, the choice of models, strains

and different drug exposure time from the data sets

generated from different laboratories lead to vari-

ations [79]. To solve this, it is critical for the industry,

regulatory agencies and academic institutions to

standardize ‘omics’ methods to reach a consensus

about the reliability and interpretation of endpoints

[79], where Connectivity MAP (CMAP) has started

500 Leung et al.



a nice example of this (http://www.broadinstitute

.org/cmap/). Second, while target information is

highly important for calculating the effects of a

drug combination, the multiple targeting profiles

for a natural compound are often limited. For ex-

amples, only one database mentioned 78 protein tar-

gets for 2597 natural compounds, which obviously

needs further updating [80]. Recently, we have de-

veloped the Herbal Ingredient Target (HIT) database

and TCM-Information Database (TCM-ID) by text-

mining on literature and books, but the databases are

not completed, which need to be further expanded

[81, 82]. At the current stage, we have to rely on the

‘-omics’ data, such as RNA expression or protein

expression, to deduce the targeted pathways and net-

works of a prescribed or tested herbal remedy.

Significant increase in herbal research is needed to

provide sufficient data for filling the gap of our data-

bases. Third, the terminology and topology of herbal

medicine have not been standardized and the herbal

databases are not all open-accessed and thus could

not be integrated into the interlinked data with the

public available databases [83]. For examples, many

herbals are termed with different languages depend-

ing on different countries, thus direct extraction of

structured data from biomedical texts cannot be

achieved [84, 85]. The difference in ontology/tax-

onomy of herbal which sometimes causes misunder-

standing and confusion in application, and may cause

serious drug poisoning due to misuse of the herb

[86]. Semantic technologies and linked data initiate

a ‘bridge’ linking traditional medicines and modern

pharmaceutical researches, emphasizing on combin-

ing information using standard representative lan-

guages and address the heterogeneous data

integration problem [86–88]. However, the existing

databases about herbal targets must be further made

publicly accessible and interlinked for broader inte-

gration. Terminology and standardization of herbals

should be unified based on discussion with interna-

tional regulatory agencies, such as International

Standardization Organization (ISO) committee to

achieve consensus from governments, academics

and industry among different member countries.

CONCLUDING REMARKS
Mono-target therapy often fails to treat chronic dis-

eases that are often induced by multiple pathogenic

factors and often involve multiple pathological

Figure 1: A conceptual diagram of integrating systems biology platforms using computational tools for network-
based drug discovery.
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changes, it is necessary to expand drug discovery to-

ward multi-target approach. Multiple system biology

platforms have been used for discovery of molecular

targets in network and personalized perspective.

Further integration of multiple ‘-omics’ technologies

and databases would aid design of optimal

network-based multi-target drugs as well as better-

ment of translational research. The current attempt

of using various algorithm-based and network-based

computational tools for optimizing molecular syn-

ergy of herbal formula and elucidating their target

network seems promising, which would also be a

promise way for developing network-based

multi-component drugs. However, tighter integra-

tion of herbal database with various available ‘omics’

platforms is needed. The major challenges in inter-

preting multiple databases are the lack of reliability,

depth and visualization. Standardization of ‘-omics’

methodology, normalization of the terminologies of

herbs and herbal formulas and expanding research on

herbal synergy with system biology will improve the

quantity and quality of the databases, thus making

integration more easily be achieved. Resources

input on open-accessed TCM databases will also

expand the depth. Along with further development

of new computational tools, such as Semantic web to

integrate ‘omics’ databases with herbal target data-

bases, more accurate algorithms to quantitatively pre-

dict the synergistic effects of multi-component drug

with multi-targets actions will provide the necessary,

powerful engine for building a bridge for TCM and

network-based drug discovery. Taken together, we

believed the network-based drug discovery will be

accelerated by integrating multiple ‘-omics’ and

computational technologies together with clinical

and translational research knowledge.

A tighter integration of multiple systems biology

platforms should be achieved with the help of com-

putational tools which can connect drug combin-

ations with core target network and elucidate their

correlations to overall clinical drug responses. First,

expanding the individual platform database is neces-

sary to providing sufficiently large amounts of raw

information for statistically analysis. Second, compu-

tational modeling can eliminate ‘noise’ via probabil-

ity calculation which predicts the optimal path from

genes to transcripts; and from transcripts to the pro-

tein and protein network level. Thirdly, the herba-

lomic database may provide efficacy information

of herbal constituents to specific potential targets

network. Gut microbiota database could give

information on the herbal metabolites which might

be the ultimate active forms of the herbal ingredi-

ents. Population response database could provide

guidance of the best-fit patient selection to a poten-

tial combination regime. Clinical validation could be

linked with clinical samples and databases. Finally,

optimization of the combinational dose of a designed

drug for a candidate target network could be pre-

dicted with computational tools and is further ex-

perimentally tested by basic research scientists and

validated clinically to fasten translational processes.

Key Points

� Network-based drug discovery has come to new era of pharma-
ceutical industry.

� The design of network-based drug could be based on threemain
strategies: multi-components, mutual complement and
multi-targeting.

� Multi-target nature of herbalmedicinemay provide resources to
network-based drug discovery.

� Therobust andhigh-throughput systemsbiologyplatforms could
efficiently generate important biological data sets for the devel-
opment of network-basedmulti-target drugs.

� Tighter integration across the databases from multiple systems
biology platforms with computational technologies is essential
for breakthrough of the herbal synergy and network-based
drug discovery.
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