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Introduction

The Janus kinase (JAK)-signal transducers and activators of 
transcription (STAT) intracellular signaling pathway is activated 
in response to a large number of cytokines, growth factors and 
hormones, and is involved in numerous functions within the 
body. This signaling pathway is stimulated by the interaction 
of ligands with their receptors, causing receptor activation and 
transphosphorylation of receptor-associated JAK molecules. This 
leads to the phosphorylation of tyrosine residues on the receptors 
and phosphorylation of downstream signaling molecules called 
STATs. STAT molecules are cytoplasmic proteins and currently 
seven different mammalian STAT genes have been identified, 
STAT1–4, 5A, 5B and 6. Once phosphorylated, STAT molecules 
form dimers and translocate to the nucleus where they modify 
gene transcription.

One of the many functions that the JAK-STAT pathway is 
involved in is energy homeostasis. This role for the JAK-STAT 
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The regulation of energy balance requires a complex system to 
homeostatically maintain the adult body at a precise set point. 
The central nervous system, particularly the hypothalamus, 
plays a key role in integrating a variety of signals that can relay 
information about the body’s energy stores. As part of this 
system, numerous cytokines and hormones contribute to the 
regulation of food intake and energy homeostasis. Cytokines, 
and some hormones, are known to act through JAK-STAT 
intracellular signaling pathways. The hormone leptin, which 
plays a vital role in appetite regulation, signals through the JAK-
STAT pathway, and it is through this involvement that the JAK-
STAT pathway has become an established component in the 
mechanisms regulating food intake within the body. Emerging 
research, however, is now showing that this involvement of 
JAK-STAT is not limited to its activation by leptin. Furthermore, 
while the JAK-STAT pathway may simply act to transmit 
the anorectic signal of circulating factors, this intracellular 
signaling pathway may also become impaired when normal 
regulation of energy balance is disrupted. Thus, altered JAK-
STAT signaling may contribute to the breakdown of the normal 
homeostatic mechanisms maintaining body weight in obesity.
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signaling pathway was discovered due to the classification of 
the receptor for the adipose derived hormone leptin as a mem-
ber of the class I cytokine receptor superfamily.1 Following this 
association, the ability of leptin to activate JAK-STAT signaling 
was investigated and in vitro studies indicated that leptin could 
stimulate the phosphorylation of STAT1, STAT3, STAT5 and 
STAT6.2,3 In vivo studies within the hypothalamus, an impor-
tant target area for the regulation of energy balance, show that 
STAT3, and possibly STAT5, are the key STAT molecules 
involved in leptin-mediated satiety.4-7 For the purposes of this 
review, the discussion of the role of JAK-STAT signaling will 
mostly be focused on leptin-mediated regulation of energy bal-
ance. However, as the role of the JAK-STAT signaling pathway in 
the appetite suppressing effects of other hormones and cytokines 
is also emerging, this will also be included where possible. This 
review will begin with a brief overview of the key components in 
the regulation of energy balance then will focus on the specific 
involvement of the various STAT molecules.

The Regulation of Food Intake

Over a lifespan, an animal’s energy intake and expenditure 
remains relatively balanced and this equality is primarily due to 
the regulation of food intake. Through the use of parabiosis and 
lesion studies, it was proposed as early as the 1950s that body 
weight is maintained at a reasonably constant level by a signaling 
mechanism between the body’s fat stores and the brain.8 This 
feedback loop was hypothesized to involve a peripherally pro-
duced factor that would relay information regarding fat stores 
to the hypothalamus, leading to adjustments in food intake to 
maintain body fat levels around a set point. The involvement of 
the hypothalamus in this process has long been known due to 
the changes in food intake and body weight following hypotha-
lamic lesions.9-11 The control of appetite regulation in the hypo-
thalamus involves a complex neuronal network including both 
orexigenic and anorectic neuropeptides. These neuropeptides are 
constantly being modulated through stimulation or inhibition by 
many stimuli to maintain appetite at appropriate levels for the 
current energy expenditure of the body and the hormone leptin is 
one of these key stimuli.

Leptin is an adipose-derived hormone that is secreted in pro-
portion to size and number of adipocytes present in the body, 
and acts in the brain to decrease food intake and also increase 
metabolic rate. This creates a negative feedback loop in which 
body fat levels are maintained around a set point by regulating 
food intake and energy expenditure. Leptin is not the only factor 
involved in regulating energy balance but it is vital for normal 
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To investigate the role of STAT3 specifically in leptin signal-
ing two transgenic mouse lines have been generated. Bates et al. 
(2003) developed the s/s mouse, in which the leptin receptor does 
not contain the Y1138 phosphorylation site that is required for 
leptin-induced STAT3 phosphorylation.26 Due to the disrupted 
leptin receptor-STAT3 signaling, this mouse is hyperphagic and 
obese.4 Another mouse generated to investigate leptin-STAT3 
signaling has a specific deletion of STAT3 in leptin receptor con-
taining neurons, and this mouse is also obese and hyperphagic.27 
In both this transgenic mouse and the s/s mouse, other func-
tions of leptin such as linear growth and reproduction are not 
greatly affected, indicating that the key role of STAT3 in the 
function of leptin is the regulation of food intake and not these 
other functions of leptin.4,27 Furthermore, mice with a deletion 
of STAT3 from either neuropeptide Y(NPY)/agouti-related pro-
tein (Agrp) or pro-opiomelanocortin (POMC) neurons, two of 
the most well studied hypothalamic neuron populations involved 
in appetite regulation, are only slightly hyperphagic and mildly 
obese.28,29 Given the hyperphagia and obesity observed in mice 
with STAT3 deleted from leptin receptor containing neurons, 
the mild phenotype of STAT3 deletion from POMC or AgRP 
neurons suggests that the satiety response to leptin involves coor-
dinated STAT3 signaling in a number of leptin-responsive neu-
ronal populations.30

Transgenic mouse models have provided a large amount of 
evidence indicating STAT3 is vital to the regulation of energy 
balance, particularly in the functioning of leptin. To approach 
this question in a different way, a cell-permeable phosphopeptide 
has been used to block leptin-mediated STAT3 activity in vivo 
and the acute satiety effects of leptin were shown to require func-
tional STAT3 signaling,31 confirming the conclusions reached 
using transgenic mouse models.

STAT3 is activated by numerous cytokines and many cyto-
kines can influence food intake. Hence STAT3 signaling may 
be involved in the suppression of food intake during an immune 
response.32 The mechanisms by which various cytokines influ-
ence food intake and the involvement of the JAK-STAT signaling 
pathway in this function are not well characterized. Two exam-
ples of cytokines that activate hypothalamic STAT3 are tumor 
necrosis factor α (TNF-α)33 and ciliary neurotrophic factor 
(CNTF),34 both of which can suppress food intake.32,35,36 TNF-α 
can act synergistically with leptin to increase hypothalamic levels 
of STAT3 phosphorylation and has been suggested as a possible 
modulator of the anorectic effects of leptin.33 The satiety effects 
of CNTF appear to be mediated through mechanisms that do not 
involve interactions with first-order leptin responsive neurons, as 
transgenic mice with a conditional deletion of a subunit of the 
CNTF-receptor in leptin receptor containing neurons, there is no 
change in the anorectic response to CNTF-receptor activation.37 
Interestingly, in these mice with deletions of CNTF receptor in 
leptin-receptor containing neurons, pSTAT3 was greatly reduced 
despite a normal satiety to a CNTF agonist,37 indicating that the 
effect of CNTF on food intake may not require STAT3 activa-
tion. Further work is required to determine what role STAT3, or 
any of the other STAT molecules may play in the regulation of 
food intake by inflammatory cytokines.

energy homeostasis, as demonstrated by the extreme obesity and 
hyperphagia of the ob/ob mouse, which lacks functional leptin.12

A number of leptin receptor (LEPR) isoforms exist due to alter-
native splicing of the LERP gene and LEPRb is the only isoform 
with full signal transduction capabilities due to the large intracel-
lular domain.13,14 Leptin receptors have been detected in a wide 
range of tissues in the body, including liver, heart, kidneys, lungs, 
small intestine, testes, ovaries, spleen, pancreas, brain and adi-
pose tissue.14,15 While other isoforms are the most predominant in 
peripheral tissues, LEPRb is most highly expressed in the central 
nervous system (CNS), specifically the hypothalamus.14-17 The 
db/db mouse has a mutation that results in abnormally spliced 
LEPRb mRNA leading to an absence of this receptor isoform.3,13,14 
The db/db mouse is obese and hyperphagic, similar to the ob/
ob mouse indicating that LEPRb is the key isoform involved in 
energy balance.12-14 The conditional deletion of leptin receptors 
from the central nervous system (CNS) results in an obese pheno-
type with the same metabolic abnormalities of the ob/ob or db/db 
mouse, indicating the key site of leptin action in regulating energy 
balance is the CNS.18 Also, db/db mice that have a transgenic res-
cue of the leptin receptor specifically in the brain are not obese, 
further demonstrating the central role of leptin in regulating 
energy balance.19 As well as the hypothalamus, leptin acts in other 
brain areas, such as the brainstem20 and the ventral tegmental area 
(VTA)21,22 to regulate food intake and metabolic rate.

STAT3 and the Regulation of Food Intake

The involvement of STAT3 in the regulation of energy balance 
was identified due to the activation of this signaling molecule 
by leptin. Within the hypothalamus, leptin leads to the phos-
phorylation of STAT3 in areas involved in appetite regulation 
(Fig. 1).6,7,20,23 Leptin-induced phosphorylation of STAT3 is 
observed in other areas of the central nervous system that also 
contribute to the regulation of food intake, such as the VTA21,22 
and the brainstem.20

The contribution of STAT3 in regulating food intake is 
clearly demonstrated in a number of transgenic mouse lines. 
STAT3 is widely expressed in the body, and STAT3 knockout 
mice are embryonic lethal thus preventing any physiological 
studies in these animals.24 Therefore, tissue-specific conditional 
gene targeting approaches have been used to investigate the role 
of STAT3 in energy balance. Mice with a specific deletion of 
STAT3 from the CNS are obese and hyperphagic, demonstrat-
ing the necessity of neuronal STAT3 signaling in maintaining 
normal energy homeostasis.25 Despite the hyperleptinemia in 
these transgenic mice, other leptin-induced signaling pathways 
do not compensate for the lack of leptin-induced STAT3 signal-
ing,25 further emphasizing the vital role of STAT3 in regulating 
food intake. Since this mouse is a conditional deletion of STAT3, 
it is possible the lack of STAT3 signaling induced by other cyto-
kines or hormones contribute to the phenotype. The similarities 
in phenotype of this mouse and ob/ob or db/db mice, however, 
suggest that many, if not all, of the effects on food intake and 
body weight can be attributed to a lack of leptin-induced STAT3 
signaling.25
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effects of POMC neurons are mediated through the cleavage 
product α-melanocyte stimulating hormone. This melanocortin 
system is a vital downstream pathway that mediated the anorectic 
responses to leptin.50 In vitro, STAT3 is able to stimulate POMC 
transcription20,51-53 and leptin stimulation of POMC mRNA is 
dependent on STAT3 availability.20 The region of the proximal 
POMC gene promoter that is required for STAT3-depend acti-
vation by leptin does not bind STAT, suggesting that STAT3 
may act indirectly via interaction with other transcription fac-
tors to regulate the POMC gene.20 In vitro studies have showed 
that STAT3 regulation of POMC requires an SP1-binding site in 
the POMC promoter and that leptin treatment can lead to the 
interaction and binding of SP1 and phosho-STAT3.53 Yang et al. 
(2009) have proposed that STAT3 stimulates POMC expression 
by a mechanism involving STAT3 interaction with a SP1-POMC 
promoter complex instead of a direct STAT3-POMC promoter 
interaction.53

In vivo STAT3 phosphorylation and accumulation in the 
nucleus is seen in POMC neurons after leptin treatment.20,23 
In the obese s/s mouse, in which leptin-STAT3 signaling is dis-
rupted, hypothalamic POMC mRNA expression is reduced, 
demonstrating that STAT3 activation by leptin is required for 
leptin regulation of POMC.4 Using β-endorphin as a marker of 
POMC positive cells, POMC levels were greatly reduced in mice 
with a deletion of STAT3 in the CNS supporting the involve-
ment of STAT3 in regulating POMC levels.25 In conclusion, the 
POMC gene is one of the target transcripts of STAT3 activation 
in the hypothalamus, and this stimulation of POMC mRNA is 
likely to be one of the key functions of STAT3 in the regulation 
of energy balance.

A second neuronal population, the NPY/Agrp neurons located 
in the arcuate nucleus, plays a vital role in the regulation of energy 
balance. Both NPY and Agrp are orexigenic and are negatively 
regulated by leptin.54-58 Given the important role of these first-
order leptin target neurons in regulating energy homeostasis the 
question of whether STAT3 mediates their regulation by leptin 
arises. In the s/s mouse, NPY levels are no different to controls 
indicating that leptin-STAT3 signaling is unlikely to be involved 
in regulating NPY mRNA.4 Agrp mRNA levels are significantly 
increased in s/s mice compared with controls but significantly 
less than db/db mice, suggesting that leptin-STAT3 may con-
tribute, at least partially, to the regulation of Agrp mRNA by 
leptin.4 Deletion of STAT3 from Agrp neurons, however, does 
not significantly alter Agrp mRNA levels, suggesting that STAT3 
does not contribute greatly in the regulation of Agrp mRNA.28,59 
In mice with a deletion of STAT3 in leptin receptor containing 
neurons, Agrp and NPY mRNA are only increased at an age of 10 
weeks, once obesity is already present while total brain STAT3 
deletion leads to increases in NPY and Agrp also when obesity 
is already apparent.25,27 While, these results may suggest that 
STAT3 is required for leptin mediated suppression in NPY and 
Agrp mRNA it has been suggested that these changes in mRNA 
expression maybe secondary effects of the obesity observed in 
these transgenic animals and not directly due to the specific 
deletions of STAT3.27 In support of the latter conclusion, block-
ing other leptin-induced signaling pathways with antagonists 

Estrogen, the gonadal steroid involved in reproduction, can 
also influence appetite and fat mass. Infusion of estrogen into 
hypothalamic areas involved in appetite regulation suppresses 
food intake.38,39 It has been proposed that estrogen mediates its 
satiety effects by acting through STAT3.25,40 Estrogen adminis-
tration can increase the levels of pSTAT3 in the hypothalamus 
of mice independent of leptin and in mice with a conditional 
deletion of STAT3 from the CNS, chronic estrogen treatment 
does not suppress food intake.40 Estrogen can modulate the sensi-
tivity to leptin41 and it has been speculated that this involves the 
interaction of estrogen and leptin signaling at the level of STAT3 
phosphorylation in the hypothalamus,42 but as yet there is no 
direct evidence for this.

Transcriptional Control of Target Genes by STAT3

The JAK-STAT pathway provides an intracellular pathway that 
can relay an extracellular signal into a transcriptional response. 
The key function of STAT molecules upon phosphorylation is 
to dimerize and translocate to the cell nucleus where they bind 
to specific regulatory sequences to either activate or repress tran-
scription of target genes. The transcriptional targets involved in 
appetite regulation of STAT3 include suppressor of cytokine sig-
naling 3 (SOCS3), POMC and thyrotropin-releasing hormone 
(TRH).

SOCS molecules are one of the known families of immedi-
ate-early genes that are transcriptionally regulated by STATs.43 
SOCS molecules are induced by cytokines and act to decrease 
cytokine signaling via an intracellular negative feedback loop. 
Within the hypothalamus, leptin-induced STAT3 phosphory-
lation and the induction of SOCS3 mRNA expression over-
lap,20,44 giving anatomical support for the regulation of SOCS3 
by leptin-mediated STAT3 signaling. The SOCS3 promoter has 
been shown to contain two STAT binding sites45 and the phos-
phorylation of Y1138 on the leptin receptor is required for the 
leptin-induced SOCS3 mRNA expression, implicating STAT3 
as the mediator of leptin-induced SOCS3 gene transcription.26 
Furthermore, leptin-induced activation of hypothalamic STAT3 
leads to the interaction of STAT3 with the proximal SOCS3 pro-
moter, and this interaction corresponds to the duration of time 
that STAT3 remains phosphorylated after leptin treatment.46 
Increases in SOCS3 expression inhibit further leptin-STAT3 
signaling.47 Therefore, one mechanism by which STAT3 regu-
lates food intake is by switching off its own signaling in first-
order leptin target neurons by stimulating SOCS3 expression. 
Indeed, in mice with a SOCS3 haploinsufficiency48 or neuron-
specific deletion of SOCS349 there is an increase in leptin sen-
sitivity and leptin-induced phosphorylation of STAT3 is more 
persistent than in controls indicating that the normal regula-
tion of SOCS3 by STAT3 is required for maintaining energy 
homeostasis.

STAT3 is likely to regulate expression of anorectic and orexi-
genic peptides, which promote changes in satiety. Within the 
hypothalamus, the POMC neurons are a key population that 
regulates appetite and energy homeostasis. The POMC gene 
encodes the POMC precursor polypeptide and the anorectic 
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brain. However, this study demonstrates a lack of leptin signaling 
through STAT5 in key hypothalamic areas involved in appetite 
regulation and thus it seems unlikely that STAT5 plays a major 
role in mediating leptin signal transduction.

STAT5 has been suggested to mediate the anorectic effects of 
granulocyte macrophage colony-stimulating factor (GM-CSF).64 
While GM-CSF is primarily thought of as a proinflammatory 
cytokine, it can also regulate food intake. Central administra-
tion of GM-CSF, but not peripheral, decreases food intake and 
bodyweight in rats and the receptor for this cytokine is located, 
among other areas in the brain, in the arcuate nucleus of the 
hypothalamus.68 Central GM-CSF administration to rats leads 
to an increase in nuclear translocation of STAT5 in the hypothal-
amus64 and GM-CSF knockout mice have increased body weight 
and body fat.68 Furthermore, while administration of GM-CSF 
to mice decreases food intake, this effect is absent in mice with 
a CNS-specific STAT5 deletion, indicating that STAT5 in the 
CNS is required for the anorectic effects of GM-CSF.64 Given 
the caveat that the comparison is between two different strains 
of mice, Lee et al. (2005) suggested that the greater degree of 
weight gain and increase in adiposity of mice with a CNS specific 
STAT5 deletion compared with the GM-CSF knockout mouse 
indicates that other extracellular signals, along with GM-CSF, 
are likely to be involved in regulating food intake and energy bal-
ance via STAT5 activation.64,68

Other STAT Molecules and Regulation of Food Intake

STAT1 is another molecule that was indicated in cultured cells 
to potentially be activated by leptin but in vivo data would sug-
gest that leptin does not act through this signaling molecule.7,33 
Moreover, STAT1 knockout mice have similar body weights as 
control mice and do not appear to have any obvious feeding or 
body weight dysregulation,69 suggesting that STAT1 does not 
play a role in the regulation of energy balance.

STATs and Alterations in Energy Homeostasis

While energy balance is normally tightly regulated in the body, 
there are situations, both pathological and physiological, when 
this system is altered resulting in increased appetite and body 
weight. Two examples of this are obesity and pregnancy. In both 
these states, disruption in STAT3 signaling has been implicated 
in the mechanisms underlying the change in the sensitivity to the 
hormone leptin.

Obesity is commonly associated with hyperphagia despite 
increased levels of leptin, suggestive of a leptin-resistant state. 
Hence, during obesity there is a failure of key hypothalamic 
neural circuits to respond appropriately to the satiety signal of 
leptin. Since the phosphorylation of STAT3 is a commonly used 
marker of leptin activation of target neurons, in many models of 

prevents the regulation of Agrp and NPY mRNA by leptin despite 
normal leptin-induced STAT3 signaling.60 Thus leading to the 
conclusion that leptin-induce STAT3 is insufficient to cause 
leptin-dependent suppression of NPY and Agrp mRNA.

Thyrotropin-releasing (TRH) hormone is another transcrip-
tional target of leptin-mediated STAT3 activation. During fast-
ing in rodents, metabolic rate is reduced by mechanisms involving 
a decrease in thyroid hormone levels.61 This is achieved by a sup-
pression of TRH in the paraventricular nucleus of the hypothala-
mus (PVN). TRH is a hypothalamic peptide that is essential for 
the normal production of thyroid-stimulating hormone in the 
pituitary and thyroid hormones in the thyroid gland.62 Leptin is 
thought to play both indirect and direct roles in the regulation 
of TRH in the PVN. The TRH promoter has a STAT3 binding 
site63 and leptin treatment leads to the interaction of STAT3 with 
the TRH promoter region along with an increase in TRH mRNA 
expression.46 Thus it is likely that the TRH gene is regulated by 
STAT3 and while it is not directly involved in food intake, the 
role of TRH in modulating metabolic rate demonstrates that 
STAT3 contributes to other functions, alongside appetite, that 
maintain energy homeostasis.

STAT5 and the Regulation of Food Intake

Transgenic mice with a conditional deletion of STAT5 (both 
STAT5A and STAT5B) in the CNS, develop severe obesity and 
are hyperphagic indicating that STAT5 signaling in the brain 
is required for the normal regulation of energy balance in the 
body.64 These obese mice show no alterations in the expression 
levels of POMC, NPY and Agrp mRNA in the hypothalamus and 
this lack of change in mRNA expression could be a secondary 
effect of the obesity or that it could indicate the contribution of 
STAT5 in regulating energy balance within the brain does not 
involve the transcriptional regulation of these known anorectic 
and orexigenic peptides.64 Further work is required to determine 
if STAT5 is involved in the regulation of these neuropeptides.

STAT5 signaling is activated by numerous factors in the body 
and which of these factors induces STAT5 mediated regulation 
of energy homeostasis has yet to be confirmed. In vitro, leptin has 
been shown to activate STAT52,3,5,65 but there is conflicting data 
from in vivo studies. Using immunohistochemistry, increased 
translocation of STAT5 to the nucleus has been observed in 
hypothalamic cells in response to leptin.66 Using western blot 
analysis, increased levels of phospho-STAT5 in the hypothala-
mus following leptin treatment has been shown by some,5 but 
not others.6,7,33 More recently, using immunohistochemistry to 
detect phosho-STAT5 positive cells, leptin treatment had no 
effect on the number of cells positive for phospho-STAT5 within 
the arcuate nucleus, ventromedial nucleus or the paraventricu-
lar nucleus of the hypothalamus.67 It is possible that leptin acts 
through STAT5 in certain conditions, or in other areas of the 

Figure 1 (See previous page). Images show leptin-induced phospho-STAT3 immunohistochemistry in coronal sections of the hypothalamus of 
fasted female mice treated with an intraperitoneal injection of leptin (1 mg/kg BW).67 Hypothalamic regions displaying leptin-induced phospho-STAT3 
include the ventromedial nucleus (VMN), the dorsal medial area of the VMN (VMNdm), arcuate nucleus (Arc), dorsomedial nucleus (DMN), lateral hypo-
thalamus (Lat. Hyp) and ventral premammillary nucleus (PMV).
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hypothalamic leptin-induced phospho-STAT3.87 Therefore it 
is likely that impaired JAK-STAT3 signaling contributes to the 
genetic factors that lead to obesity and leptin resistance, however, 
given the current data available,88,89,91 this contribution is more 
likely to be through mutations in genes for associated signaling 
molecules and not the STAT3 gene or JAK2 gene themselves.

Unlike obesity, during pregnancy increases in food intake and 
body weight are beneficial, as the maternal body needs to sup-
ply the growing conceptus with all its energy demands and pre-
pare for the energetic demands of lactation. The maternal brain 
undergoes adaptations in the systems that regulate energy bal-
ance to deal with these increased energy demands. Pregnancy is 
associated with a state of leptin resistance, so that food intake can 
increase despite increasing levels of body fat and hence hyperlep-
tinemia.23,67 During pregnancy the ability of leptin to activate 
STAT3 is impaired in the ventromedial nucleus of the hypothal-
amus (VMN).23,67,92 LEPRb mRNA is decreased in the VMN 
during pregnancy in the rat hence this reduction may underlie 
the decreased ability of leptin to activate STAT at this time.92 
Furthermore, it has been proposed that the reduced ability of 
leptin to phosphorylate STAT3 is due to the high levels of pro-
lactin and its homolog, placental lactogen, during pregnancy.93,94 
Chronic prolactin treatment in female rats leads to a suppression 
of leptin-induced STAT3 phosphorylation,95 and psuedopreg-
nant rats chronically treated with prolactin and progesterone to 
mimic pregnancy also become leptin-resistant.96 How prolactin 
might interact with leptin-STAT3 signaling remains unknown. 
Although, it is unlikely that there is a direct action of prolactin 
on leptin responsive neurons, either by directly modulating leptin 
receptor expression or inducing SOCS3 expression, as there is 
little evidence for colocalization of prolactin receptors and leptin 
receptors.94

Conclusion

STAT3 and STAT5 play key roles in the regulation of food intake 
and energy homeostasis, and the use of transgenic mice has been 
instrumental in demonstrating this role. Further studies are 
required to determine the transcriptional targets of the STATs 
that influence food intake and to explore the role of STAT5 in 
regulating energy balance, including the extracellular signals 
that mediated this function of STAT5. Furthermore, impaired 
STAT signaling is associated with obesity in many animal mod-
els and is likely to contribute to the breakdown of the normal 
homeostatic mechanisms maintaining body weight in obesity. 
Thus, increased understanding of the role of STAT molecules in 
the regulation of energy balance will be beneficial to investigat-
ing the mechanisms underlying disrupted energy homeostasis in 
obesity.
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obesity leptin resistance has been demonstrated by an impaired 
ability of leptin to induce STAT3 phosphorylation.70-74 The abil-
ity of leptin to induce JAK2 phosphorylation in these models 
of leptin resistance has not been characterized. The disruption 
in JAK-STAT3 signaling is likely to be an important molecular 
mechanism involved in leptin resistance and contributing to the 
dysregulation of food intake.30

It is yet to be established whether impaired leptin-STAT3 
signaling is a cause or consequence of leptin resistance and obe-
sity.75 To investigate this, leptin responsiveness has been exam-
ined in mice following different durations on a high fat diet. In 
one study, after 4 weeks on the high fat diet, mice had altered 
metabolism and increased leptin concentrations, suggesting the 
early stages of leptin resistance, yet hypothalamic leptin-induced 
phospho-STAT3 was unchanged.70 After 15 weeks on the diet, 
mice had impaired leptin-induced phospho-STAT3 indicating 
that perhaps altered STAT3 signaling is not an initial cause of the 
metabolic changes associated with obesity and leptin resistance.70 
However, others who examined mice after only 6 d on a high 
fat diet, the initial time point when differences in body weight 
became apparent, demonstrated that leptin-induced phospho-
STAT3 was already impaired.72 Currently, the role of impaired 
STAT3 activation in development of obesity and leptin resistance 
remains unresolved. Nevertheless, impaired leptin-STAT3 sig-
naling contributes to the dysfunction in the regulation of energy 
balance observed in obesity and leptin resistance.

The mechanisms underlying impaired leptin-STAT3 signal-
ing during obesity and leptin resistance are yet to be fully estab-
lished. Negative regulators of the JAK-STAT pathway, SOCS3 
and PTP1B, have been shown to be increased in the hypothala-
mus during obesity, suggesting that these inhibitors of STAT3 
signaling may prevent normal STAT3 signaling leading to leptin 
insensitivity.72,76-78 It is unlikely that a downregulation of hypo-
thalamic leptin receptors is an underlying cause of impaired 
leptin-induced phospho-STAT3 in obesity as many studies have 
shown either no change or an upregulation in leptin receptor 
expression.70,72,79-83 Impaired transcriptional activity of STAT3 
due to increased levels of FOX01,84 a transcription factor that can 
antagonize STAT3 transcriptional activity,51-53 also has been sug-
gested as a mechanism that could contribute to leptin resistance 
associated with obesity.53

Currently there is little evidence for any genetic or epigenetic 
mutation in the STAT3 gene that might relate to the develop-
ment of leptin resistance or obesity. However, mutations in other 
signaling molecules that modulate JAK-STAT signaling could 
result in impaired leptin-induced JAK-STAT signaling. SH2B1 
is an adaptor protein that can positivity modulate leptin signal-
ing through its interaction with JAK2.85-87 In humans, com-
mon variants in or near the SH2B1 gene have been associated 
with obesity,88,89 and loss of function mutations of the SH2B1 
gene are associated with early onset obesity.90 Mice lacking 
SH2B1 develop hyperphagia and obesity, and have impaired 
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