
1Scientific Data |           (2020) 7:210  | https://doi.org/10.1038/s41597-020-0547-y

www.nature.com/scientificdata

Probabilistic identification of 
saccharide moieties in biomolecules 
and their protein complexes
Hesam Dashti   1,2, William M. Westler2, Jonathan R. Wedell2, Olga V. Demler1, 
Hamid R. Eghbalnia2, John L. Markley2 ✉ & Samia Mora   1,3 ✉

The chemical composition of saccharide complexes underlies their biomedical activities as biomarkers 
for cardiometabolic disease, various types of cancer, and other conditions. However, because these 
molecules may undergo major structural modifications, distinguishing between compounds of 
saccharide and non-saccharide origin becomes a challenging computational problem that hinders 
the aggregation of information about their bioactive moieties. We have developed an algorithm and 
software package called “Cheminformatics Tool for Probabilistic Identification of Carbohydrates” 
(CTPIC) that analyzes the covalent structure of a compound to yield a probabilistic measure for 
distinguishing saccharides and saccharide-derivatives from non-saccharides. CTPIC analysis of the 
RCSB Ligand Expo (database of small molecules found to bind proteins in the Protein Data Bank) 
led to a substantial increase in the number of ligands characterized as saccharides. CTPIC analysis of 
Protein Data Bank identified 7.7% of the proteins as saccharide-binding. CTPIC is freely available as a 
webservice at (http://ctpic.nmrfam.wisc.edu).

Introduction
Changes in the composition or structure of saccharide compounds can alter their bioactivities1–4. Saccharide com-
plexes, including glycans, have been identified as biomarkers of cancer5–8, Alzheimer9,10, and other conditions11–13. 
In addition, as we and other groups have shown, saccharide complexes can be used as reliable biomarkers of 
cardiometabolic diseases and systemic inflammation14–18. Global efforts have focused on organizing information 
about the bioactivities, structures, biosynthesis, and degradation patterns of saccharides and their conjugates in 
a variety of databases including Protein Data Bank (PDB)19–21, RCSB PDB Ligand Expo22, CCMRD23, and the 
KEGG glycan database24. One example of these efforts is the GlyGen Project (https://www.glygen.org) funded 
by the US National Institutes of Health as part of an international effort aimed at developing computational and 
informatics resources and tools for glycosciences research.

We have previously shown that assigning unique identifiers to chemical compounds is an essential step for 
aggregating information from different experimental and theoretical metabolomics databases25,26. Before devel-
oping such unique identifiers for saccharide complexes, a prerequisite step is to first identify whether a chemical 
compound has a saccharide origin. Distinguishing saccharide-derivatives from non-saccharide compounds is a 
challenging computational problem because saccharides complexes may undergo chemical reactions that result 
in major structural modifications27.

We present here an algorithm and software package called “Cheminformatics Tool for Probabilistic 
Identification of Carbohydrates” (CTPIC) that addresses the essential need for a method for identifying saccha-
rides and their derivatives in a way that distinguishes them from compounds of non-saccharide origin. CTPIC 
provides two probabilistic scores to report similarities between a given chemical compound and saccharide struc-
tures: one score for the probability of the highest scoring fragment of the molecule, and another score for the 
entire molecule. Molecular fragments of a given compound are analyzed to identify fragments that resemble 
structures of saccharides. The number of atoms in the identified fragments over the total number of atoms in the 
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compound are considered as the compound probability, which represents the fraction of the compound that is 
similar to saccharide structures. Among these fragments, the fragment that is most similar to saccharide struc-
tures is then used to calculate the fragment probability of the compound.

We demonstrate how this tool can be used to annotate the carbohydrate relatedness of compounds in a ligand 
structural library and to classify proteins as saccharide-binding on the basis of their structures.

Results
CTPIC: availability and use.  The probabilistic algorithm has been developed in Python, and the source 
codes are publicly available through GitHub (https://github.com/htdashti/ctpic). In addition, the method is freely 
available through a web server (http://ctpic.nmrfam.wisc.edu) that accepts as its input the three-dimensional 
covalent structures of small molecules in SDF or MOL format28. After executing the probabilistic method in the 
background, the results are made available through the website. For each queried compound, the output report 
contains a list of molecular fragments that are found to be similar to known saccharides or their derivatives. The 
web server uses ALATIS25,26 unique atom identifiers in reporting these fragments. In addition, the web server 
utilizes the Open Babel29 package (http://openbabel.org) for identifying ligands in the RCSB PDB Ligand Expo22 
library that are structurally similar to the queried compound. The result page on the website will report the top 
five most similar ligands and their corresponding protein-ligand complexes on the PDB website19–21.

Validation of the approach for probabilistic identification of saccharide compounds.  We show 
here that our method assigns high probabilities to known saccharides and low probabilities to non-saccharides. 
For a given structure file of a chemical compound, CTPIC identifies fragments of the compound that can be 
mapped to saccharide structures. The fragment with the highest probability of being a saccharide-derivative is 
called the best fragment, and its assigned probability is used to report the similarity score of the compound to 
saccharide structures. We used CTPIC to assess the probabilities for sets of known saccharide and non-saccharide 
compounds.

Analysis of known saccharide and non-saccharide compounds.  100 non-saccharide chemical compounds were 
extracted manually from the Maybridge Ro3 fragment library (https://www.maybridge.com/), and their 3D 
structures were obtained from the GISSMO website25,30. CTPIC assigned probabilities of zero to each of these 
compounds. Two examples of these compounds are shown in Fig. 1; results from the entire set of non-saccharide 
examples are on (http://ctpic.nmrfam.wisc.edu).

We selected 100 saccharide derivatives, including aldoses, ketoses, amino sugars, and intramolecular anhy-
drides, from an IUPAC publication on carbohydrate nomenclature27. CTPIC assigned high probabilities to these 
compounds (mean: 0.98, STD: 0.04). Two examples of these compounds are shown in Fig. 1; result from the entire 
set is available on the website.

These examples of non-saccharide and saccharide compounds show that the calculated probabilities can be 
used as an indicator of the similarity between given small molecules and saccharide structures. Therefore, the 
algorithm can be used as a binary classifier (saccharide vs. non-saccharide). On these examined sets of 100 sac-
charides and 100 non-saccharides, the accuracy of CTPIC, as a binary classifier, was 100%.

Application of the approach to identifying saccharides in structural databases.  Identification of 
compounds in the RCSB PDB Ligand Expo database that contain saccharide fragments.  The RCSB PDB Ligand 
Expo22 is a database that contains three-dimensional structures of 29,993 small molecules (structure files down-
loaded on October 1, 2019) that have been found to be associated with structures of biological macromolecules 
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Fig. 1  Examples of compounds analyzed by CTPIC. Non-saccharide compounds yielding scores of 0: (a) 
isonicotinic acid [C6H5NO2] and (b) 1-benzothiophen-5-amine [C8H7NS]. Saccharide compounds yielding 
scores of 1.0: (c) fucose [C6H12O5] and (d) N-acetylglucosamine [C8H15N1O6].
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deposited in the Protein Data Bank (PDB). 28,988 of these entries have been assigned to a “Component type” 
(Table 1). As indicated in the table, a total of 571 entries were annotated as “saccharide” (marked with asterisks: 
saccharide; D-saccharide; D-saccharide 1,4 and 1,4 linking; L-saccharide; L-saccharide 1,4 and 1,4 linking). We 
utilized CTPIC to analyze each of the 29,993 compounds in the RCSB PDB Ligand Expo database to determine 
their saccharide fragment and compound probability scores. These are shown as a scatter plot in Fig. 2. The com-
plete list of the entries and their assigned probabilities are available on the website (http://ctpic.nmrfam.wisc.edu).

CTPIC assigned fragment and compound probabilities of “zero” to five of the entries annotated as “saccha-
ride”. One of these entries, entry ID GTE with the chemical formula “OH”, was mistakenly annotated as a saccha-
ride. The remaining four entries, shown in Fig. 3a–d, represent compounds that the probabilistic method failed 
to identify as saccharide derivatives owing to their lack of sufficient diagnostic oxygen atoms. Apart from these 
five entries, the lowest fragment probability of the 571 entries annotated as “saccharide” was 0.97. The two entries 
with probability of 0.97 are shown in Fig. 3e,f; their lower than 1.0 score can be attributed to the structural mod-
ifications of their saccharide moieties.

Component Type # entries Component Type # entries

non-polymer 26566 L-peptide linking 1182

* saccharide 200 D-peptide linking 123

* D-saccharide 299 peptide-like 539

* D-saccharide 1,4 
and 1,4 linking 13 peptide linking 77

* L-saccharide 58 D-beta-peptide, 
C-gamma linking 1

* L-saccharide 1,4 
and 1,4 linking 1 D-gamma-peptide, 

C-delta linking 1

RNA linking 287 L-gamma-peptide, 
C-delta linking 1

L-RNA linking 5 L-peptide COOH 
carboxy terminus 9

L-DNA linking 4 D-peptide NH3 amino 
terminus 2

DNA linking 405 L-beta-peptide, 
C-gamma linking 1

DNA OH 3 prime 
terminus 3 RNA OH 5 prime 

terminus 1

DNA OH 5 prime 
terminus 2 RNA OH 3 prime 

terminus 2

L-peptide NH3 
amino terminus 13 NA 198

Table 1.  Annotated components types archived in the RCSB PDB Ligand Expo.
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Fig. 2  Scatter plot of calculated probabilities for the RCSB PDB Ligand Expo entries. The y-axis indicates the 
best fragment probability, and the x-axis shows the compound probability. In this plot, the 571 compounds 
that were annotated in this database as “saccharide” are shown as filled black diamonds, and the remaining 
compounds are shown as grey circles.

https://doi.org/10.1038/s41597-020-0547-y
http://ctpic.nmrfam.wisc.edu


4Scientific Data |           (2020) 7:210  | https://doi.org/10.1038/s41597-020-0547-y

www.nature.com/scientificdatawww.nature.com/scientificdata/

Several entries annotated as “saccharide” received fragment probability of “1” but low compound probabilities. 
These entries contain a saccharide fragment modified by atoms that do not constitute a saccharide structure. The 
compounds with the lowest compound probabilities (0.35 and 0.38) corresponded to entry ID AGH and ID 46Z, 
respectively. As shown in Fig. 3g,h, both of these entries contain a saccharide fragment; however, the long meth-
ylene chains in entry ID AGH and the phenyl ring in entry ID 46Z resulted in the low compound probabilities.

Examination of these structures led us to choose fragment scores of 0.97 and higher, and compound scores 
of 0.35 and higher as the thresholds for designating a compound as having “saccharide” origin. According to this 
designation, the RCSB PDB Ligand Expo contains 4,553 compounds scored as “saccharide”, which is 3,982 more 
than the original number of 571. The entire set of compounds newly annotated as “saccharide” is available on the 
website. Compounds that exemplify the extremes of this classification range are shown in Fig. 4. Mycalolide B 
(entry ID JQV, Fig. 4a) received the lowest scores for “saccharide” designation. It contains a saccharide fragment 
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Fig. 3  Examples of the saccharide compounds in RCSB PDB Ligand Expo database. (a–d) These compounds 
were assigned probabilities of “zero” due to the lack of sufficient oxygen atoms: (a) 2,6-diamino-2,3,6-trideoxy-
α-D-ribo-hexopyranosyl, entry ID: ADR, formula: C6H14N2O2, (b) [O4]-acetoxy-2,3-dideoxyfucose, entry ID: 
ARI, formula: C8H14O4, (c) 2,3-dideoxyfucose, entry ID: CDR, formula: C6H12O3, (d) 3,4-dideoxy-2,6-amino-
α-D galactopyranose, entry ID: GE1, formula: C6H14N2O2. (e,f) Compounds with fragment probabilities 
of 0.97: (e) D-arabinohydroxamic acid, entry ID: HDL, formula: C5H9NO7, compound probability: 0.92, (f) 
D-fructuronic acid, entry ID: FIX, formula: C6H8O7, compound probability: 1.00. (g,h) Compounds with 
the lowest compound probabilities: (g) n-[(1 s,2r,3 s)-1-[(α-D-galactopyranosyloxy) methyl]-2,3-dihydroxy 
heptadecyl] hexacosanamide, entry ID: AGH, formula: C50H99NO9, compound probability: 0.35, (h) 
(2 R,3 R,4 S,5 S)-4-fluoro-3,5-dihydroxytetra hydrofuran-2-yl 2-phenylethyl hydrogen S-phosphate, entry ID: 
46Z, formula: C12H16FO7P, compound probability: 0.38.
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(highlighted in green) plus extensive non-saccharide moieties. At the other end of the scale, β-D-fructofuranosyl
-(2- > 6)-beta-D-fructofuranosyl-(2- > 6)-beta-D-fructofuranose (entry ID 0UB, Fig. 4b) received fragment and 
compound probabilities of 1.0.

Identifying saccharide binding proteins.  Lectins and saccharide binding proteins are involved in many 
biological processes, including cell recognition, cell-cell adhesion, and immune functions31–35. In this section, 
we show another application of CTPIC for identification of these macromolecules by probabilistic annotation 
of small molecule with saccharide origin that bind to the proteins. To show how the method can be used for 
identifying saccharide binding proteins, we analyzed the cross references from the RCSB Ligand Expo to the PDB 
structural database of macromolecule complexes19–21. The majority of the small molecule structures stored in the 
Ligand Expo database are extracted from molecular complexes archived in the PDB, and the Ligand Expo data-
base provides cross links between the small molecules and their corresponding macromolecule entries. Analyzing 
these cross references from the small molecules that are annotated by CTPIC as saccharides to the macromol-
ecules provides a systematic path for identifying saccharide binding proteins in PDB. For example, the small 
molecule mycalolide B (Fig. 4a) is linked to the structure of rabbit actin protein (RCSB PDB entry ID 6MGO, 
https://doi.org/10.2210/pdb6MGO/pdb). As indicated in the structure of the complex, the carbohydrate region 
highlighted in (Fig. 4a) binds to an active site of the protein at threonine-353 and methionine-357. We note that 
the research article of the RCSB PDB entry ID 6MGO, with the structural resolution of 2.2 Å, has not been pub-
lished yet, and therefore identifying this protein as a saccharide-binding protein was not possible through other 
means. RCSB PDB entry ID 0UB (Fig. 4b) is linked to the RCSB PDB macromolecule entry ID 4FFI (https://doi.
org/10.2210/pdb4FFI/pdb), which is reported in its associated research article as a saccharide binding proteins 
in plants36.

Because the probabilistic method can identify small molecules as saccharide-derivatives, the macromole-
cules that bind to these saccharides can be annotated as saccharide binding proteins or lectins. From the 4,553 
annotated saccharides and saccharide-derivatives from the Ligand Expo database, 4,409 compounds were cross 
referenced to 12,297 unique RCSB PDB macromolecules (7.7% of the 158,998 entries archived in the database). 
The list of these saccharide-binding proteins is available on the website (http://ctpic.nmrfam.wisc.edu).

Discussion
Because of the wide range of bioactivities of saccharides, compounds containing these moieties are at the center 
of numerous biochemical and biomedical investigations. Saccharide-containing molecules have been identified as 
biomarkers of disease and pathophysiological irregularities. Recent efforts from the glycomics community high-
light the need for aggregating and compiling available metadata about these chemical compounds from across 
databases. We have introduced here a probabilistic method (CTPIC) for distinguishing compounds that contain 
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Fig. 4  Two examples of entries from the RCSB PDB Ligand Expo that the probabilistic method suggests 
to annotate as saccharide-derivatives. (a) Mycalolide B, entry ID: JQV, formula: C52H76N4O17S, fragment 
probability: 0.97, compound probability: 0.35. A carbohydrate chain is indicated with green lines. (b) β-D-
fructofuranosyl-(2->6)-beta-D-fructofuranosyl-(2->6)-beta-D-fructofuranose, entry ID: 0UB, formula: 
C18H32O16 fragment and compound probabilities are equal to one.
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saccharide moieties from those that do not. We have demonstrated the abillity of the probabilistic method to dis-
tinguish saccharides from non-saccharides and, more importantly, to identify saccharide fragments in chemical 
compounds that contain both saccharide-like and non-saccharide fragments. We have shown that CTPIC can be 
used to identify saccharide binding proteins on the basis of analysis of their binding ligands. This probabilistic 
method addresses an essential need for identifying saccharide complexes, and provides a platform for the design 
and development of unique identifiers for saccharides complexes and glycans.

Methods
The probabilistic software program (CTPIC) loads a three-dimensional structure file (in SDF or MOL format28) 
of the compound to be analyzed and uses the NetworkX library37 to convert the input structure file to a graph data 
structure, in which atoms are represented as nodes and edges of the graph represent covalent bonds between the 
atoms. The method looks for ring and chain molecular fragments in the given chemical compound and searches 
these fragments to identify substructures that we call “saccharide fingerprints”. We defined 37 molecular substruc-
tures, or saccharide fingerprints, that were extracted from an IUPAC carbohydrate nomenclature system38. Two 
examples of these saccharide fingerprints are shown in Fig. 5a,b; the complete list of the fingerprints used in the 
program is available on the website (http://ctpic.nmrfam.wisc.edu). Chain or ring molecular fragments that con-
tain saccharide fingerprints are then called “saccharide templates”. Figure 5c shows an example of such templates: 
the 5- or 6-membered template ring is attached to three saccharide fingerprints (-OR, -CH2OR, -CHROR) with 
variable R-groups. The R-groups of the saccharide templates allow different atom compositions.

For a given compound, CTPIC calculates two probabilities: one that represents the fraction of the compound 
that can be mapped to saccharide templates (compound probability), and the other that represents the fractional 
similarity of molecular fragment of the compound with the most similar saccharide template (fragment prob-
ability). Figure 6 shows the overall workflow of the probabilistic method on the website. In this process, every 
chain or ring fragment of a given compound that contains one or more saccharide fingerprints is analyzed for its 
fragment probability. The fragments that do not contain any saccharide fingerprint serve to reduce the compound 
probability.

After identifying saccharide fingerprints in a fragment and mapping the fragment to a saccharide template, 
the deviations of the fragment’s chemical formula from the aldehydes or ketones formula (Cn[HOH]m) consti-
tute fragment penalties. For example, (E)-2,5-dihydroxyhex-3-enedioic acid (Fig. 7a,formula: C6H8O6, PubChem 
CID: 88515755) is a chain compound, symmetric around a double bond and contains two carboxylic acids and 
two CHOH groups. These groups are saccharide fingerprints as defined in CTPIC, and, as such, the entire com-
pound is considered as one molecular fragment mapped onto one saccharide template. The double bond is con-
sidered as a structural modification that resulted from the removal of two OH groups and counts as a penalty for 
the molecular fragment. In this example, the entire compound was mapped to one saccharide template; therefore, 
because there is no residual structure to be considered, the compound penalty is 0. These two types of penalties 
and the way they are used to calculate CTPIC probabilities are explained below.

Calculating fragment penalty.  When a ring or chain molecular fragment contains one or more saccharide 
fingerprints, the ratio of the number of required atom substitutions over the total number of atoms in the frag-
ment is used as a penalty value. In this way, molecular fragments are assigned a penalty value that represents the 
lowest number of atom substitutions required to convert the fragment to a saccharide template. Of all molecular 
fragments that have been mapped to saccharide templates, the one with the minimum penalty is characterized by 
the minimum fragment penalty, i.e., a number between 0 and 1.

Calculating compound penalty.  The portion of an input molecule that cannot be mapped onto a sac-
charide template is used in calculating the “compound penalty”. The compound penalty indicates the ratio of the 
number of atoms in the input compound that could not be mapped to a saccharide template over the total number 
of atoms in the molecule. For example, 1,3-diaminopropane (Fig. 7b, chemical formula: C3H10N2, PubChem CID: 
428) cannot be mapped to any saccharide fingerprint; and, therefore, the number of atoms that cannot be mapped 
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Fig. 5  Examples of “saccharide fingerprints”. (a) Saccharide fingerprint for ring fragments. (b) Saccharide 
fingerprint for chain fragments. (c) Larger saccharide template. The dashed line bond between C3 and C4 in the 
ring indicates that the template can represent 5 or 6 membered rings. R8 can be a hydrogen or any other atom 
composite (e.g., CH2-, CH3). R11 and R15 can be any single or composite substructure. For R14 as a hydrogen, 
C9 and C12 would represent similar fingerprints, however, R14 can also be any heavy atom (e.g., O, OH, NH3).
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to saccharide templates over the total number of atoms in the compound equals to 1, which is the compound 
penalty of this compound.

Because the minimum fragment penalty and the compound penalty are values between 0 and 1, we calculate the 
fragment and compound probabilities as one minus the penalties. Therefore, the fragment probability indicates 
the highest probability that a molecular fragment in the compound can be a saccharide-derivative, and the com-
pound probability indicates the portion of the compound that can be mapped to saccharide templates.

Data availability
The output results on the RCSB PDB Ligand Expo are available on our website, and also have been deposited to 
the public domain through Open Science Framework [https://doi.org/10.17605/OSF.IO/Y4U8M]39. The entries 
that were annotated as saccharides using the probabilistic method and their cross-references to the RCSB PDB 
macromolecule entries are also available on both our website and the Open Science Framework page39.

Code availability
The cheminformatic tool for probabilistic identification of carbohydrate (CTPIC) program was developed using 
Python and is available on our website (http://ctpic.nmrfam.wisc.edu) as a web server. In addition, the source 
codes are available through GitHub (https://github.com/htdashti/ctpic).
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Fig. 6  Workflow of the web server. For a given small molecule, the web server queries ALATIS to retrieve 
unique atom labels of the compound. The preprocessing module converts the structure file to a graph data 
structure, and extracts chain and ring molecular fragments. Then every fragment is analyzed to identify 
saccharide fingerprints. If no fingerprint found, the fragment is used in calculating a compound penalty. The 
molecular fragments that contain saccharide fingerprints are used in calculating the minimum fragment penalty. 
This penalty and the compound penalty are then used in calculating the probabilities. The web server reports 
the calculated probabilities and also lists every other calculated fragment penalty for the molecular fragments. 
In parallel, the web server uses the Open Babel package for identifying ligands with the highest structural 
similarities to the submitted molecule. These ligands from the RCSB PDB Ligand Expo are cross-referenced to 
the PDB molecular complexes. The outcome of this structural analysis reports proteins from PDB that bind to 
the identified ligands.
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Fig. 7  Structures of compounds used to illustrate the CTPIC algorithm. (a) (E)-2,5-Dihydroxyhex-3-enedioic 
acid, PubChem CID: 88515755, (b) 1,3-Diaminopropane, PubChem CID: 428.
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