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Advanced maternal age is associated with higher infertility rates, pregnancy-associated complications, and progeny health issues.
The ovary is considered the main responsible for these consequences due to a continuous decay in follicle number and oocyte
quality. Intracellular imbalance between oxidant molecules and antioxidant mechanisms, in favour of the former, results in
oxidative stress (OS) that is believed to contribute to ovarian ageing. This work is aimed at evaluating whether an age-related
increase in ovarian OS, inflammation, and fibrosis may contribute to tissue dysfunction and whether specific antioxidant
supplementation with a NADPH oxidase inhibitor (apocynin) could ameliorate them. Mice aged 8–12 weeks (reproductively
young) or 38-42 weeks (reproductively aged) were employed. Aged mice were divided into two groups, with one receiving
apocynin (5mM) in the drinking water, for 7 weeks, upon which animals were sacrificed and their ovaries collected. Ovarian
structure was similar at both ages, but the ovaries from reproductively aged mice exhibited lipofuscin deposition, enhanced
fibrosis, and a significant age-related reduction in primordial and primary follicle number when compared to younger animals.
Protein carbonylation and nitration, and markers of OS were significantly increased with age. Moreover, mRNA levels of
inflammation markers, collagens, metalloproteinases (MMPs), and tissue inhibitor MMPs (TIMPs) were upregulated.
Expression of the antifibrotic miRNA29c-3p was significantly reduced. Apocynin supplementation ameliorated most of the age-
related observed changes, sometimes to values similar to those observed in young females. These findings indicate that
there is an age-related increase in OS that plays an important role in enhancing inflammation and collagen deposition,
contributing to a decline in female fertility. Apocynin supplementation suggests that the imbalance can be ameliorated and thus
delay ovarian ageing harmful effects.

1. Introduction

During the last decades, developed and developing countries
have experienced economic and educational changes that
gave women the opportunity to reach higher professional
and decision levels. As a consequence, childbearing has been
postponed into a period of life when fertility success
decreases and pregnancy-associated disorders increase sig-
nificantly [1].

Human female fertility peaks in the early 20s and gradu-
ally declines until the mid-30s. Thereafter, reproductive

potential falls sharply, until it virtually ends at menopause
around the age of 50 [2]. The ovary is believed to be the main
fertility regulator due to the continuous age-related decay in
follicle number and oocyte quality [3].

A theory for ovarian ageing holds that age-related disrup-
tion of redox homeostasis affects oocyte quality [4]. The con-
tinued generation of reactive oxygen species (ROS) together
with an age-related decline in activity and expression of
important follicle antioxidant enzymes results in an imbal-
ance between ROS production and antioxidant defences.
The condition leads to oxidative stress (OS) responsible for
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protein, amino acid, lipid, and DNA damage that underlie
ovarian ageing and fertility loss [5]. As a matter of fact,
in follicular fluid of older women, the expression of
important antioxidant enzymes, as catalase and specific
glutathione S-transferases, is significantly lower when com-
pared with younger women [6]. Similarly, superoxide dis-
mutase 1, superoxide dismutase 2, and catalase gene
expression in granulosa [7] and cumulus oophorus cells
[8] are also downregulated during reproductive ageing. In
this process, the use of specific antioxidant molecules has
shown beneficial effects in delaying follicle depletion and
fertility impairment [9–12].

Studies on ovarian ageing have expanded from the oocyte
immediate surroundings to the ovarian stroma, mainly com-
posed of an arrangement of extracellular matrix components
(ECM) and fibroblasts and smooth muscle, endothelial, and
immune cells. This microenvironment has an important
impact on follicle development and oocyte quality. In fact,
Briley et al. [13] verified ovarian microenvironment changes
with age, specifically an increase in fibrosis and inflamma-
tion, and suggested its contributory role to the coincident
decrease in oocyte quality. ROS are also believed to contrib-
ute to the synthesis and activation of various cytokines and
growth factors, hence creating common feedforward and
feedback mechanisms that promote tissue fibrosis [14].

Inflammation and ROS formation appear to be key
factors in the pathogenesis of ovarian fibrosis [15], which
reflects a disturbance of the synthesis and degradation of
extracellular matrix (ECM) favouring excessive collagen
deposition. Important regulators of ECM homeostasis are
metalloproteinases (MMPs), a group of enzymes capable of
degrading all types of ECM components [16], and tissue
inhibitor metalloproteinases (TIMPs), both affected by age-
ing [17]. More recent studies have also identified specific
microRNAs (miRNAs) as important mediators in fibrosis;
they act either by regulating target genes involved in the
process of ECM remodelling or by signalling pathways
associated with it [18]. Reduction of ROS production by
inhibiting NADPH oxidase (NOX) activity with apocynin
has shown beneficial effects on renal [19, 20], cardiac [21],
skeletal muscle [22], and pulmonary [23] fibrosis. Despite
our previous results showing beneficial effects of apocynin
supplementation on uterine ageing and fertility [24], its effect
on ovarian redox imbalance, inflammation, and fibrosis
during reproductive ageing is scarce.

In sum, an age-related low-grade inflammatory state may
associate with ovarian collagen deposition and a progressive
reduction in follicle number and oocyte quality. In this set-
ting, it was hypothesized that an age-related increase in ovar-
ian fibrosis and ROS underlies fertility reduction. To verify it,
markers of oxidative stress, tissue fibrosis, and inflammation,
along with the possibility to ameliorate those features by a
specific antioxidant supplementation, were evaluated in vivo.

2. Material and Methods

2.1. Animal Handling and Ovarian Tissue Collection. All the
experiments were performed according to the Portuguese law
on animal welfare and according to the guidelines issued

by Federation of European Laboratory Animal Science
Associations (FELASA). Female mice (C57BL/6J strain)
obtained from Harlan were kept under controlled conditions
(12 h light/dark cycle and room temperature at 22°C) and
had free access to tap water and standard mouse chow.
Young (8-12 weeks old) and reproductively aged (38-42
weeks old) female mice were employed. Reproductively aged
mice were divided into two groups, with one receiving the
antioxidant, apocynin, 5mM, in drinking water 7 weeks
prior to sacrifice. Water bottles were protected from light
and changed twice a week. At the selected ages, female mice
were anesthetized with isoflurane and euthanized by cervical
dislocation, and the ovaries were excised. One ovary was
immediately frozen in liquid nitrogen and subsequently kept
at -80°C for molecular studies and the other was fixed
overnight, in 4% paraformaldehyde, for structural studies.

2.2. Tissue Processing for Histological Techniques. Fixed
ovaries were dehydrated with the aid of increasing concentra-
tions of ethanol and diaphanized using benzol. Impregnation
and inclusion were carried out in paraffin, and 5 μm thick
sequential sections were mounted on poly-L-lysine-coated
slides and dried overnight at 37°C. They were stored in plastic
boxes to be used for all histological applications throughout
this study.

2.3. Morphological Analysis of Ovarian Tissues. Ovarian
sections for morphological examination were stained with
hematoxylin & eosin (H&E) according to the following
protocol. Slides were dewaxed twice with xylol and hydrated
with decreasing concentrations of ethanol and water. Subse-
quently, slides were stained with Harris hematoxylin for 2
minutes and then stained with alcoholic eosin for 5 minutes.
Finally, tissues were dehydrated with increasing concentra-
tions of ethanol followed by two xylol passages. Slides were
mounted in Entellan and air dried. Ovarian morphology
was observed under light microscope equipped with a digital
camera, and representative images at ovarian midsection
were captured. Other ovarian sections were stained with
Sudan Black 0.1% for lipofuscin examination. Slides were
dewaxed and hydrated as previously described, stained with
Sudan Black 0.1% for 20 minutes, dehydrated, and mounted.

2.4. Follicle Counting at OvarianMidsection.H&E slides were
used for follicle counting. The follicles were branded as pri-
mordial, primary, secondary, or antral, and corpus luteum.
Follicles were classified as primordial or primary when
oocytes were surrounded, respectively, by a single layer of
squamous or cuboidal granulosa cells. Secondary follicles
were identified by having more than one layer of granulosa
cells with no visible antrum. Antral follicles are the ones that
displayed small areas of follicular fluid (antrum) or a single
large antral space. Corpus luteum were identified as intrao-
varian bund structures with morphologically homogeneous
round cells, showing enhanced cytoplasm/nucleus ratio,
when compared with granulosa cells, and deprived of oocyte.
The number of follicles at ovarian midsection was obtained
by calculating the mean counts of three ovarian midsections,
representative of each animal, and a minimum of four ani-
mals per group was used.
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2.5. Autofluorescence Lipofuscin Detection. Ovarian sections
were dewaxed and hydrated as previously described. After
washing in PBS, they were mounted in phosphate-buffered
glycerol and observed under a fluorescence microscope (Carl
Zeiss AxioImager Z1) equipped with a digital camera.

2.6. Fluorescent Immunohistochemistry. A fluorescent immu-
nohistochemical technique was performed to detect protein
carbonylation and nitration (markers of oxidative stress).
Ovarian sections were dewaxed and hydrated as previously
described. Slides were washed with phosphate-buffered saline
(PBS) solution and permeabilized with 0.5% Triton™ X-100
in PBS for 5 minutes, followed by washing with PBS. For pro-
tein carbonylation assessment, an additional derivatization
process was required before nonspecific signal blocking.
The derivatization protocol was performed as previously
published [25]. In brief, sections were incubated in 10mM
2,4-dinitrophenylhydrazine (DNPH; Sigma-Aldrich) in 10%
TFA for 10 minutes, the reaction stopped with 2M Tris base
pH 10, and slides were washed with PBS. Background
staining was blocked with 2% bovine serum albumin
(BSA) in PBS with 0.1% Tween 20 (PBS-T) for 1 hour at
room temperature. Slides were then incubated with a rabbit
polyclonal antibody recognizing DNP (1 : 250; Sigma-
Aldrich) or a mouse monoclonal antibody recognizing
nitrotyrosine (1 : 250; Santa Cruz Biotechnology) in PBS-
T, overnight at 4°C. The following day, slides were washed
in PBS-T, incubated with Alexa Fluor 488-conjugated anti-
rabbit IgG secondary antibody (1 : 750; Molecular Probes)
or in Alexa Fluor 568-conjugated anti-mouse IgG secondary
antibody (1 : 750; Molecular Probes) in PBS-T for 1 hour at
room temperature. Then, they were washed again, counter-
stained with 4′,6-diamidino-2-phenyl-indole (DAPI), and
mounted. Slides were examined, and images were recorded
under a fluorescence microscope (Carl Zeiss AxioImager Z1)
equipped with a digital camera. Signal extension was quanti-
fied using ImageJ software by identification of the threshold
cut point, with blind intervention of three operators. A mini-
mum of four animals per group was used, and a minimum of
two representative sections of the midovary was examined.

2.7. Fibrosis Evaluation in Ovarian Tissue. Picrosirius red
histochemical technique was performed for quantification
of tissue fibrosis. Ovarian sections were dewaxed and
hydrated as previously described. Then, slides were stained
with sirius red solution for 90 minutes, rapidly passed
through 0.5% acidified water, and subsequently dehydrated,
with increasing concentrations of ethanol, followed by two
xylol passages. Slides were mounted in Entellan for further
visualization and analysis. This technique stains collagen in
red and cytoplasm in yellow. Red staining (collagen) was
quantified using the ImageJ software by identification of the
threshold cut point, with blind intervention of three opera-
tors. A minimum of four animals per group was used, and
a minimum of two sections of the midovary was examined.

2.8. Real-Time PCR. Ovarian RNA extraction and purifica-
tion was performed with TripleXtractor direct RNA kit
(GRiSP) following the manufacturer’s instructions. Total

RNA was quantified by measuring the absorbance at
260 nm in a NanoDrop (Thermo Fisher Scientific), and
RNA purity was evaluated by the ratio of absorbance at 260
and 280nm. RNA samples were reverse transcribed to cDNA
with the NZY First-Strand cDNA Synthesis kit (NZYTech).
Real-time PCR was carried out using PowerUp SYBR Green
Master Mix (Thermo Fisher Scientific) and specific primers
(Table 1) in a StepOnePlus™ Real-Time PCR System
(Applied Biosystems). Primers were designed using the
online available specific mRNA sequences and Primer3 pro-
gram. The derived sequences were submitted for a BLAST
search to ensure exclusive alignment to the desired target
genes. Amplification reactions were performed, in duplicate,
according to conditions stated in Table 1. To check specific-
ity, a dissociation curve was derived at the end of each run.
Controls lacking reverse transcriptase were included to
ensure no genomic DNA contamination during prepara-
tions. Results were normalized to 18S expression.

2.9. MicroRNA Quantification. Total RNA extraction was
performed using the commercial Recover ALL™ Total
Nucleic Acid Isolation Kit (Ambion), according to the manu-
facturer’s instructions. In brief, for each sample, four paraffin-
embedded ovaries were sectioned at 20 μm thickness. Each
samplewas dewaxed in 100%xylene, washed in 100% ethanol,
and incubated with protease and digestion buffer for 2 hours
at 50°C, followed by 15 minutes at 75°C. Nucleic acids were
isolated and incubated with DNase mix for 30min at room
temperature. After a final purification, 7μL of total RNA
was reverse transcribed to cDNA using the MystiCq micro-
RNA cDNA Synthesis Mix (Sigma-Aldrich Co.). In the pro-
cess of cDNA synthesis, miRNAs were subjected to
polyadenylation by poly(A) polymerase that catalysed the
transfer of adenosine deoxynucleotides to the 3′ end. Ready-
Script Reverse Transcriptase and other necessary reagents for
cDNA synthesis were subsequently added to convert the
poly(A) tailed microRNAs into first-strand cDNA using an
oligo-dT adapter primer. The unique sequence at the 5′ end
of the adapter primer allows amplification of microRNA
cDNAs in real-time qPCR reactions using theMystiCq micro-
RNA qPCR Universal Primer. Real-time PCR was carried out
as previous described. Controls lacking reverse transcriptase
were included to ensure no genomic DNA contamination dur-
ing preparations, along with controls lacking poly(A) poly-
merase. Results were normalized to RNU1A (Qiagen)
expression. Specific primers used were miR-21∗_1; miR-
29c_1; miR-215_1; and miR-212-3p_1 miScript Primer Assay
(Qiagen), with annealing temperature of 55°C.

2.10. Statistical Analysis. Arithmetic means are given with
standard error of the mean (SEM). Statistical analyses were
performed with GraphPad Prism 6.01 using one-way analysis
of variance (ANOVA), followed by the Tukey posttest. A
P < 0:05 was considered statistically significant.

3. Results

3.1. Age-Related Alterations in Ovarian Morphology. To
observe ovarian morphology, H&E-stained midorgan
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sections (Figure 1(a)) revealed follicles in various stages of
development, occupying most areas of the ovary, but pre-
dominantly in the periphery. Central areas were occupied
by a heterogeneous stroma that included vessels, bundles of
extracellular connective tissue, and respective cells.

A unique population of stroma cells was detected only in
the ovaries of reproductively aged mice. They were large and
multinucleated, with pale cytoplasm containing a yellow-
brown pigment (Figure 1(a)), which displayed autofluores-
cence (Figure 1(b)). Fluorescence quenching by staining with
Sudan Black indicated that these were deposits of lipofuscin
(oxidized lipids and proteins) (Figure 1(b)). Ovarian stromal
cells with the abovementioned characteristics were consis-
tently observed in reproductively aged mice and correspond
to multinucleated giant macrophages [13, 26]. Follicle num-
ber was evaluated and, as expected, in reproductively aged
mice, a significant reduction was noticed. This was due to a

decrease in the number of primordial and primary follicles.
Apocynin had no effect (Figure 1(c)).

3.2. Age and Antioxidant Supplementation Effect on Ovarian
Oxidative Stress and Fibrosis. Tyrosine nitration and protein
carbonylation were used to characterize ovarian oxidative
stress (Figures 2 and 3). As shown in Figure 2, protein tyro-
sine nitration staining was found on the medullary stromal
cells and partially colocalized with lipofuscin deposits. DNP
immunoreactivity was observed in stromal cells, theca cells,
oocytes, and corpus luteum (Figure 3). Reproductively aged
females had increased expression of lipofuscin deposits
(1:00 ± 0:41 vs. 8:53 ± 2:95), carbonylated (1:34 ± 0:09 vs.
3:17 ± 0:35), and nitrated proteins (1:00 ± 0:20 vs. 2:60 ±
0:26) (Figures 2(b) and 3(b)). The use of apocynin, that
inhibits NOX-mediated superoxide production, resulted in
a significant reduction in both carbonylated and nitrated

Table 1: List of primers used in RT-PCR reactions.

Primers Sequence Annealing temperature Fragment (bp)

Col1α1
Fwd 5′-GACGCATGGCCAAGAAGACA-3′

60°C 85
Rev 5′-CTCGGGTTTCCACGTCTCAC-3′

Col3α1
Fwd 5′-AGCTTTGTGCAAAGTGGAACC-3′

58°C 114
Rev 5′-ATAGGACTGACCAAGGTGGC-3′

Col5α1
Fwd 5′-CCTGGTTCAGTGAATTCAAGCG-3′

60°C 81
Rev 5′-TCATTTGTACCACGCCCACG-3′

TGF-β1
Fwd 5′-ATTCCTGGCGTTACCTTGG-3′

60°C 120
Rev 5′-AGCCCTGTATTCCGTCTCCT-3′

TNF-α
Fwd 5′-CCCTCACACTCAGATCATCTTCT-3′

60°C 61
Rev 5′-GCTACGACGTGGGCTACAG-3′

IL-1β
Fwd 5′-TGACGGACCCCAAAAGATGA-3′

60°C 87
Rev 5′-TGCTGCGAGATTTGAAGCTG-3′

CCL5
Fwd 5′-TGCCCACGTCAAGGAGTATT-3′

60°C 84
Rev 5′-ACTTGGCGGTTCCTTCGAG-3′

MMP2
Fwd 5′-TGTCGCCCCTAAAACAGACA-3′

58°C 65
Rev 5′-TGGGGCAGCCATAGAAAGTG-3′

MMP9
Fwd 5′-CCTGGAACTCACACGACATCT-3′

62°C 72
Rev 5′-CACGCCAGAAGAATTTGCCAT-3′

MMP12
Fwd 5′-GGGCTGCTCCCATGAATGAC-3′

56°C 85
Rev 5′-GTCATTGGAATTCTGTCCTTTCCA-3′

TIMP1
Fwd 5′-GGTGTGCACAGTGTTTCCCTGTTT-3′

60°C 72
Rev 5′-TCCGTCCACAAACAGTGAGTGTCA-3′

TIMP2
Fwd 5′-GGATTCAGTATGAGATCAAGC-3′

55°C 145
Rev 5′-GCCTTTCCTGCAATTAGATAC-3′

18S
Fwd 5′-CGCCGCTAGAGGTGAAATTC-3′

60°C 67
Rev 5′-CATTCTTGGCAAATGCTTTCG-3′

Fwd: forward; Rev: reverse; bp: base pairs.
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proteins, to levels similar to those observed in the younger
group (Figures 2 and 3).

Oxidative stress appears to play a crucial role in the
ethology of tissue fibrosis. Next, picrosirius red (PSR) histo-
chemical technique was used to evaluate ovary collagen fibril
deposition. Slight PSR staining was observed around folli-
cles, blood vessels, and epithelium of the ovarian surface
(Figure 4(a)). However, a network-like, intense PSR staining,
characteristic of fibrotic foci, was only seen on the ovarian
stroma and increased significantly with age (1:00 ± 0:12 vs.
1:92 ± 0:09) (Figure 4). In contrast, reproductively aged
females treated with apocynin exhibited significantly
reduced PSR staining (1:43 ± 0:15) (Figure 4(b)).

3.3. Age and Treatment Effect on Inflammation Factors and
Collagen Expression. As previously mentioned, synthesis
and secretion of various growth factors and cytokines are
interlinked with OS in feedforward and feedback cycle
mechanisms that might contribute to fibrosis via enhanced
inflammation. Reproductive ageing was accompanied by a
significant increase in several cytokines [(CCL5 (1:00 ± 0:92
vs. 18:93 ± 5:96), TNF-α (1:00 ± 0:66 vs. 6:82 ± 1:73),
IL-1β (1:00 ± 0:40 vs. 15:55 ± 5:13)], including TGF-β1

(1:00 ± 0:90 vs. 12:85 ± 3:81) that is considered the most
important cytokine modulating fibrosis signalling (Figure 5).
All those molecules also regulate specific miRNA expression
involved in fibrosis. Interestingly, as shown in Figure 6,
miRNA29c-3p, a “master fibromiRNA,” was found to be
downregulated in the ovaries of reproductively aged
females (1:00 ± 0:13 vs. 0:57 ± 0:06), unlike miRNA212-3p
(1:00 ± 0:11 vs. 0:86 ± 0:13) and 21a-3p (1:00 ± 0:25 vs.
0:76 ± 0:14) that were not affected by ageing. Expression of
miRNA 29c-3p was inversely correlated with collagen
expression. Both collagen types Col1a1 (1:00 ± 0:88 vs.
11:48 ± 3:88) and Col5a1 (1:00 ± 0:91 vs. 10:51 ± 3:10) were
significantly increased in aged females. Apocynin treatment
normalized cytokine and collagen expression to levels similar
to those observed in younger females (Figure 5).

3.4. MMP/TIMP Expression.MMPs regulate not only ECM
degradation but also bioavailability and activity of cyto-
kines, chemokines, and growth factors. MMP activity is,
in turn, regulated by its specific TIMPs. During reproduc-
tive ageing expression of MMP9, TIMP1 and TIMP2 were
significantly increased [(1:00 ± 0:95 vs. 16:80 ± 5:63),
(1:00 ± 0:97 vs. 51:62 ± 16:61), and (1:00 ± 0:96 vs. 33:09
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Figure 1: Ovarian structure and follicle number. (a) H&E-stained representative midovarian sections from young and aged mice. Note
yellow-brown palely stained multinucleated cells, located in stroma of reproductively aged mice (white arrowheads). (b) Representative
images of Sudan Black staining and autofluorescence in the ovaries of aged mice. Multinucleated cells stain intensely with Sudan Black
and emit strong autofluorescence, indicating age-related deposition of oxidized proteins and lipids. Average quantification of
autofluorescence area (n = 4‐5 per group). (c) Follicle distribution at midovarian sections of young and reproductively aged mice (n = 4
per group), showing a significant decrease in primary and primordial follicle number of older animals. Y: young; AG: aged; AA: aged
apocynin; PM: primordial follicles; P: primary follicles; S: secondary follicles; SA: secondary antral follicles; CL: corpus luteum. Bars = 100
μm. Data are presented as mean ± SEM. ∗P < 0:05, compared with young female mice.
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± 10:88), respectively] (Figure 6). Once more, apocynin
dietary supplementation reversed age-related observed
changes (Figure 6).

4. Discussion

The present study revealed that, during reproductive ageing,
the ovary undergoes morphological and molecular changes
related with a disturbance of the redox homeostasis, shown
by increased lipofuscin content, protein carbonylation and

nitration, and collagen deposition. Along with those changes,
there was an age-related increase of inflammation and fibro-
sis, evidenced by higher relative expression of inflammation
markers, MMPs, TIMPs, and a specific miRNA. Antioxidant
supplementation with apocynin was capable of ameliorating
features of the ovarian ageing process.

Over time, cells and tissues display structural changes
that reflect age-related modifications in biomolecules and
signalling pathways, eventually leading to tissue dysfunction
[27]. Beyond time-related structural changes, the ovary is
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Figure 2: Protein nitration in the mouse ovaries evidenced by fluorescence immunohistochemistry, using a specific antibody. (a)
Representative images of young, reproductively aged and apocynin-treated aged mice. Note tyrosine nitration staining and lipofuscin
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Figure 3: Protein carbonylation in the mouse ovaries evidenced by fluorescence immunohistochemistry, using a specific antibody for DNP.
(a) Representative images of young, reproductively aged and apocynin-treated aged mice. Note the substantial carbonyl labeling increase in
ovarian stroma cells (white arrows) and antioxidant-mediated amelioration (arrowheads). (b) Average quantification of stained area
(n = 4‐5 per group). Y: young; AG: aged; AA: aged apocynin. Data are presented as mean ± SEM. ∗P < 0:05, compared with young female
mice; #P < 0:05, compared with reproductively aged female mice.
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distinctly affected by additional cyclic ones, tightly controlled
by hormonal variations. The mild, albeit continued, inflam-
matory nature of such alterations subjects the ovary to recur-
rent OS, inflammatory cell invasion, and fibrosis, especially
intensified during ageing, when a decrease in antioxidant
defences deepens the cellular redox imbalance [6–8, 28, 29].
The regulatory mechanisms contributing to age-related
ovarian changes are still poorly known. Previously, we dem-
onstrated that dietary supplementation with apocynin
enhanced pregnancy outcomes at a latter reproductive age
by improving the observed age-related decrease in mouse
litter size and restoring decidua layer thickness [24]. In this

work, apocynin was used to study its antioxidant properties
in mitigating ovarian ageing effects.

Two features that distinguished young and reproduc-
tively aged ovaries were a unique population of multinucle-
ated giant cells containing lipofuscin deposits and the
number of follicles. In aged mice, a significant reduction in
the number of primordial and primary follicles was observed,
which agrees with the well-known time-related decline of the
follicle resting pool [2, 30]. At this age, as expected, dietary
supplementation with apocynin did not prevent the decline,
because natural oocyte attrition had occurred. However,
female fertility is not only dependent on the follicle pool
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female mice; #P < 0:05, compared with reproductively aged female mice.
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Figure 5: Expression of inflammation/fibrotic factors and extracellular matrix proteins. Relative mRNA and miRNA expression was
calculated using the 2ΔCT (ΔCT = CTreference RNA − CTtarget), and values were expressed as fold change over young group (n = 4‐7 per
group). Reproductive ageing is associated with an inflammatory and profibrotic ovarian microenvironment, increased levels of cytokines
and collagens, and decreased level of the antifibrotic mi29c-3p RNA. Apocynin treatment reverts the expression of inflammation and
fibrosis factors. Y: young; AG: aged; AA: aged apocynin. Data are presented as mean ± SEM. ∗P < 0:05, compared with young female mice;
#P < 0:05, compared with reproductively aged female mice.
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but also on follicle and oocyte quality [31, 32], itself
influenced by the ovarian oxidative microenvironment [13].
The ovarian stromal giant multinucleated cells present in
reproductively aged mice were previously shown to be posi-
tive for a cell surface membrane protein—F4/80—highly
expressed in macrophages [13, 20, 22]. Such observation sup-
ports the perception that they result from macrophage
fusion. In the ovaries, macrophages are important contribu-
tors to the regulation of folliculogenesis and corpora lutea
establishment and regression [33]. The unique presence of
giant multinucleated cells in aged ovaries indicates that they
associate closely to long-term effects on the tissue. Macro-
phage fusion is a hallmark of a low-grade chronic inflam-
matory condition, a recurrent oxidative challenge that
potentiates phagocytic function for the disposal of cell
debris [34, 35]. Such phagocytic cells are a source of factors
that promote OS. Besides lipofuscin, itself a deposit of oxi-
dized protein and lipid, our results suggest they also accu-
mulate nitrated proteins. Probably, due to lipofuscin
undegradable nature and inability to be removed from cells,
apocynin treatment did not reduce its deposition, unlike
protein carbonylation and nitration content.

The low-grade chronic inflammatory condition favours
overproliferation of fibroblasts, excessive ECM deposition,
and fibrosis [36]. In accordance with a previous study using
two different strains of mice [13], the current study displays
a significant age-related increase of fibrosis around follicles,
blood vessels, and in the ovarian stroma. The observation
that treatment with apocynin results in less ovarian fibrosis
highlights the role of oxidative imbalance in its formation
and suggests that NOX activity mediates local ROS produc-
tion and susceptibility to fibrosis. NOX-derived ROS has, in
fact, been associated with fibrosis in other organs such as
the kidney [37], pancreas [38], and liver [39–41]. Moreover,
as the inhibition prevents the enzyme cytoplasmic subunits

from binding transmembrane complexes necessary for
NOX1 and NOX2 activation (but not NOX4), it supports
the view that the beneficial effects observed in the current
study were mediated by inhibition of those two isoforms.
Future works with specific NOX4 inhibitors will be useful
to investigate its role in ovarian fibrosis.

Inflammation has an important role in fibrosis estab-
lishment by promoting a set of interactions between profi-
brotic and antifibrotic cytokines [42]. In the present study,
increased expression of genes involved in immune cell
response and recruitment was noticed. In this setting, mac-
rophages are the main innate immune cells that release cyto-
kines and chemokines to the local environment, of which,
most impressively, NOX-mediated ROS production is an
important modulator [43–45]. We observed a significant
age-related increase in CCL5, an important chemokine in
macrophage recruitment; IL-1β and TNF-α, proinflamma-
tory cytokines involved in regulating endothelial cells in
ECM production; and TGF-β1, a multifunctional cytokine
highly responsible for ECM homeostasis through several
pathways. Equally to fibrosis, apocynin reduced their expres-
sion to young mouse levels demonstrating, once more, that
ROS play a master role in fibrosis and inflammation associ-
ated with reproductive ageing.

TGF-β1 involvement in ECM homeostasis includes
the modulation of miRNAs that affect collagen deposition
[46, 47]. Different types of miRNA with regulatory effects
were recognized in mouse ovaries [48, 49]. In our study, the
profibrotic miRNAs 21a-3p and 212-3p showed no differ-
ences with age. However, antifibrotic mi29c-3p, considered
a “master fibrosis” regulator in several organs [47, 50–52],
exhibited a significant reduction in the ovaries of reproduc-
tively aged females, which correlated with the significant
increase in gene expression of Col1a1 and Col5a1. Surpris-
ingly, apocynin attenuated, but not reverted, mi29c-3p
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decrease. Further studies are needed for a better comprehen-
sion of the mechanisms involved.

In addition, age-associated changes in MMPs and TIMPs
can further contribute to fibrosis, as they modulate the acti-
vation of macrophages and fibroblast originated proinflam-
matory cytokines, as TNF-α and TGF-β1 [35]. Their roles
in ECM remodelling as well as fibrosis establishment and
progression are tissue specific. In reproductively aged ova-
ries, MMP9, TIMP1, and TIMP2 had a significant increase
in gene expression. MMP9 is a gelatinase responsible for col-
lagen degradation, including type I and V [53], that has been
suggested to be directly regulated by TGF-β1 [54] and to take
part in its activation [55] by cleaving its latent form [56].
TIMP1 and TIMP2 have profibrotic roles by inhibiting
MMP activity and contributing to ECM accumulation [16].
However, the efficiency of MMP inhibition differs with each
TIMP. This could explain the observed significant increase
of MMP9, despite the observed aged-related significant
increase in TIMP, further emphasizing the important role
and relationship with TGF-β1. Our findings suggest that
during reproductive ageing, the continued ROS-mediated
inflammation disrupts ECM homeostatic processes inevita-
bly ending in tissue fibrosis.

Overall, supplementation with apocynin ameliorated
molecular and histological consequences of the ovarian
ageing process. By diminishing ROS production, apocynin
decreased tissue fibrosis, inflammation, and ECM deposition.
This comes as a novel finding for the use of this antioxidant
as, to our knowledge, no other work evaluated the capability
of this compound in slowing down age-related ovarian
reproductive ageing.

In summary, the present study provides evidence that
structural features of ovarian ageing are consequence of local
continued OS effects, with important negative impact on the
ovarian stroma. Disruption of microenvironment, caused by
a feedforward loop in which OS, inflammation, and ECM
turnover dysregulation are important players, is believed
to affect ovarian function and, ultimately, female fertility.
Moreover, specific antioxidant supplementation can be seen
as an important therapeutic way to ameliorate causes and
effects of the ageing process induced by higher ROS pro-
duction. Further investigation in this field, addressing apoc-
ynin effects on oocyte quality, may have major potential
value to uncover fundamental biological mechanisms and
devise therapeutic strategies.
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