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Lymphoma is a serious type of cancer, especially for adolescents and elder adults,
although this malignancy is quite rare compared with other types of cancer. The cause
of this malignancy remains ambiguous. Genetic factor is deemed to be highly associated
with the initiation and progression of lymphoma, and several genes have been related to
this disease. Determining the pathogeny of lymphoma by identifying the related genes is
important. In this study, we presented a random walk-based method to infer the novel
lymphoma-associated genes. From the reported 1,458 lymphoma-associated genes and
protein–protein interaction network, raw candidate genes weremined by using the random
walk with restart algorithm. The determined raw genes were further filtered by using three
screening tests (i.e., permutation, linkage, and enrichment tests). These tests could control
false-positive genes and screen out essential candidate genes with strong linkages to
validate the lymphoma-associated genes. A total of 108 inferred genes were obtained.
Analytical results indicated that some inferred genes, such as RAC3, TEC, IRAK2/3/4,
PRKCE, SMAD3, BLK, TXK, PRKCQ, were associated with the initiation and progression
of lymphoma.

Keywords: lymphoma, random walk with restart algorithm, protein-protein interaction network, enrichment theory,
permutation test

1 INTRODUCTION

Lymphocytes are a group of effective immune-associated cells and include two famous cell subtypes,
namely, T and B lymphocytes (Mesquita Júnior et al., 2010). Lymphocytes play an irreplaceable role
in humoral (B lymphocytes) and cellular (T lymphocytes) immune responses (Mesquita Júnior et al.,
2010) to fight against infectious virus or bacteria and endogenous malignant cancer cells. However,
even as immune cells, lymphocytes can also be malignant when transformed by exogenous
stimulations, such as benzene (Guo et al., 2021) or the human immunodeficiency virus (Wang
et al., 2021), and endogenous factors, such as family history (Chang et al., 2005) and aging (Parsonnet
and Isaacson, 2004). Cancers that begin in the immune-associated lymphocytes are generally
summarized as lymphoma (Armitage et al., 2017).

Lymphoma can be divided into two groups, namely, Hodgkin lymphoma (Mathas et al., 2016)
and non-Hodgkin lymphoma (Shankland et al., 2012) according to the existence of reed-sternberg
cells. Lymphoma with and without detectable reed-sternberg cells are generally regarded as Hodgkin
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and non-Hodgkin lymphoma (Shankland et al., 2012; Mathas
et al., 2016). Both kinds of lymphoma are quite rare compared
with other cancer subtypes, such as lung and liver cancers (Siegel
et al., 2021). Approximately 9,000 new cases and 1,000 deaths
have been reported in 2020 by the American Cancer Society
(Siegel et al., 2021). Contrary to other cancer subtypes, the risk of
lymphoma is quite high for adolescents and elder adults (older
than 55 years old) but relatively low for adults in their 30 and 40 s
(Wilson et al., 2012). This characteristic reflects a typical age-
associated disease susceptibility distribution pattern for
lymphoma.

However, the cause of non-Hodgkin lymphoma remains
unknown. Several reports have associated some viruses, such
as T cell leukemia lymphoma virus (Zhang et al., 2017b), Epstein-
Barr virus (Vockerodt et al., 2015), and hepatitis B virus (Ren
et al., 2018), and bacteria, such as Helicobacter pylori (specific for
gastric MALT lymphoma) (Salar, 2019), with the pathogenesis of
non-Hodgkin lymphoma. For the Hodgkin lymphoma, the risk is
increased in people with Human Immunodeficiency Virus and
Epstein-Barr virus infections (Grewal et al., 2018). For both types
of lymphoma, family history has long been considered as an
important risk factor, and genetic background has also been
highly associated with the initiation and progression of this
cancer (Skibola et al., 2007). According to a review for the
genetic susceptibility to lymphoma, seven groups of genes with
the following functions are involved in the pathogenesis of
lymphoma as follows: DNA repair [e.g., NHEJ (Lieber et al.,
2010) and DSBR (Shen et al., 2006)]; carbon metabolism [e.g.,
MTHFR (He et al., 2014) and MTR (Ruiz-Cosano et al., 2013)];
immune regulation [e.g., TNF, IL4, and IL4R (Mottok and Steidl,
2015)]; oxidative stress [e.g.,NOS2A (Fabisiewicz et al., 2013) and
MPO (Sugiyama et al., 2017)]; energy regulation [e.g., LEP and
GHRL (Argyrou et al., 2019)]; hormone production [e.g.,
CYP17A1 (Skibola et al., 2005)]; xenobiotic [e.g., GSTT1 (Yang
et al., 2014)]; and cell cycle regulation [e.g., CCND1 (Mohanty
et al., 2019)]. The association of these genes with the pathogenesis
of lymphoma has been established. Thus, the initiation and
progression of lymphoma are precisely regulated by genetic
background. Finding the genetic factors for lymphoma is
therefore one of the most effective and straight-forward
approaches to reveal the pathogenesis of such complex diseases.

Traditionally, the identification of lymphoma associated genes
depends on several classical analytic approaches and methods.
For familial lymphoma cases, family pedigree analyses based on
Sanger sequencing (Liu et al., 2014), microarray analyses (Hedvat
et al., 2002), next generation target sequencing and whole genome
wide sequencing (Hung et al., 2018) on large familial samples are
major traditional methods to identify potential pathogenic
lymphoma associated genes or variants. As for sporadic
lymphoma cases, to validate the molecular abnormalities
associated with lymphoma, Southern blot analyses (Sangueza
et al., 1992), in situ hybridization (Quintanilla-Martinez et al.,
2009) and quantitative real-time PCR (Takatori et al., 2021) are
also applied to explore and confirm specific distribution of genetic
abnormal arrangement associated with lymphoma. There are
three advantages for traditional analyses: 1) Firstly, the
accuracy of traditional experimental analyses is generally

higher than statistical bioinformatics analyses; 2) Secondly,
independent repeat experimental analyses are easier to
perform at experimental level to validate the identified
potential biomarkers; 3) Thirdly, results from experimental
analyses were easier to be used for further functional
exploration. However, the disadvantages of experiment-based
analyses are also obvious, including 1) Clinical samples are
difficult to obtain, and results from experimental animals are
not always consistent with human beings; 2) Low reproducibility
caused by more potential unrelated variables; 3) High cost and
time consuming.

Due to the high cost and time consuming of traditional
experiment-based methods, we introduced a random walk-
based computational method to recognize the novel candidate
lymphoma-associated genes in this study. The reported
lymphoma-associated genes, as summarized from the
DisGeNET database (Piñero et al., 2015), and the
protein–protein interaction (PPI) network collected in
STRING (Szklarczyk et al., 2015), were fed into the random
walk with restart (RWR) algorithm (Kohler et al., 2008; Macropol
et al., 2009) to determine the raw candidate genes. Then, three
screening tests (i.e., permutation, linkage, and enrichment tests)
were performed to control false-positive genes and select the
essential candidate genes that had strong linkages to validate the
lymphoma-associated genes. The analytical results indicated that
several of these genes had associations with the initiation and
progression of lymphoma.

2 MATERIALS AND METHODS

2.1 Lymphoma-Associated Genes
In this study, we summarized all lymphoma-associated genes
from the DisGeNET database (https://www.disgenet.org/,
version 7.0, accessed in March 2021) (Piñero et al., 2015),
one of the largest publicly available databases of human genes
and gene associated with human diseases. A total of 1,548
genes have been associated with the pathogenesis of
lymphoma in the past 5 years (Supplementary Table S1).
Then, the related proteins of these genes were picked up and
further mapped onto their Ensembl IDs. The IDs not in the
PPI network as described in Section 2.2 were excluded,
resulting in 1,375 Ensembl IDs. Based on these proteins, as
represented by Ensembl IDs, we set up a computational
method to discover other proteins, which were highly
related to these proteins. The genes encoding the identified
proteins were regarded to be highly associated with the
pathogenesis of lymphoma.

2.2 PPI Network
This study proposed a random walk-based method to investigate
the lymphoma-associated genes. A network should be employed
to execute the random walk algorithm. In recent years, the PPI
network is widely used to study various problems related to
proteins or genes (Ng et al., 2010; Hu et al., 2011a; Hu et al.,
2011b; Zhang et al., 2016; Cai et al., 2017; Zhang et al., 2019;
Zhang and Chen, 2020; Zhao et al., 2020; Gao et al., 2021). Thus,
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we used the structure of one PPI network and mined new
candidate genes related to lymphoma based on the validated ones.

We employed the PPI network collected in STRING (version
10, https://www.string-db.org/) (Szklarczyk et al., 2015). The file
“9,606. protein.links.v10. txt.gz” was retrieved, which consisted of
4,274,001 PPIs covering 19,247 human proteins. A PPI included
two proteins, encoded by Ensembl IDs. Furthermore, one
confidence score with range between 1 and 999 was assigned
to each PPI. Such score can comprehensively measure the
associations of proteins, because it integrates several scores,
including “neighborhood”, “fusion”, “cooccurence”,
“coexpression”, “experimental”, “database”, and “textmining”
scores, which assess the associations of proteins from various
aspects of proteins, such as close neighborhood in (prokaryotic)
genomes, gene fusion, occurrence across species, gene
coexpression, scientific literature description, etc. The higher
the score was, the stronger the PPI would be. Accordingly, a
PPI network was constructed by taking 19,247 human proteins as
nodes, and two nodes were connected by an edge if and only if
their corresponding proteins could constitute a PPI with a
confidence score larger than zero. In this case, each edge in
the PPI network represented a PPI. To further indicate the
strength of edges, a weight was assigned to each edge, which
was the confidence score of the corresponding PPI.

2.3 RWR Algorithm
Based on the validated lymphoma-associated genes, we employed
the RWR algorithm (Kohler et al., 2008; Macropol et al., 2009;
Chen et al., 2018a; Chen et al., 2018b; Liang et al., 2020) to
discover the novel genes in the PPI network. Such algorithm
simulated a walker starting from one node or a set of nodes (these
nodes are called seed nodes) in one network, and such walker
randomly moved in the network to deliver probabilities on the
seed nodes to other nodes. Given a network andm seed nodes, the
RWR algorithm initialized a probability vector P0, with the same
length as the node number of the network. One node
corresponded to one component. The component of one seed
node was defined as 1/m, and other components were set to 0. The
RWR algorithm repeatedly updated such vector as follows:

Pt+1 � (1 − r)ATPt + rP0, (1)

where A denotes the column-wise normalized adjacency matrix;
and r stands for the restarting probability, which was set to 0.8 as
used in some previous studies (Yuan and Lu, 2017; Zhang et al.,
2017a; Zhang et al., 2017c; Chen et al., 2018a). When the vectors
Pt+1 and Pt were close enough, i.e., ‖Pt+1 − Pt‖L1 < 10−6, the
update procedure was stopped. Pt+1 was selected as the
outcome of the RWR algorithm. Based on such vector, the
probability of each node, which was obtained from the seed
nodes, was determined. Evidently, a node assigned with a high
probability may have strong associations with the seed nodes.

In this study, the RWR program developed by Li and Patra (Li
and Patra, 2010) was adopted. Although this program is designed
for heterogeneous networks, we set the jumping probability to
zero and selected seed nodes in one part of the network so that
probabilities was transmitted only in one part of the network.

Here, the 1,375 Ensembl IDs were set as the seed nodes.
According to the outcome of the RWR algorithm, the nodes
with high probabilities were picked up. These nodes could be the
novel candidate genes related to lymphoma.

2.4 Screening Tests
Some candidate genes mined by the RWR algorithm were
highly related to the structure of the PPI network, and these
genes could induce some extreme cases. For example, some
nodes may easily receive high probabilities regardless of
which nodes were seed nodes. On the other hand, the
candidate genes with strong associations with validated
ones had higher likelihood to be novel genes related to
lymphoma. In view of this, we designed three screening
tests to further filter the essential candidate genes.

Permutation test. As previously mentioned, the structure of
the network may influence the outcome of the RWR algorithm.
To control such influence, the permutation test was adopted. We
first randomly constructed 1,000 node sets, with sizes the same as
that of the seed node set. The nodes in each set were fed into the
RWR algorithm as the seed nodes. Then, each candidate gene
selected by the RWR algorithm was also assigned a probability.
After all node sets had been tested by the RWR algorithm, all
candidate genes received 1,000 probabilities, and their means and
standard deviations were computed. Accordingly, the Z-score
was computed for each candidate gene g as follows:

Z − score(g) � Pro(g) − ProM(g)
ProSTD(g) (2)

where Pro(g) denotes the probability of the candidate gene g
obtained by using the actual seed node set; and ProM(g) and
ProSTD(g) represent the mean and standard deviation of the
probabilities, respectively, which were obtained by 1,000
randomly produced node sets. In statistics, the value of 1.96 is
a widely accepted threshold of the Z-score to denote statistical
significance. Thus, we could select candidate genes with
Z-score>1.96. These genes were assigned much higher
probability based on the actual seed node set than those based
on randomly produced node sets, indicating their significant
association with lymphoma.

Linkage test. The permutation test could decrease the
influence of the PPI network. However, some candidate genes
with weak or even without association with the validated genes
may be included. Thus, we employed the linkage test. Several
studies have reported that interacting proteins are more likely to
have similar functions (Ng et al., 2010; Hu et al., 2011a; Hu et al.,
2011b; Chen et al., 2016; Cai et al., 2017; Li et al., 2018; Zhang and
Chen, 2020; Zhu et al., 2021). Considering the strength of the PPI,
proteins that could comprise a PPI with a higher confidence score
were more likely to exhibit similar functions. Hence, we adopted
the interaction information mentioned in Section 2.2 to design
the linkage test. For two proteins p1 and p2, their confidence score
was defined asQ(p1, p2). The maximum linkage score (MLS) was
computed for each candidate gene g as follows:

MLS(g) � Max{Q(g, g′): g′ is a validated lymphoma associated gene} (3)
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Candidate genes with high MLSs evidently had high
probabilities to be novel lymphoma-associated genes and thus
should be selected. Considering that 900 is the threshold of the
highest confidence in STRING, we adopted such value to screen
the essential candidate genes, i.e., candidate genes with MLSs no
less than 900 were selected.

Enrichment test. Finally, we used the enrichment test to
evaluate the importance of the candidate genes with functional
terms, including gene ontology (GO) terms and KEGG pathways.
The validated lymphoma-associated genes should have some
similar functional terms. If a candidate gene had functional
terms that were also shared by one validated lymphoma-
associated gene, such gene had a high probability to be a
novel lymphoma-associated gene. The enrichment score
(Carmona-Saez et al., 2007) was adopted to evaluate the
linkage between one gene and one GO term or KEGG
pathway. The enrichment score between a gene g and one GO
term/KEGG pathway F was computed as follows:

ES(g, F) � −log10
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝∑n

k�m

(M
k

)(N −M
n − k

)
(N
n

)
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠, (4)

where N and M denote the number of human genes and genes
annotated by F, respectively; n represents the number of interacting
genes of g reported in STRING; and m represents the number of
common genes that can be interacted with g andwas annotated by F.
For a gene g, enrichment scores to all GO terms andKEGGpathways
were put into a vector V(g). The associations of two genes g and g′
could be evaluated according to their vectors as follows:

Φ(g, g′) � V(g) · V(g′)����V(g)���� · ����V(g′)����, (5)

Similar to MLS, we could further calculate the maximum
enrichment score (MES) for each candidate gene g, which
could be computed as follows:

MES(g) � Max{Φ(g, g′): g′ is a validated lymphoma associated gene}
(6)

A candidate gene assigning a high MES had a high probability
to be a novel lymphoma-associated gene. We set the threshold
0.98 to select important candidate genes.

2.5 Functional Enrichment Analyses on
Candidate Genes
To reveal the biological meaning behind the candidate genes
identified by the random walk-based method, the functional
enrichment analyses were performed, which was implemented
by the R package topGO (https://bioconductor.org/packages/
topGO/, v2.42.0) (Alexa and Rahnenführer, 2009). To conduct
such analyses, identified genes were regarded as gene of interest
and all available human genes were termed as background. The
p-value threshold was set as 0.001 to identify significant
enrichment results.

3 RESULTS

We propose a random walk-based method to discover novel
lymphoma-associated genes. The whole process is illustrated in
Figure 1.

3.1 Results of the Random Walk-Based
Method
The RWR algorithm was first performed on the PPI network with
the proteins of lymphoma-associated genes as seed nodes. A
probability was assigned to each node in the network to indicate
its associations with the seed nodes. Nodes with probabilities no
less than 10–5 were picked up, and their corresponding proteins
were extracted. Thus, 4,962 proteins were obtained and are listed
in Supplementary Table S2. The permutation test assigned a
Z-score to each protein, and the scores are also listed in
Supplementary Table S2. Proteins with Z-scores>1.96 were
selected, resulting in 1,144 proteins. Afterward, these proteins
were fed into the linkage test. Each protein was assigned an MLS,
which is also provided in Supplementary Table S2. A total of 986
proteins were with MLSs no less than 900 and were selected.
Finally, the enrichment test was performed to evaluate the
importance of the remaining proteins. An MES was computed
for each protein, and the results are listed in Supplementary
Table S2. After setting the threshold of MES to 0.98, 108 proteins
were obtained, which are the first 108 proteins in Supplementary
Table S2. Their corresponding genes were selected and deemed to
have strong associations with lymphoma. These genes are
provided in Supplementary Table S3. In the following text,
these genes were termed as inferred genes.

3.2 Associations Between Inferred Genes
and Validated Genes
To indicate the reliability of the inferred genes, we conducted the
following investigations. For each inferred gene, the number of its
interacting lymphoma-associated genes with confidence scores
no less than 900 was counted and is shown in a box plot
(Figure 2). Some inferred genes have numerous interacting
lymphoma-associated genes with confidence scores no less
than 900, indicating their high relation to lymphoma. The
average number of interacting lymphoma-associated genes
with high confidence scores was 18.88 inferred genes,
occupying 81.48%, can interact with more than five
lymphoma-associated genes with high confidence score (≥900).
These results implied that some hidden lymphoma-associated
genes may be included in the inferred genes.

3.3 Enrichment Analysis on Inferred Genes
Of the 108 inferred genes, we conducted functional enrichment
analysis on them. Thirteen GO terms were identified with
significant p-value less than 0.001, including eight biological
processes (BP) terms, four molecular function (MF) terms and
one cellular component (CC) term. Detailed information of these
thirteen GO terms and their p-values were illustrated in Figure 3.
In Section 4.2. some discussions were performed.

Frontiers in Genetics | www.frontiersin.org November 2021 | Volume 12 | Article 7927544

Sheng et al. Identification of Lymphoma Associated Genes

https://bioconductor.org/packages/topGO/
https://bioconductor.org/packages/topGO/
https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


4 DISCUSSION

From the random walk-based method, we identified a group of
inferred genes that may be functionally associated with the initiation
and progression of lymphoma. This section conducted some
discussions to confirm their associations with lymphoma.

4.1 Individual Analysis on Some Inferred
Genes
According to some publications, we found reliable literatures that
supported the contribution of some inferred genes on lymphoma,
and these genes are listed in Table 1.

The first gene is RAC3 (ENSP00000304283), which had been
associated with B-cell lymphoma. Early in 2006, researchers from
France confirmed that the absence of RAC3 can trigger the
initiation and progression of B-cell lymphoma (Coste et al.,
2006), reflecting the potential association between RAC3 and
lymphoma.

The next gene is TEC (ENSP00000370912). In 2004, TEC has
been shown to mediate the abnormal proliferation and apoptosis
of lymphoma cells (Zilberman et al., 2004). In 2015, another
member of the TEC family, BTK has been shown to be an effective
biomarker for Hodgkin and B cell non-Hodgkin lymphoma
(Watson et al., 1970).

IRAK2 (ENSP00000256458), as the next predicted gene, has
been reported to contain multiple significant variants associated
with lymphoma through interactions with Toll-like receptors
(Wang et al., 2014). In 2020, researchers from the University
of North Carolina have validated that IRAK2-associated signaling
pathway participates in the initiation and progression of
lymphoma primarily triggered by the herpes virus (Seltzer
et al., 2020). IRAK4 (ENSP00000390651) is also a participant
in the IRAK signaling pathway, which is essential for the
pathogenesis of lymphoma. Therefore, predicting such gene

(IRAK4) as another lymphoma biomarker is quite reasonable.
Similarly, another component of the IRAK signaling pathway,
IRAK3 (ENSP00000261233), has also been identified, validating
the reliability of our results.

PRKCE (ENSP00000306124) is the next predicted gene.
According to recent publications, such gene is associated with
lymphoma at different omic levels. In 2006, a methylation
analyses on the small B-cell lymphoma showed that PRKCE is
a specific methylation biomarker for different clinical outcomes
and prognosis of small B-cell lymphoma (Rahmatpanah et al.,
2006). Further studies on transcriptomics profiling also

FIGURE 1 | Entire procedure to mine the novel candidate genes related to lymphoma. The validated lymphoma-associated genes were retrieved from DisGeNET.
From STRING, a protein–protein interaction network was constructed. These genes and the network were fed into the random walk with restart algorithm to extract the
candidate genes with high probabilities. These genes were further filtered by using three screening tests to select the final inferred genes. The enrichment analysis is
conducted on all inferred genes and some genes are analyzed individually.

FIGURE 2 | Box plot of the number of interacting lymphoma-associated
genes with high confidence scores of inferred genes. Several genes can
interact with over twenty lymphoma-associated genes with high confidence
scores (≥900), indicating the strong associations between inferred
genes with lymphoma-associated genes.
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FIGURE 3 | Enriched gene ontology (GO) terms on inferred genes. Thirteen GO termed are enriched on 108 inferred genes, including eight biological processes
(BP) terms, four molecular function (MF) terms and one cellular component (CC) term.

TABLE 1 | Some important inferred lymphoma-associated genes.

Ensembl id Gene
symbol

Description Probability Z-score Maximum
linkage score

Maximum
enrichment score

Reference

ENSP00000304283 RAC3 Rac Family Small GTPase 3 9.700E−05 5.0457 998 0.9984 Coste et al. (2006)
ENSP00000370912 TEC Tec Protein Tyrosine kinase 2.900E−05 3.2291 990 0.9979 Watson et al. (1970;

Zilberman et al. (2004)
ENSP00000256458 IRAK2 Interleukin 1 Receptor

Associated kinase 2
3.530E−05 3.3867 999 0.9976 Wang et al. (2014), Seltzer

et al. (2020)
ENSP00000390651 IRAK4 Interleukin 1 Receptor

Associated kinase 4
4.190E−05 4.3253 999 0.9967 Wang et al. (2014), Seltzer

et al. (2020)
ENSP00000306124 PRKCE Protein kinase C Epsilon 4.260E−05 3.9254 984 0.9967 Rahmatpanah et al. (2006),

Wang et al. (2012)
ENSP00000261233 IRAK3 Interleukin 1 Receptor

Associated kinase 3
3.540E−05 3.4101 999 0.9965 Wang et al. (2014), Seltzer

et al. (2020)
ENSP00000332973 SMAD3 SMAD Family Member 3 8.280E−05 7.1221 999 0.9965 Park et al. (2001), Nakahata

et al. (2010)
ENSP00000259089 BLK BLK Proto-Oncogene, Src

Family Tyrosine kinase
4.630E−05 6.2082 983 0.9964 Petersen et al. (2014)

ENSP00000264316 TXK TXK Tyrosine kinase 2.890E−05 2.6307 915 0.9963 Liu et al. (2020)
ENSP00000263125 PRKCQ Protein kinase C Theta 4.750E−05 4.8540 999 0.9963 Rosenwald et al. (2003)
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confirmed that PRKCE is a specific biomarker to identify
follicular lymphoma, one of the major subtypes of non-
Hodgkin lymphoma (Wang et al., 2012), reflecting the specific
association between PRKCE and lymphoma.

SMAD3 (ENSP00000332973), as the next predicted
biomarker, has been associated with lymphoma by multiple
independent publications. In 2001, SMAD3 and its homolog,
SMAD4, have been shown to mediate the expression of
autoimmune antibodies during B-cell lymphoma (Park et al.,
2001). In 2010, associations between T-cell lymphoma and
SMAD4 have also been revealed (Nakahata et al., 2010). Both
T-linkage and B-linkage lymphoma have been associated with
SMAD4 or related pathways, implying the specific role of SMAD4
during the initiation and progression of lymphoma. Other
inferred genes, such as BLK (ENSP00000259089) (Petersen
et al., 2014), TXK (ENSP00000264316) (Liu et al., 2020), and
PRKCQ (ENSP00000263125) (Rosenwald et al., 2003), have also
been associated with lymphoma.

Thus, some inferred genes can be validated to be associated
with lymphoma-related biological processes, confirming that the
inferred genes discovered in this study were quite reliable.

4.2 Analysis of Enrichment Results on
Inferred Genes
As described in Section 3.3, thirteen GO terms were identified,
which were enriched by 108 inferred genes. Generally, these GO
terms should be associated with the pathogenesis of lymphoma.
The enriched GO terms can be further divided into two groups:
transcription regulation associated GO terms and immune
associated GO terms. There are multiple enriched terms
associated with RNA polymerase II (RNA polymerase II cis-
regulatory region sequence-specific DNA binding, DNA binding
transcription activator activity, RNA polymerase II-specific and
positive regulation of transcription by RNA polymerase II). RNA
polymerase II has been widely reported to be associated with the
pathogenesis of lymphoma (Kawahata et al., 1983; Devaiah et al.,
2012). As for another group of GO terms, there are multiple
immune responses associated GO terms, including positive
regulation of macrophage differentiation and cellular response

to interferon-alpha. According to recent publications,
macrophage differentiation (Kant et al., 2013; Arlt et al., 2020)
and interferon-alpha (Hermine et al., 2002) associated immune
responses have both been reported to be associated with the
pathogenesis of lymphoma.

5 CONCLUSION

In this study, a random walk-based computational
method was proposed to determine the novel
lymphoma-associated genes. Based on the powerful RWR
algorithm and three screening tests, 108 inferred genes were
obtained. The analytical results showed that some of
these genes (RAC3, TEC, IRAK2/3/4, PRKCE, SMAD3,
BLK, TXK, PRKCQ) could be novel lymphoma-associated
genes. These findings may give new insights to investigate
lymphoma and improve the understanding on the pathogeny
of lymphoma.
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