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Agricultural sustainability encompasses environmental, social, and economic aspects, all
of which are continually shifting due changing environmental pressures and societal
expectations. A range of strategies are required to address these challenges, and
these include the use of innovation and adoption of the best available practices and
technologies. Advances in biotechnologies, including genome editing, and their
application in plant breeding and research are expected to provide a range of benefits
that contribute to all aspects of agricultural sustainability. However, adoption of these
technologies needs to be supported by proportionate, coherent, forward-looking, and
adaptable policies and regulatory approaches. In this Perspective, we reflect on the
regulatory challenges associated with commercialising a transgenic crop, and
developments thus far in providing regulatory clarity for genome edited crops. We aim
to demonstrate that much remains to be done to shift towards a more proportionate and
enabling approach before the potential benefits of genome edited crops can be realised.
The implications of precautionary and disproportionate regulation are also discussed.
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INTRODUCTION

In 1987, the World Commission on Environment and Development report “Our Common Future”
(also known as the Brundtland Report) introduced the concept of sustainable development as
“development that ensures that the needs of the present are met without compromising the ability of
future generations to meet their own needs”. This concept recognised the interconnected
environmental, social, and economic aspects of sustainable development, and also the role of
technology in progressing these (United Nations, 1987). If the basic elements of the Brundtland
concept are applied to agriculture, sustainable agriculture could be defined as meeting society’s food,
feed and fibre needs in the present without compromising the ability of future generations to meet
their own needs. It follows that this would consist of production practices that do not compromise
environmental integrity and the goods and services provided, as well as socio-economic outcomes,
such as profitability along the supply chain, and improved quality of life for society more broadly
(Tilman et al., 2002; Pretty, 2007; Allen et al., 2009).

Enhancing agricultural sustainability requires an understanding of the diversity and complexities
of agricultural and food systems, and effective and continually adaptable strategies to manage these
(Sustainable agriculture, 2018). In the next 20 years, it is expected that agriculture will undergo
significant diversification in production systems to meet increasing demand driven by population
growth, challenging environmental conditions and climate change, and increasing societal
expectations for sustainability. Another important aspect shaping this future is technological
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innovation, based on advances in genetics, data analysis and
automation. Such a diverse agricultural system requires
supportive policies that are flexible and rapidly adaptable to
change (Bock et al., 2020).

In our view, strategies that support agricultural sustainability
include adoption of the best available practices and technologies
to support diverse and co-existing production systems, while at
the same time reducing, or even enhancing, the environmental
footprint (Pretty, 2007; Pretty et al., 2018). Since the 1990s,
biotechnological tools have been recognised for their potential
to advance plant breeding and crop production levels (e.g.,
Ruttan, 1999; Ronald, 2011; Federoff and Kershen, 2014;
Gartland and Gartland, 2018). It has since been established
that the adoption of transgenic (or genetically modified, GM)
crops has contributed to improving the sustainability of
agricultural practices. For example, increases in crop yields per
unit of land, decreased greenhouse gas emissions, decreased
reliance on farming inputs, increased insect biodiversity on
farms, and increased income for producers have been
measured since commercial production began (e.g., Pray et al.,
2002; Barrows et al., 2014; Klümper and Qaim, 2014; Brookes and
Barfoot, 2015; National Academies of Sciences, Engineering, and
Medicine, 2016; Brookes and Barfoot, 2020a; Brookes and
Barfoot, 2020b; Kovac et al., 2021; Tokel et al., 2021). Despite
the demonstrated benefits, acceptance of transgenic crops
remains a social and political flashpoint in many jurisdictions.
As a consequence, regulatory approaches vary, and this has
contributed to limiting the realisation of the range of potential
benefits.

With the uptake of genome editing tools and their application
in plant research and breeding (Puchta et al., 2022), there is
renewed optimism around opportunities for crop improvement
driven by expectations for improved societal acceptance, a more
favourable regulatory environment, and reduced cost and time of
development. All of these will increase accessibility and adoption
of innovative breeding tools in all types of crops (Abdallah et al.,
2021; Lassoued et al., 2021). The scientific literature strongly
emphasises the features of ease and speed for trait and crop
improvement using genome editing, with estimates for halving
the development process, e.g., from 8 to 10 years with
conventional tools, 8–12 years if transgenic tools are also used,
and 4–6 years with the use of genome editing (Chen et al., 2019).
Genome editing tools are expected to be widely implemented in
plant breeding and to complement existing breeding processes
(Jorasch, 2020; Gao, 2021).

Globally, the regulatory landscape for genome edited crops is
evolving. Discussions on if/how to appropriately regulate
technologies and/or the resulting products are ongoing since
early this century. Genome editing presents a regulatory
challenge because the types of genetic changes that can be
achieved range from sequence insertions that are comparable
to transgenics, to mutations indistinguishable from those possible
using conventional breeding tools (Jenkins et al., 2021). Reviews
of regulatory developments (e.g., Atanassova and Keiper, 2018;
Schmidt et al., 2020; Jenkins et al., 2021) show that a growing
number of regulatory agencies have provided regulatory clarity
for certain uses, categories of technologies and/or types of genetic

modifications. Regulators have used either technical adaptations
to existing transgenic regulatory frameworks, or enacted new
administrative processes, laws, or regulations. We see such
changes as the first steps towards more flexible and adaptive
regulations, however, much remains to be done to achieve
solutions that enable timely uptake of safe new products that
have the potential to contribute to agricultural sustainability.

In this article we examine the current complexities of the path
to market for a genome edited crop, which to this day remains
unclear and uncertain for globally traded commodities. In doing
so we aim to demonstrate the important role of a proportionate,
coherent, forward-looking, and adaptable regulatory
environment in enabling the adoption of innovations in plant
breeding and realisation of their potential benefits for agricultural
sustainability.

REGULATORY PATHWAY FOR
COMMERCIALISINGATRANSGENICCROP

The regulatory approaches used throughout the world for
transgenic crops all involve some form of premarket
assessment that addresses safety and/or novelty of the product.
The approach taken depends on the jurisdiction and the intended
use of the product. For example, an environmental risk
assessment and regulatory approval are needed to allow
planting in a field [small (trial) to large (commercial) scale].
The products of that crop may then be used domestically in the
food (human) or feed (animal) supply or in processing (e.g., for
food ingredients such as flour), and these uses typically require
food/feed safety assessment. The products of that crop may also
be exported, and this necessitates the applicable food/feed safety
assessments and regulatory approvals in trading partners. To
illustrate this global movement, Figure 1 shows the top five
transgenic crop producers in the world and their major (not all)
trading partners.

The global movement of agricultural biotech commodities
relies on regulatory processes in multiple jurisdictions, and these
will impact if and when commercial launch of a transgenic crop
can occur and under what (if any) conditions. Where the
regulatory processes are incomplete or where they do not
function well in a jurisdiction, international trade can be
disrupted. To mitigate such risks, the major biotech developers
have established industry guidelines for commercial launch of
transgenic commodity corn (maize), soybean and canola crops,1

and best practices in product launch stewardship.2 These require
the developer to undertake a market and trade assessment to
determine key trading partners and the requisite regulatory
approvals for commercial launch.

Addressing the applicable regulatory processes for a globally
traded agricultural commodity is a significant investment for
technology developers. This involves the generation of regulatory

1CropLife International: https://croplife.org/plant-biotechnology/stewardship-2/
product-launch-stewardship/.
2Excellence Through Stewardship: https://www.excellencethroughstewardship.org/.
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studies and navigation of multiple agencies, with many
jurisdictions having multiple agencies that manage different
aspects of the regulatory assessment, with each agency having
its own processes and requirements (Prado et al., 2014; Jenkins
et al., 2021). According to data from a survey of CropLife
International member companies, the research, development,
and commercialisation process for a transgenic crop
commercialised in the period 2008–2012 cost USD$136
million with a timeline averaging 13 years. The regulatory
component of this amounted to USD$35.1 million (25.8% of
the total) and 5.5 years (36.7% of the total) (Phillips McDougall,
2011).

The costs, timelines, and sheer manpower necessary to
navigate and obtain a “global registration” of a transgenic
crop are major reasons why small-medium enterprises
(SMEs) and the public sector have limited their use of
transgenic technologies in plant breeding (Strauss and Sax,
2016; Gleim et al., 2020). These are also reasons why the
variety of transgenic crops and traits that have been
developed, as evident in the scientific literature, greatly
exceeds that which have been successfully commercialised
(National Academies of Sciences, Engineering, and Medicine,
2016). Transgenic crops in commerce are dominated by three
commodity crops (cotton, soybean, maize) and two traits (insect
resistance and herbicide tolerance) (National Academies of
Sciences, Engineering, and Medicine, 2016; Whelan et al.,
2020), as the market opportunity for a developer must be
sufficiently large to justify the required investment (Prado
et al., 2014). The optimism surrounding the potential of
genome editing in plant breeding is juxtaposed against this
reality, with realisation of its potential—including a diversity of

developers, traits, and crops—requiring relatively risk
proportionate regulatory approaches based in science and
informed by three decades of experience with transgenic crops.

REGULATORY PATHWAY FOR CROPS
DEVELOPED USING GENOME EDITING

Genome editing can be used to achieve a range of genetic changes
in plants, from mutations that are indistinguishable from those
arising spontaneously or induced using conventional breeding, to
insertions of “foreign”3 genetic sequences (Jenkins et al., 2021).
The regulatory scenario for commercialising a transgenic crop is
also expected to apply to genome edited crops that contain
“foreign” genetic sequences. It will also apply more broadly to
other applications of genome editing irrespective of the type of
genetic change in jurisdictions where regulation of agricultural
biotechnology is highly politicised. For example, in New Zealand,
revisions to the existing process-based scheme intentionally
captured all uses of genome editing in plants within scope
(Kershen, 2015), and in the European Union (EU), the scope
of definitions in the existing regulatory scheme have been
interpreted in this broad way (Hundleby and Harwood, 2018).
In both of these jurisdictions, these outcomes are connected to
court decisions on questions of scope (Schmidt et al., 2020) and
represent the most precautionary regulatory approach.

FIGURE 1 |Worldmap showing the top five producers of transgenic crops and their major trading partners, compiled by CropLife International based on 2018 data
(source: https://croplife.org/news/global-agriculture-a-trade-map/). More information for each of the top five countries is available at the CropLife International website.
Approval was obtained from CropLife International to use the image in Figure 1.

3The authors are aligned with the view that “foreign” refers to sequences
originating from a non cross-compatible species.
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Regulating indistinctly all types of genome edited crops not
only restricts market access, but also presents a major obstacle to
investment in their development. In a survey of plant breeding
companies in the EU, this was shown to be the case irrespective of
the size of the enterprise, with larger developers relocating
research and development programs to jurisdictions with more
enabling regulatory environments. This refocus to non-EU
markets may not be feasible for SMEs with markets
predominantly in the EU, who reported discontinuing,
modifying or postponing research and development programs
that involved the use of genome editing tools (Jorasch, 2020).
These issues appear to extend to less politicised jurisdictions
where some regulatory clarity has been provided. In a survey of
the Canadian plant breeding sector, public sector respondents
exhibited less optimism about genome editing (specifically the
tool known as CRISPR-Cas9) than private sector respondents.
Despite most of the survey respondents expecting a more
favourable regulatory environment for genome editing, the
public sector remained concerned about regulatory clarity and
cost and societal acceptance issues (Gleim et al., 2020).

The regulatory status remains unclear for genome edited crops
that are not transgenic, i.e., those that are comparable to
conventionally developed crops. For certain technologies and/
or the resulting genetic changes in plants, regulatory agencies in
Argentina, Australia, Brazil, Canada, Chile, China, Colombia,
Ecuador, Guatemala, Honduras, India,4 Israel, Japan, Nigeria,
Paraguay, Philippines, United States (US), and Uruguay have
determined that they are not within the scope of regulatory
schemes that apply to transgenic crops, or they may not be
within scope depending on a case-by-case assessment of the
genetic change (Hundleby and Harwood, 2018; Entine et al.,
2021; Lassoued et al., 2021; Mallapaty 2022). Regulatory policy is
still evolving in some jurisdictions, e.g., the United Kingdom
recently reduced requirements for conducting research trials with
genome edited crops (Ledford, 2021), with broader exemptions
from transgenic regulation under discussion (UK Parliament,
2022).

One of the listed jurisdictions is Argentina, which is one of the
largest producers of transgenic crops (International Service for
the Acquisition of Agri-biotech Applications, 2019), and it was
one of the first jurisdictions to implement a regulatory framework
in 1996 to enable their commercial production (Lema, 2019;
Vesprini et al., 2022). In 2015, Argentina became the first country
to enact a new regulatory process for determining the status of
plants developed using a “new breeding technique” (NBT;
includes genome editing) (Normative Resolution No. 173/
2015; Lema, 2019). This process involves a case-by-case
assessment of whether or not the final product falls within the
scope of the established regulatory process for transgenic crops.
Four years into its implementation, a notable diversification was
observed in the types of developers submitting NBT applications,
with greater representation by SME and R&D organisations, as
well as in the types of crops and traits developed in comparison to

transgenic applications (Whelan et al., 2020). These early
observations are consistent with expectations that genome
editing will stimulate innovation in crop improvement, and
highlight the enabling role of an adaptive regulatory
environment in supporting local technology adoption.
Subsequently, several countries in Latin America have adopted
similar approaches to Argentina, and this will contribute to
harmonisation in the region (Turnbull et al., 2021).

Australia is another jurisdiction often listed in the literature as
excluding genome editing from transgenic regulation, however
this is the case for one technology category, and for one agency,
the Office of the Gene Technology Regulator (OGTR). The
OGTR regulates environmental releases of transgenic crops,
with a long-established regulatory framework and many
approvals issued for limited (field trial) and commercial scale
releases since 2001.5 In 2019, the OGTR expressly excluded site
directed nuclease (SDN) applications that do not involve
homology directed repair (also known as SDN-1) from
regulatory scope, but expressly included site directed nuclease
applications that do involve homology directed repair (SDN-2
and SDN-3), as well as oligonucleotide-directed mutagenesis
(Gene Technology Amendment (2019 Measures No.1)
Regulations 2019; Thygesen, 2019). This means that a crop
developed with the use of “SDN-1” can be planted in Australia
without assessment or approval by the OGTR. However, before
the products of that crop can enter the Australian food supply,
developers require resolution of their regulatory status in the food
law administered by Food Standards Australia New Zealand
(FSANZ) (Kelly, 2019). This in effect limits any potential crop
developed with the use of SDN-1 to non-food uses, and it would
require management via a closed loop system to prevent it from
entering the food supply. Local technology developers and
researchers have indicated that this is a consideration
impacting technology adoption (Zhang et al., 2021).

To date there are limited examples of commercialised field
crops where genome editing was used in their development. One
such example is a high oleic soybean that produces a premium
cooking oil with less saturated fatty acids compared to
commodity soybean oil (Calyxt, 2019). The product is only
sold on the US market where it is not regulated as a
transgenic crop. It is grown in an identity preserved closed
loop system that involves tracking of the entire process from
seed to final product.6 This enables the technology developer to
manage quality of the product, as well as control movement of it
and thereby prevent it from entering other markets where the
regulatory status is less favourable or unresolved.

DISCUSSION

This Perspective reflects on the regulatory challenges associated
with commercialising a transgenic crop to demonstrate that a

4For India: ttp://db.zs-intern.de/uploads/1649254604-office%20memorandum%
20indien%20genome%20editing.pdf.

5https://www.ogtr.gov.au/what-weve-approved/dealings-involving-intentional-
release.
6https://calyxt.com/wp-content/uploads/2020/02/Calyxt_GrowerProgram.pdf.
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shift towards more proportionate policies is necessary to enable
the adoption of innovations in plant breeding globally.

To date, restrictive regulatory approaches are evident in
jurisdictions where transgenic crops have historically been
politicised, with few (or no) approvals granted for commercial
planting of transgenic crops. Such jurisdictions have maintained
their precautionary process-based approaches that broadly
capture products developed with the use of biotechnological
tools irrespective of their characteristics and scientific evidence
regarding safety. Conversely, relatively proportionate product-
focussed approaches have been adopted in certain jurisdictions
that have long-term experience in regulating environmental uses
of transgenic crops, and who have recognised the potential
environmental, social, and economic benefits of technology
adoption. An intermediate approach is the selective exclusion
or inclusion of certain technological approaches, and while the
limited exclusions may be evidence-based, what remains included
is on the basis of process and precaution. Of these approaches, the
product-based approach has the greatest potential for adapting to
continued technological development.

Precautionary process-based approaches to the regulation of
transgenic crops have likely contributed to entrenching public
distrust of biotechnology (i.e., the process) and a disproportionate
perception of risk, rather than allaying concerns. Where such
policies are extended to genome editing, a similar outcome can be
expected (Herman et al., 2019). The adoption of genome editing
in plant breeding provides an opportunity for revising policies in
a way that remain consistent with regulatory goals, while also

stimulating innovation and enabling broader realisation of
potential benefits. We have seen the first steps towards more
adaptive policies facilitated by a shift away from process-oriented
approaches to a greater focus on the product. This shift has been
informed by almost three decades of experience with the
assessment and use of transgenic crops and observation of
their benefits. However, we remain far from an evidence-based
model that links innovation to sustainability in agriculture.
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