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Abstract: Inspired by the problem that the current spatial registration methods are unsuitable for
three-dimensional (3-D) sensor on high-dynamic platform, this paper focuses on the estimation for
the registration errors of cooperative missiles and motion states of maneuvering target. There are two
types of errors being discussed: sensor measurement biases and attitude biases. Firstly, an improved
Kalman Filter on Earth-Centered Earth-Fixed (ECEF-KF) coordinate algorithm is proposed to estimate
the deviations mentioned above, from which the outcomes are furtherly compensated to the error
terms. Secondly, the Pseudo Linear Kalman Filter (PLKF) and the nonlinear scheme the Unscented
Kalman Filter (UKF) with modified inputs are employed for target tracking. The convergence of
filtering results are monitored by a position-judgement logic, and a low-pass first order filter is
selectively introduced before compensation to inhibit the jitter of estimations. In the simulation,
the ECEF-KF enhancement is proven to improve the accuracy and robustness of the space
alignment, while the conditional-compensation-based PLKF method is demonstrated to be the
optimal performance in target tracking.

Keywords: spatial registration; 3-D sensors; target tracking; Kalman Filter on Earth-Centered
Earth-Fixed (ECEF-KF) coordinate algorithm; Pseudo Linear Kalman Filter (PLKF); Unscented
Kalman Filter (UKF); error compensation

1. Introduction

The spatial registration is vital for current and near-future cooperative combat missions through
the vehicle network to estimate and compensate the sensor errors by measuring the common
target [1–3].

Depending on the dimension of the error model, the algorithm is usually divided into
a two-dimensional (2-D) system and a three-dimensional (3-D) system [4]. Many typical 2-D algorithms
have been proposed in literatures. e.g., Real Time Quality Control (RTQC) [5], Least Square (LS) [6],
Generalized Least Square (GLS) [7], Exact Maximum Likelihood (EML) [8]. Compared to 3-D
algorithms, the former wherein has relatively lower computational complexity at the expense
of accuracy. Meanwhile, a number of online registration algorithms for 3-D sensors have been put
forward. Unfortunately, there are few approaches taking both measurement errors and orientation
errors into consideration. The traditional Earth-Centered Earth-Fixed coordinate (ECEF) method [9]
capable of solving the spatial registration problem concentrates on the measurement biases, yet ignores
the attitude errors of sensors themselves when the measurement states are transformed from separate
reference frame to public system. The neglect of measurement deviations in the Kalman-filter-based
method [10] proposed for attitude biases makes it deficient way as well. Although the algorithm [11]
combines the two types of errors for estimation, it only fits for the situation where the attitude angles
are small and the sensors are close to each other.
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Besides, there is another branch of research that integrates the registration with target tracking.
The paper [12] presents an improved method based on the state value and space deviation of federated
filtering of unscented Kalman filter and standard Kalman filter, conducting registration and tracking
simultaneously. However, this method is thought to accounts for more computation [13]. For this
reason, the processes of those two are usually performed separately in current investigation. Moreover,
most methods referred above are only suitable for sensors on stationary base which would be deemed
points in the relative motion between them and targets. Failure of them to adapts for the sensors
having their own attitude and position changes (e.g., radar seeker on high-speed moving and turning
missiles) is considered as the deficiency.

Target tracking, based on sensor measurement information, is a technique for estimation of the
state (position, speed) of a moving target at the current or future time [14,15]. Filtering is the cornerstone
of tracking algorithm with the existence of systematic and measured noise. The typical filters have been
greatly adopted for more than half a century: Kalman Filter (KF) is first exploited by [16] to solve the
problem of tracking for linear system. Extended Kalman Filter (EKF) [17] transforms nonlinear model
to linear one and then takes KF to estimate the states, which easily diverges under strongly nonlinearity.
On this basis, [18] puts forwards Unscented Kalman Filter (UKF) which is apt for both linear and
nonlinear tracking, but compromised by the heavy computation. To make up the disadvantage of the
methods above, the Pseudo Linear Kalman Filter (PLKF) [19] which takes the models in [20] preserves
the nonlinearity in the system. With the development of computers and data links during the last
ten years, tracking performance is increased through the design and implementation of systems using
data collected by a network of spatially distributed sensors. Consequently, the spatial registration has
gradually become the pre-requisite for information process and data fusion for multiple sensors.

In the case of two missiles cooperative target tracking, this paper employs an improved Kalman Filter
on Earth-Centered Earth-Fixed coordinate (ECEF-KF) algorithm which transforms the measurements
to public target from body systems into the ECEF system so as to isolate the motion of sensors. Taking
advantage of the difference of transformed values, the systemic biases and the attitude errors are
estimated simultaneously. Subsequently, the results of registration algorithm adopted are fed back to
compensate the inputs of linear PLKF and nonlinear UKF which are used for target tracking. It is found
in this paper that the convergence of ECEF-KF and the effectiveness of compensation depend on the
quality of the 3-D measurement data that can be adversely affected by the movement of missiles and
target. More specifically, the 3-D information may loses one degree of freedom on any dimension and
turns to be 2-D with the approach of vehicles, ruining the registration results. For sake of the possible
divergence, a Low-pass First Order Filter (LFOF) with position-judgement condition is introduced to
detect and inhibit divergent trend, furtherly improves the accuracy of the target tracking. The paper
researches theoretically in the information processing methods, which conduces furtherly to the
application of sensor in the engineering problems.

The main contributions are listed below:

1. A new spatial registration algorithm is first proposed for sensors on high-speed moving vehicles,
realizing the simultaneous estimation for system and attitude biases which are compensated to
the biased measurements of the tracking schemes. The accuracy and robustness of the estimation
of target state are effectively improved.

2. Inspired by the ideal of integral controller, a Low-pass filter is used when the position relationship
between missiles and target meets the special condition to inhibit the jitter of estimations.
This skill improve the adaptability of tracking system without time-delay caused by the common
integral controllers.

This paper is organized as follows. The definition of each coordinate system and their transform
relationships are given in Section 2. Section 3 develops the model of original and improved
ECEF-KF algorithm. The compensation-based PLKF and UKF methods with strategies of divergence
detection and inhibition is introduced in Section 4. Section 5 presents the performance of improved
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ECEF-KF under two cases of motion of missiles and compares PLKF methods and UKF methods.
The concluding remarks are given in Section 6.

2. Coordinate Defination and Transformation

Before the model development, the reference frames will be introduced in this section.

2.1. Definition of Coordinate System

In the spatial alignment of multiple missiles, each member has its own reference frame or coordinate
system. Among which, the measurements of sensors on the platform are obtained in the body
coordinate system, the attitude angles and the position are usually described in the Local East, North,
Up system and ECEF coordinate system respectively. The definition of these coordinate systems
referred are listed as follows (see in Figure 1).
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Figure 1. The definition of coordinate systems.

(1) ECEF Coordinate OXeYeZe: As defined in WGS-84 coordinate [21], the origin is located in the
earth’s Center of Mass (CM). The Ze axis points to the direction of Conventional Terrestrial Pole (CTP).
The Xe axis points to the intersection point of the zero-meridian plane and the CTP equator defined in
Bureau International deI’Heure (BIH) 1984 [22]. The Ye axis and the Ze axis are perpendicular to the
Xe axis, forming the right-hand coordinate system.

(2) Local East, North and Up (LENU) Coordinate OXdYdZd: The origin is the projection of the
platform’s CM to the surface of the earth, the Xd, Yd and Zd axis points to the east, north and up
respectively [23].

(3) Body Coordinate OXbYbZb: The origin is located in the CM of platform. The Xb axis coincides
with the longitudinal axis of platform, pointing to the head as positive. The Yb axis coincides with the
vertical axis of platform, pointing to the up as positive. And the Zb is determined by the right-hand rule.
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2.2. Transformation between Reference Frames

(1) ECEF and LENU Coordinate: Let the column vectors re = [xe ye ze]
T and rd =

[xd yd zd]
T (the superscript T denotes matrix transposition) represent the ECEF coordinate and

LENU coordinate respectively. The transformation from the later to the former is given by

re = Ce
drd (1)

where Ce
d is the 3× 3 orthogonal matrix given by [24]− sin λ − sin ϕ cos λ cos ϕcosλ

cos λ − sin ϕ sin λ cos ϕ sin λ

0 cos ϕ sin ϕ

 (2)

λ and ϕ denote the longitude and latitude of platform. Besides, if the longitude λ, latitude ϕ and
height h are known, its ECEF coordinate can be calculated by [25]

xe = (C + h) cos (ϕ) cos (λ)

ye = (C + h) cos (ϕ) sin (λ)

ze =
(

C
(

1− e2
)
+ h
)

sin (ϕ)

C = Re/
√

1− e2sin2 (ϕ)

(3)

where Re is the equatorial radius, e is the eccentricity of the earth.
(2) LENU and Body Coordinate: Let the column vectors rb = [xb yb zb]

T represents the body
coordinates. Likewise, the transformation from the body coordinate to the LENU coordinate is
represented by a matrix Cd

b in [26] cos θ cos ψ sin θ − cos θ sin ψ

− sin θ cos ψ cos γ + sinψsinγ cos θ cos γ sin θ sin ψ cos γ + cos ψsinγ

sin θ sin γ cos ψ + cos γsinψ − cos θ sin γ − sin θ sin ψsinγ + cos γ cos ψ

 (4)

where ψ, θ and γ are the yaw, pitch and roll angle of the platform respectively.

3. Registration Algorithm

The algorithm is based on the following assumptions:

• The attitude biases and the measured deviations are considered as constant and the attitude biases
are assumed as small values.

• The coupling between biases is ignored.
• The position errors of sensors are not considered. It means the positions are known exactly with

other possible assistant device (e.g., GPS).

3.1. Attitude and Sensor Measurement Errors

The ECEF-KF algorithm is introduced to estimate attitude and sensor measurement biases which
are modeled as additive constant biases to the reported values. That is

ψ̃k = ψk + ∆ψk

θ̃k = θk + ∆θk

γ̃k = γk + ∆γk

(5)
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where ψ̃k, θ̃k, γ̃k are the reported values of the k th sensor’s yaw, pitch and roll angles. ψk, θk, γk are the
true values and ∆ψk, ∆θk, ∆γk are the bias errors of these angles. Likewise, the measurement erros are
modeled as 

r̃k = rk + ∆rk
α̃k = αk + ∆αk
β̃k = βk + ∆βk

(6)

where rk, αk, βk represent the true values of the kth sensor’s slope distance (range), the elevation and
azimuth angle of line of sight respectively. It is notable that the measurement errors include constant
biases and random noises, that is 

∆rk = ∆rkm + ∆rkn
∆αk = ∆αkm + ∆αkn
∆βk = ∆βkm + ∆βkn

(7)

where ∆rkm, ∆αkm, ∆βkm are the constant biases, and ∆rkn, ∆αkn, ∆βkn denote the random noises.

3.2. Traditional ECEF-KF Algorithm

Given the true measurements of range r, elevation α and azimuth β of radar sensor which
are defined under body system, the non-linear relationship between target state (xb, yb, zb) and
measurement is (see in Figure 2)

α = arcsin
yb√

x2
b + y2

b + z2
b

β = − arctan
zb
xb

r =
√

x2
b + y2

b + z2
b

(8)

then the coordinate of target can be written as
xb = r cos α cos β

yb = r sin α

zb = −r cos α sin β

(9)

Substitute (6) in (9) 
xb = (r̃− ∆r) cos (α̃− ∆α) cos

(
β̃− ∆β

)
yb = (r̃− ∆r) sin (α̃− ∆α)

zb = − (r̃− ∆r) cos (α̃− ∆α) sin
(

β̃− ∆β
) (10)

Let Xb = [xb yb zb]
T , ξ = [∆r ∆α ∆β]

T
. Since the measurement errors are small values as

assumed, the Equation (10) can be expressed as the first-order linearity of the errors

Xb = X̃b + Jξ (11)

where X̃b is the reported coordinate of target, J is the Jacobian matrix of Xb with respect to ξ given by

J =


∂xb
∂∆r

∂xb
∂∆α

∂xb
∂∆β

∂yb
∂∆r

∂yb
∂∆α

∂yb
∂∆β

∂zb
∂∆r

∂zb
∂∆α

∂zb
∂∆β

 (12)
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Figure 2. Measurement of target in body coordinate system.

Now, here are two sensors A and B. (λa,ϕa,ha) and (λb,ϕb,hb) are their longitude, latitude and

height coordinates. Let Xea = [xea yea zea]
T

and Xeb = [xeb yeb zeb]
T

be the ECEF coordinates

of two sensors respectively and Xet = [xet yet zet]
T

represents the ECEF coordinate of target.

Xba = [xba yba zba]
T

and Xbb = [xbb ybb zbb]
T

are the body coordinates of target from two sensors
respectively. Thus, the following relationships are given.xet

yet

zet

 =

xea

yea

zea

+

− sin λa − sin ϕa cos λa cos ϕacosλa

cos λa − sin ϕa sin λa cos ϕa sin λa

0 cos ϕa sin ϕa


xba

yba
zba

 (13)

xet

yet

zet

 =

xeb
yeb
zeb

+

− sin λb − sin ϕb cos λb cos ϕbcosλb
cos λb − sin ϕb sin λb cos ϕb sin λb

0 cos ϕb sin ϕb


xbb

ybb
zbb

 (14)

From the two equations above, we obtain the following equality

Xea + RaXba = Xeb + RbXbb (15)

where Ra and Rb denote the rotational matrices in (13) and (14). Xba and Xbb can be expanded to the
linear form like (11), that is(

Xea + RaX̃ba
)
+ Ra Jaξa =

(
Xeb + RbX̃bb

)
+ Rb Jbξb

X̃ea − X̃eb = −Ra Jaξa + Rb Jbξb
(16)

where X̃ea and X̃eb represent the ECEF coordinates of target reported by sensors A and B. In order to
estimate the measurement errors of sensors A and B, the state vector is developed as

χ (k) =
[
∆ram ∆αam ∆βam ∆rbm ∆αbm ∆βbm

]T
(17)

where ∆ram, ∆αam, and ∆βam are the measurment biases of sensor A, ∆rbm, ∆αbm, ∆βbm denote the
measurment biases of sensor B. Since these terms are constant, the discrete equation of the state can be
written as

χ (k) = F (k) χ (k− 1) + W (k)

F (k) =

1 0 0

0
. . . 0

0 0 1


6×6

(18)
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where W (k) is zero mean white Gaussian process noise with covariance Q (k). F (k) is the state
transition matrix. In (16), let Z = X̃ea − X̃eb, H1 = −Ra Ja, H2 = Rb Jb, H =

[
H1 H2

]
.

Therefore, the measurement equation can be expressed as

Z (k) = H (k) χ (k) + V (k) (19)

where V (k) is zero mean white Gaussian process noise with covariance R (k). Kalman filtering
techniques [27] using (18) and (19) can be applied to estimate sensor errors online.

3.3. Improved ECEF-KF Algorithm

From the above derivation, it can be seen that the traditional ECEF-KF method only fits for
sensors on stationary base without attitude errors. For the sensors on high-speed moving missiles,
the position’s and attitude’s change of missiles will influence the actual measurements, and the
oriented biases of each partner which may cause the misalignment of tracking or even the loss
of target must not be ignored. Considering this situation, an improved method making minor
modifications on the original algorithm, is proposed to realize the simultaneous estimation of attitude
and measurement errors.

Here assuming two missiles A and B as well. Considering the attitude change, (13) and (14) are
modified as

Xet = Xea + Ce
d,aCd

b,aXba (20)

Xet = Xeb + Ce
d,bCd

b,bXbb (21)

where Ce
d,a and Ce

d,b equal with Ra and Rb in (15) are rotation matrices from the LENU coordinate system
to the ECEF coordinate system (2) of missiles A and B. Cd

b,a and Cd
b,b represent rotation matrices from

the body coordinate system to the LENU coordinate system (4). Combining the two equations above,
there is

∆Xe = Xeb − Xea = Ce
d,aCd

b,aXba − Ce
d,bCd

b,bXbb (22)

Since the rotation matrix is orthogonal [28], (for one orthogonal matrix M, there is
M−1 = MT), (22) is transformed to

Xba =
(

Cd
b,a

)T(
Ce

d,a

)T (
Ce

d,bCd
b,bXbb + ∆Xe

)
(23)

When attitude errors are small values, the rotation matrix from body coordinate system to LENU
system can be written as [29]

C̃d
b = (I −φ)Cd

b

φ = (δ×) =

 0 −∆ψ ∆θ

∆ψ 0 −∆γ

−∆θ ∆γ 0


δ =

[
∆ψ ∆θ ∆γ

]T

(24)

Thus
Cd

b,a = (I −φa)
TC̃d

b,a

Cd
b,b = (I −φb)

TC̃d
b,b

(25)

Substitute (25) in (23) and ignore the product of φa and φb

Xba ≈ C̃b,a
d

(
(I −φa)Cd,a

e Ce
d,b − Cd,a

e Ce
d,bφb

T
)

C̃d
b,bXbb + C̃b,a

d (I −φa)Cd,a
e ∆Xe (26)
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Both sides of (26) are multiplied by Ce
d,aC̃d

b,a

Ce
d,aC̃d

b,aXba=(Ce
d,b − Ce

d,aφaCd,a
e Ce

d,b − Ce
d,bφb

T)C̃d
b,bXbb + Ce

d,a(I −φa)Cd,a
e ∆Xe (27)

Expand Xba and Xbb into the form of first-order linearity as (11). Since the item φ and ξ are both
small values, their product is ignored. Therefore, (27) becomes

Ce
d,aC̃d

b,aX̃ba − Ce
d,bC̃d

b,bX̃bb + ∆Xe ≈ Ce
d,bC̃d

b,b Jbξb

− Ce
d,aC̃d

b,a Jaξa − (Ce
d,aφaCd,a

e + Ce
d,bφb

TCd,b
e )Ce

d,bC̃d
b,bX̃bb

(28)

In the above formula, the left part of the equation is labeled as Z∗. Let H∗1 = −Ce
d,aC̃d

b,a Ja,
H∗2 = −Ce

d,bC̃d
b,b Jb and the last term in the right part of the equation is represented as P, we arrive at

Z∗ = H∗1 ξa + H∗2 ξb + P (29)

The following work is to transform P to the linear form of attitude errors. The matrix P is written
as the following

P = −(Aφa AT + BφT
b BT)M (30)

where
A = Ce

d,a =
[

a1 a2 a3

]
B = Ce

d,b =
[
b1 b2 b3

]
M = BC̃d

b,bX̃bb

ai and bi are the column vectors of A and B respectively.

Remark 1. Here giving an equality:

Aφa AT M = A

−a2 a1 0
a3 0 −a1

0 −a3 a2


T

diag (M, M, M)

∆ψa

∆θa

∆γa

 (31)

Proof of Remark 1.

Le f t =
[

a1 a2 a3

]  0 −∆ψa ∆θa

∆ψa 0 −∆γa

−∆θa ∆γa 0


aT

1
aT

2
aT

3

M

=
[

a1 a2 a3

] −∆ψaaT
2 + ∆θaaT

3
∆ψaaT

1 − ∆γaaT
3

−∆θaaT
1 + ∆γaaT

2

M

=
((

a2aT
1 − a1aT

2

)
∆ψa +

(
a1aT

3 − a3aT
1

)
∆θa +

(
a3aT

2 − a2aT
3

)
∆γa

)
M

Right =
[

a1 a2 a3

] −aT
2 aT

3 0
aT

1 0 −aT
3

0 −aT
1 aT

2


∆ψa M

∆θa M
∆γa M


=
[
−a1aT

2 + a2aT
1 a1aT

3 − a3aT
1 −a2aT

3 + a3aT
2

]
×

∆ψa M
∆θa M
∆γa M


= Le f t
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So, the Theorem 1 is true.

Likewise
Bφb

T BT M = −BφbBT M

= −B

−b2 b1 0
b3 0 −b1

0 −b3 b2


T

diag (M, M, M)

∆ψb
∆θb
∆γb

 (32)

Let

H∗3 = −A

−a2 a1 0
a3 0 −a1

0 −a3 a2


T

diag (M, M, M)

H∗4 = B

−b2 b1 0
b3 0 −b1

0 −b3 b2


T

diag (M, M, M)

δa =
[
∆ψa ∆θa ∆γa

]T
δb =

[
∆ψb ∆θb ∆γb

]T

(33)

Substituting (31)∼(33) in (30), P is finally expanded as

P =H∗3 δa + H∗4 δb (34)

Let (34) in (29)

Z∗ = H∗1 ξa + H∗2 ξb + H∗3 δa + H∗4 δb

= H∗1
[
∆ram + ∆ran ∆αam + ∆αan ∆βam + ∆βan

]T

+ H∗2
[
∆rbm + ∆rbn ∆αbm + ∆αbn ∆βbm + ∆βbn

]T

+ H∗3
[
∆ψa ∆θa ∆γa

]T
+ H∗4

[
∆ψb ∆θb ∆γb

]T

(35)

where (∆ram, ∆αam, ∆βam) , (∆rbm, ∆αbm, ∆βbm) are constant measurment biases of missile A and B
respectively, (∆ran, ∆αan, ∆βan) , (∆rbn, ∆αbn, ∆βbn) are random noises added to these measurements.

Considering the terms of attitude errors, we redefine

χ∗ (k) = [∆ram ∆αam ∆βam ∆rbm ∆αbm ∆βbm ∆ψa ∆θa ∆γa ∆ψb ∆θb ∆γb]
T (36)

to be the 12-dimensional state vector. The corrected discrete equation of the state is

χ∗ (k) = F∗ (k) χ∗ (k− 1) + W∗ (k) (37)

Since the attitude and measurement biases are all considered as constant values.

F∗ (k) =

1 0 0

0
. . . 0

0 0 1


12×12

Denoting H∗ =
[

H1
∗ H2

∗ H3
∗ H4

∗
]

In (35), the new measurement equation is

Z∗ (k) = H∗ (k) χ∗ (k) + V∗ (k) (38)
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where V∗(k) is still zero mean white Gaussian process noise with covariance R∗(k). Kalman filtering
techniques using (37) and (38) can be used here as well, which is unnecessary to go into the details.

4. Target Tracking with Error Compensation

4.1. Compensation PLKF Algorithm

In Section 3, the coordinate of target in the body coordinate system has been given in (10):
xb = (r̃− ∆r) cos (α̃− ∆α) cos

(
β̃− ∆β

)
yb = (r̃− ∆r) sin (α̃− ∆α)

zb = − (r̃− ∆r) cos (α̃− ∆α) sin
(

β̃− ∆β
) (39)

where ∆r = ∆rm + ∆rn, ∆α = ∆αm + ∆αn, ∆β = ∆βm + ∆βn.
In order to improve the accuracy of target tracking, the error compensation method is

introduced.The estimation of registration errors including range ∆r∗m, elevation angle ∆α∗m, azimuth
angle ∆β∗m and attitude errors ∆ψ∗, ∆θ∗, ∆γ∗ are obtained through ECEF-KF. These estimated values
are compensated to the error terms of the equation above and the rotation matrix C̃d

b in (24), that is

∆rm ≈ ∆r∗m ∆αm ≈ ∆α∗m ∆βm ≈ ∆β∗m (40)

Cd
b
∗
= (I −φ∗)TC̃d

b φ∗ =

 0 −∆ψ∗ ∆θ∗

∆ψ∗ 0 −∆γ∗

−∆θ∗ ∆γ∗ 0

 (41)

Let r′ = r̃− ∆r∗m, α′ = α̃− ∆α∗m, β′ = β̃− ∆β∗m, (39) becomes
xb =

(
r′ − ∆rn

)
cos

(
α′ − ∆αn

)
cos

(
β′ − ∆βn

)
yb =

(
r′ − ∆rn

)
sin
(
α′ − ∆αn

)
zb = −

(
r′ − ∆rn

)
cos

(
α′ − ∆αn

)
sin
(

β′ − ∆βn
) (42)

Considering that ∆rn, ∆αn, ∆βn are small values, there are cos ∆αn ≈ 1, cos ∆βn ≈ 1,
sin ∆αn ≈ ∆αn, sin ∆βn ≈ ∆βn. While, ignore the high-level small quantities, which means
∆αn∆βn ≈ 0, ∆αn∆rn ≈ 0, ∆rn∆βn ≈ 0. Then, the equation above turns to the following
pseudo measurement: 

lx , r′ cos α′ cos β′ = xb − nx

ly , r′ sin α′ = yb − ny

lz , −r′ cos α′ sin β′ = zb − nz

(43)

where nx, ny, nz are pseudo measurement noises, here are
nx = ∆βnr′ cos α′ sin β′ + ∆αnr′ sin α′ cos β′ − ∆rn cos α′ cos β′

ny = −∆αnr′ cos α′ − ∆rn sin α′

nz = ∆βnr′ cos α′ cos β′ − ∆αnr′ sin α′ sin β′ + ∆rn cos α′ sin β′

The covariance of these measurement noises is

Rn =

 Var (nx) Cov
(
nx, ny

)
Cov (nx, nz)

Cov
(
ny, nx

)
Var

(
ny
)

Cov
(
ny, nz

)
Cov (nz, nx) Cov

(
ny, nz

)
Var (nz)

 (44)
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where

σ2
r = Var (∆rn) , σ2

α = Var (∆αn) , σ2
β = Var (∆βn)

Var (nx) =
(
σβr′ cos α′ sin β′

)2
+
(
σαr′sinα′cosβ′

)2
+
(
σr cos α′cosβ′

)2

Var
(
ny
)
=
(
σαr′ cos α′

)2
+
(
σr sin α′

)2

Var (nz) =
(
σβr′ cos α′cosβ′

)2
+
(
σαr′sinα′sinβ′

)2
+
(
σr cos α′sinβ′

)2

Cov
(
nx, ny

)
= Cov

(
ny, nx

)
= cos α′ sin α′ cos β′ ×

(
σr

2 −
(
r′σα

)2
)

Cov (nx, nz) = Cov (nz, nx) = cos β′ sin β′ ×
((

r′ cos α′σβ

)2 −
(
r′sinα′σα

)2 −
(
cos α′σr

)2
)

Cov
(
ny, nz

)
= Cov

(
nz, ny

)
= cos α′ sin α′ sin β′ ×

((
r′σα

)2 − σr
2
)

Representing U =
[

xb yb zb ẋb ẏb żb

]T
as the state vector, the continuous equation is

U̇ = SU + Gω (45)

where ω =
[
ωx ωy ωz

]T
is zero-mean white noise with covariance Σ, and S is the transition matrix.

The CV (Constant Velocity) model [30] is chosen as the target motion model, that is

S =

[
03 I3

03 03

]
G =

[
03

I3

]

The discrete-time state function is

U (k) = T (k)U (k− 1) + Λ (k) (46)

where Λ(k) is discrete-time process noise, and the state transition matrix T (k) = T (tk, tk+1) at time tk
over time interval t∆ = tk+1 − tk is given by

T (k) = eSt∆ ≈ I + t∆S

The covariance of the discrete-time process noise is

Qk = E
[
ΛkΛk

T
]
=
∫ tk+1

tk

T (tk, τ) GΣGTT(tk, τ)Tdτ

Let L =
[
lx ly lz

]T
denotes the measurement vector. Therefore, the measurement equation is

transformed to the linear function of the target state.

L (k) = Y (k)U (k) + µ (k)

Y (k) =
[

I3 03

] (47)

where µ (k) is zero-mean Gaussian noise.

4.2. Conpensation UKF Algorithm

If we directly take the compensation inputs as the measurements of filter L∗ =
[
r
′

α
′

β
′
]T

,
then the measurement equation will be changed as the non-linear form (8)

L∗ (k) = h (U (k)) + µ∗ (k) (48)
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where µ∗(k) is measurement noise with Ω(k) as variance. Combined with (46) and (48), the UKF
algorithm for nonlinear system state estimation is exactly required. The formulas of UKF are directly
given as follows.

Initializing:
Û (0) = E [U (0)]

P (0) = E
[(

U (0)− Û (0)
) (

U (0)− Û (0)
)T
] (49)

Computing sigma point set:

` (k) =
[
Û (k) Û (k) +

√
(n + λ)P (k) Û (k)−

√
(n + λ)P (k)

]
(50)

Prediction updating:

` (k + 1|k) = T(k)`(k)

Û (k + 1|k) =
2n
∑

i=0
Wm

i `i (k + 1|k)

P (k + 1|k) =
2n
∑

i=0
W c

i
[
`i (k + 1|k)− Û (k + 1|k)

]
×
[
`i (k + 1|k)− Û (k + 1|k)

]T
+ Q (k + 1)

L̂∗i (k + 1|k) = h (`i (k + 1|k))

L̂∗ (k + 1|k) =
2n
∑

i=0
Wm

i L̂∗i (k + 1|k)

(51)

Measurement updating:

PLL (k + 1) =
2n
∑

i=0
W c

i
[
L̂∗i (k + 1|k)− L̂∗ (k + 1|k)

][
L̂∗i (k + 1|k)− L̂∗ (k + 1|k)

]T
+ Ω (k + 1)

PUL (k + 1) =
2n
∑

i=0
W c

i
[
` (k + 1|k)− Û (k + 1|k)

] [
L̂∗i (k + 1|k)− L̂∗ (k + 1|k)

]T

K (k + 1) = PUL (k + 1) (PLL (k + 1))−1

Û (k + 1) = Û (k + 1|k) + K (k + 1)
(

L∗(k + 1|k)k − L̂∗ (k + 1|k)
)

P (k + 1) = P (k + 1|k)− K (k + 1) (PLL (k + 1))−1(K (k + 1))T

(52)

4.3. Compensation Condition and Strategy

Remark 2. Considering the situation where two missiles and target are on the same latitude or longitude plane
during their fight, the 3-D tracking problem will become 2-D.

As shown in the Figure 3, OXYZ coordinate system is the longitude, latitude and height coordinate
system. The axes OX, OY, OZ denote longitude, height and latitude respectively. In this moment,
the two missiles and the target are on the same latitude plane Z = Z0 and the track plane ABT is parallel
to the plane OXY, which means the measurement of space registration will lost the measurements on
OZ axis and the tracking problem in 3-D space turns to be on the plane OXY. If two missiles keep
flying on this plane for some time, the estimation of errors may be divergent, which will worsen the
compensation effect.

A judging condition is presented here: Assume Γ is the normal vector of the tracking plane ABT,
ri is the unit vector parallel to the axes, ϑi is the vectorial angle between Γ and ri.

|cos ϑi − 1| =
∣∣∣∣ ri · Γ
‖ri‖ ‖Γ‖

− 1
∣∣∣∣ ≤ ε (53)

where ε is a sufficiently small value, ‖�‖ is the Euclidean metric of vector [31]. If the inequality satisfies,
the situation in Remark 2 will happen.
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T(xt,yt,z0)
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O



 1,0,01r

 0,1,02r

 0,0,13r

Figure 3. Judge on spatial relationship.

To avoid the decreasing precision of compensation tracking, the estimation of registration errors
will be introduced to a LFOF when (53) is true, that is

y =
1

κs + 1
u⇒ ẏ = −1

κ
y +

1
κ

u (54)

where u is the error items, y is the output of the filter, κ is the propotionality coefficient. The fourth-order
Runge-Kutta algorithm [32,33] can be used to solve the above differential equation.

Figure 4 shows the flow of whole algorithms. Before target tracking, the ECEF-KF is introduced
to obtain registration errors of measurements of missiles. The errors acquired are furtherly introduced
to the tracking system through the conditional compensation. When the tracking plane is parallel to
one of three coordinate planes, the LFOF is taken to inhibit the divergence of error estimations.

The compensation PLKF method with LFOF is called the CCPLKF (Conditional Compensation
Pseudo Linear Kalman Filter), otherwise, called UCPLKF (Unconditional Compensation Pseudo Linear
Kalman Filter). Accordingly, the compensation UKF method is divided to CCUKF and UCUKF.

Missile AMissile A

Missile BMissile B

ECEF-KFECEF-KF

,   d
a a a b aC  

,b   d
b b b bC  

Jugement Jugement 

Errors
Estimation

  a a ah 

  b b bh 

1

1s 
Satisfy

Unsatisfy CompensationCompensation Tracking 
System

Tracking 
System

Target State
Estimation

*   d
bC  ' ' '

Figure 4. Arcitecture of registration and tracking algorithm.

5. Simulation

In this section, the performance of the proposed algorithm in spatial registration compared with
traditional ECEF-KF is demonstrated. And the target tracking scheme is proved effective through the
comparison of linear filters and nonlinear filters.
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In the simulation, the ground target on curvilinear motion with variable velocity is considered.
The velocity of target is (N 10 sin 2πt

T , E 5m/s), wherein t is the current time and T is the total
simulation time.

The initial position of target is (longitude 108.5◦, latitude 34.01◦, height 0 m). The same terms of
1th and 2th missiles are (longitude 108◦, latitude 34◦, height 300 m) and (longitude 108◦, latitude 34.02◦,
height 200 m) respectively. There are two motion situations of missiles being considered:

Case 1: Both two missiles make uniform linear flight to the east, the velocity are
(N 0 m/s, E 120 m/s) and (N 0 m/s, E 100 m/s) respectively.

Case 2: The missiles make uniform linear flight as well, the velocity are (N 5 m/s, E 120 m/s) and
(N −7 m/s, E 100 m/s) respectively. Figure 5 shows the absolute trajectories of missiles and target in
the longitude, latitude and height coordinate system under the cases above.

(a)

Latitute(°)

X

Z

Longitude(°)

Y

0

50

34.03

100

150

200

250

34.02

300

34.01
108.6

108.4
108.234

108

Missile1

Missile2

Target

(b)

Figure 5. (a) Trajectories of missiles and target under case 1; (b)Trajectories of missiles and target
under case 2.

The 1th sensor offset error is (range 200 m, elevation angle 0.5◦, azimuth angle 0.2◦) and the
2th sensor offset error is (range 300 m, elevation angle 0.3◦, azimuth angle 0.2◦). Both two sensors’
standard deviation of measurement noises is (5 m, 0.01◦, 0.1◦) All the measurement errors and noises
are added to ideal measurements to create reported values. Both two platforms’ initial attitudes are
(yaw 1◦, pitch 0◦, roll 3◦) and offset errors of these angles are 0.01◦, which are added to initial attitudes
to create deviated values. The sampling interval is 0.1 s. All the simulation results are obtained over
100 Monte Carlo trials. The performance of improved ECEF-KF algorithm proposed in the paper is
compared with the method based on ECEF-LS in [24] and the standard Kalman filter, which is called
traditional ECEF-KF.

The estimations of sensor errors are proposed in Figure 6, wherein the left column is about
missile 1 and the right column presents the outcome of missile 2. The results of two cases are compared
in one figure. It is obvious that the curves of case 2 jitter severely during 100∼200 s, which does not
appear in the case 1. As mentioned in Section 4.2, the jitter is caused by the approach of latitudes of
two missiles and target (see in Figure 5b). At 150 s, the two missiles move to nearly the same latitude
(about 34.01◦), the latitude of target is about 34.0186◦, they are almost on the same latitude plane.
That means the measurements of ECEF-KF become two dimensional, which causes the divergence
during this time and converge gradually with the continual motion of missiles.
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Figure 6. (a) The estimation of range error of missile 1; (b) The estimation of elevation error of
missile 1; (c) The estimation of azimuth error of missile 1; (d) The estimation of range error of missile 2;
(e) The estimation of elevation error of missile 2; (f) The estimation of azimuth error of missile 2.

The Figure 7 shows the estimations of attitude biases. The divergency during 100∼200 s appears
similarly under case 2. Besides, it is found in Figure 7c,f that the roll error increases after 200 s. This is
because the longitudes of missiles come close to the targets’ at the end of track, which leads to the
same phenomenon caused by the approach of latitude. Since the measurement equation of ECEF-KF is
a first-order linear function of state, the estimations converge quickly from beginning (about 2 s in
Figure 7a) and jitter near the truth.
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Figure 7. (a) The estimation of yaw bias of missile 1; (b) The estimation of pitch bias of missile 1; (c) The
estimation of roll bias of missile 1; (d) The estimation of yaw bias of missile 2; (e) The estimation of
elevation error of pitch bias of missile 2; (f) The estimation of roll bias of missile 2.

To demonstrate the priority of proposed registration method for sensors on motivated platforms,
Figure 8 illustrates the bias estimates of traditional ECEF-KF and improved one under case 1.
The overlook of attitudes of orientated frames makes the former deviate from the truth as well
as the disability to estimate the align errors. On the contrary, the latter which follows the truth closely
gives better performance on the results. The reason causing the disappointment of traditional one is
that the attitudes of missiles lead to the noncoincidence of LENU system and missile body system and
influence the measurement obtained from sensors. For instance, the positive yaw value would increase
the measurement of azimuth angle which is actually invariant in LENU system. However, the item Cd

b
of improved method transform the measurement from body system to LENU system, isolating the
disturbance of frame angles.
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Figure 8. (a) The comparison of range error of missile 1; (b) The comparison of elevation error of missile
1; (c) The comparison of azimuth error of missile 1; (d) The comparison of range error of missile 2;
(e) The comparison of elevation error of missile 2; (f) The comparison of azimuth error of missile 2.

The RMSE (Root Mean Square Error) of the estimation of two methods is listed in Table 1.
Obviously, the improved ECEF-KF outperforms the original strategy in all terms, especially for the
azimuth because of the relatively large value of yaw angle, which demonstrates the proposed algorithm
has more advantage in spatial registration for mobile sensors.

Table 1. RMSE of registration errors.

Method Platform Range (m) Elevation (◦) Azimuth (◦)

Improved Missile 1 0.1878 0.0126 0.0327
ECEF-KF Missile 2 0.1888 0.0057 0.0255

Traditional Missile 1 0.2667 0.0522 0.5557
ECEF-KF Missile 2 0.2688 0.0475 1.0674

Take case 2 for example, the target tracking is conducted on missile 1. Figure 9 compares the
estimations of different schemes, wherein the left column presents the results of linear filters and
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the nonlinear filters are illustrated in the right list. The trajectory of target is estimated in the LENU
coordinate system of missile 1 (see in Figure 5b). The parameters are given ε = 0.001, κ = 10.

Remark 3. It is notable that ε is the limit of (53) and κ is the scale factor of integrator in (54). The former
wherein will influence the time of error compensation (the lager ε is, the longer the LFOF will be taken) and the
latter wherein will enhance the stability of error estimations (the lager κ is, the smoother the estimation through
LFOF will be).
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Figure 9. (a) Linear estimation of x coordinate of target; (b) Linear estimation of y coordinate of
target; (c) Linear estimation of z coordinate of target; (d) Nonlinear estimation of x coordinate of target;
(e) Nonlinear estimation of y coordinate of target; (f) Nonlinear estimation of z coordinate of target.

Seen from the left column of Figure 9, the accuracy of estimation dramatically improved after
compensation (the estimation of UCPLKF is much closer to the truth value than PLKF). This is because
the constant biases are subtracted from the input of UCPLKF. But during 100∼200 s, the estimations
of these biases deviate from the truth, resulting to the unsatisfactory performance of UCPLKF in this
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period. The CCPLKF which can effectively inhibit the jitter of curves through a condition-based LFOF
is prior to UCPLKF. Since the LFOF only works when (53) satisfies, so it does not cause the time delay
to the whole tracking process. In the right column, likewise, the CCUKF is the optimal method among
the nonlinear tracking schemes.

The RMSE of the estimation of target state is listed in Table 2. Seen from the results, the accuracy
of tracking system can be greatly improved through compensation and the conditional compensation
methods (CCPLKF and CCUKF) have nearly the same and the smallest errors. The CCUKF although
has slight edge over CCPLKF in the items RMSEx and RMSEy, but suffer from more error in RMSEz,
which turns the advantage to disadvantage in joint distance. This result can be explained through
the comparison of Figure 9c,f. As mentioned, the registration errors jitter severely during 100∼200 s,
which are compensated directly to the measurement inputs of UKF yet indirectly introduced to PLKF.
Thus, the latter has the better input-jitter tolerance, which can also be proved in Figure 10.
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Figure 10. (a) Estimation Error of x coordinate of target; (b) Estimation Error of y coordinate of target.
(c) Estimation Error of z coordinate of target.

Table 2. RMSE of tracking errors.

Method RMSEx (m) RMSEy (m) RMSEz (m) RMSEr (m)

PLKF 191.6083 269.8833 88.9778 342.6377
UCPLKF 6.3140 20.5581 24.1859 32.4938
CCPLKF 6.2862 18.8728 23.5337 30.9746

UKF 191.3337 269.8901 89.1703 342.7357
UCUKF 6.2568 20.5293 24.3977 32.3645
CCUKF 6.2366 18.8422 23.7803 30.8145
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The estimations of CCPLKF and CCUKF are compared in Figure 10. Although the local magnifications
in Figure 10a,b show the smoother curves of CCUKF than those of CCPLKF, but the Figure 10c exposes
its flaw when the inputs jitter more severely. Moreover, the another fatal weakness of CCUKF is
its relatively large computation. Given from simulation, the operation time caused by CCPLKF is
2.32 s, whereas CCUKF takes 5.62 s. In summary, the CCPLKF method keeps the best performance in
target tracking.

6. Conclusions

In this paper, a novel spatial registration algorithm is proposed to estimate biases of measurements
and orientation angles simultaneously. The linear and nonlinear filtering algorithms are introduced
to solve the three-dimensional maneuvering target tracking problem. The estimations of registration
method are used to modify the inputs of tracking scheme. In addition, a low pass first order filter is
selectively taken to inhibit the jitter of estimation without the time delay. Simulation shows the good
performance and robustness of the registration approach and the advantage of linear tracking method
with modified inputs. Research results of this paper can also be extended to solve the registration
and tracking of a dynamic network consisted of large quantities of sensors and multi-maneuvering
targets [34,35].
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