
RESEARCH ARTICLE

Absence of a secondary glucocorticoid

response in C57BL/6J mice treated with

topical dexamethasone

Jennifer A. Faralli1, Kaylee D. Dimeo1, Ralph M. Trane2, Donna Peters1,2*

1 Department of Pathology & Laboratory Medicine, University of Wisconsin School of Medicine and Public

Health, Madison, Wisconsin, United States of America, 2 Department of Ophthalmology & Visual Sciences,

University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America

* dmpeter2@wisc.edu

Abstract

Glucocorticoids such as dexamethasone can cause an increase in intraocular pressure

(IOP) in some of the population, but not all. In this paper we used a mouse model of gluco-

corticoid induced ocular hypertension to examine the changes in the anterior segment of the

eye in mice that failed to respond to glucocorticoid treatment with a sustained increase in

IOP. C57BL/6J mice were treated with either 0.1% dexamethasone sodium phosphate oph-

thalmic solution or sterile PBS 3 times daily for up to 5 weeks. IOP was measured weekly at

approximately the same time of the day. After 3–5 weeks of treatment, eyes were enucle-

ated and evaluated for changes associated with steroid induced glaucoma. These studies

showed that IOP was significantly elevated in dexamethasone (DEX) treated mice com-

pared to PBS treated mice after 3 weeks of treatment, but IOP in DEX treated mice returned

to baseline levels after 5 weeks of treatment. All the mice demonstrated a response to the

glucocorticoid treatments and showed an elevation in FKBP5 expression after both 3 and 5

weeks of DEX treatment (primary glucocorticoid response protein) and a weight loss. West-

ern blot analysis of anterior segments from treated mice, however, did not show an increase

in secondary glucocorticoid response proteins such as β3 integrin or myocilin. Fibronectin

levels were also not statistically different. The data suggest that in mice, which do not exhibit

a prolonged increase in IOP in response to the DEX treatment, there is a compensatory

mechanism that can prevent or turn off the secondary glucocorticoid response.

Introduction

Glaucoma is a heterogeneous disease manifested by progressive degeneration of the optic

nerve head that eventually leads to permanent blindness. A major risk factor for glaucoma is

increased intraocular pressure (IOP). About 70 million people are affected by the most com-

mon form of glaucoma called primary open angle glaucoma (POAG) [1, 2]. Another form of

glaucoma called steroid induced glaucoma (SIG) results from long-term use of glucocorticoids

such as dexamethasone (DEX). The development of SIG is thought to be similar to POAG
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since over 90% of POAG patients respond to topical steroid treatment with increased IOP. In

addition, both POAG and SIG show similar morphological and functional changes in the tra-

becular meshwork (TM) and both exhibit an increase in IOP that results from a restriction of

aqueous humor through the TM [3–5]. However, only about 30%-40% of the normal popula-

tion develop elevated IOP when treated with glucocorticoids for 4–6 weeks [4, 6–9] and after

removal of the steroid treatment, IOP returns to baseline for most patients. However, 4–6% of

the patients that respond to steroids with a large increase in IOP are considered to be high

responders and are more likely to develop POAG [4, 10]. Additionally, in 1–3% of the patients

who respond to steroids, IOP remains elevated after the withdrawal of the glucocorticoid and

the patients go on to develop SIG. [11–13]

The molecular mechanisms that cause POAG and SIG are not clear. Nor is it clear why some

individuals respond to glucocorticoids with an elevation in IOP and others do not. Studies using

C57BL/6J mice treated systemically or topically with DEX showed an elevation in IOP and ultra-

structural changes similar to those reported in humans following treatments with glucocorticoids

[14, 15]. In particular, the DEX treated mice showed an upregulation of fibronectin (FN), myoci-

lin (MYOC) and the transcription factor CHOP (CCAAT-enhancer-binding protein homologous

protein) which is a marker for chronic ER stress. Importantly, not all mice exhibit an increase in

IOP following treatment with a glucocorticoid [16, 17], suggesting that similar to humans, not all

mice are steroid responders. In vitro studies using human TM cells have indicated that lower lev-

els of the alternatively spliced glucocorticoid receptor β may be responsible for the initial respon-

siveness to glucocorticoids that lead to the altered expression of extracellular matrix proteins

upregulated in POAG [18].

Interestingly, many of the changes associated with steroid induced increases in IOP are the

result of the activation of a secondary glucocorticoid response. The secondary glucocorticoid

response differs from a primary glucocorticoid response in two important ways. First, genes

upregulated by this mechanism lack classical glucocorticoid response elements (GRE) and

thus the glucocorticoid receptor does not directly interact with these genes. Rather, the gluco-

corticoid receptor triggers the de novo protein synthesis of another soluble factor, which in

turn is responsible for the transcription of the gene. Second, it takes hours to days to see incr-

eased gene expression following steroid exposure rather than minutes as observed in a primary

glucocorticoid response.

Two proteins found in cultures of TM cells to be the result of a secondary glucocorticoid

response [19–22] are MYOC and the β3 integrin subunit, both of which lack classic GREs.

Fibronectin is another protein frequently shown to be upregulated by glucocorticoids in TM

cell cultures that also lacks GREs and may be considered a secondary glucocorticoid response

[23]. Recent studies have shown that both MYOC and αvβ3 integrin expression is dependent

on the activation and nuclear translocation of the transcription factor NFATc1 [19, 24]. Muta-

tions in MYOC are responsible for some forms of POAG and juvenile open-angle glaucoma

[25] whereas the upregulation and activation of the αvβ3 integrin [24, 26] has recently been

shown to be involved in many of the phenotypic changes associated with SIG and POAG

[26–28]. For instance, activation of the αvβ3 integrin signaling pathway in TM cells regulates

several cytoskeletal events thought to be significant in glaucoma including decreased phagocy-

tosis [29, 30] and the organization of actin filaments into cross-linked actin networks called

CLANs [26–28]. CLANs are believed to modulate the contractile properties of TM cells by

making them rigid and unable to respond to changes in eye pressure [31]. They are found in

increased numbers in glaucomatous and DEX-treated tissues [32] and in DEX-treated TM cell

cultures [26, 33].

In this study, we used the DEX mouse model of ocular hypertension to examine the second-

ary glucocorticoid response in vivo. Anterior segments from mice who responded to DEX
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treatments but failed to show a prolonged elevation in IOP were analyzed for the expression of

proteins associated with the secondary glucocorticoid response. These studies show that the

secondary glucocorticoid response is absent in these mice that do not exhibit a sustained

increase in IOP. Understanding what happens when steroid responders are able to prevent an

elevation in IOP should enhance our understanding of the steroid-induced mechanism(s)

involved in POAG and SIG.

Materials and methods

Animals

Male C57BL/6J mice were obtained from the Jackson Laboratory and were housed at the Uni-

versity of Wisconsin animal facilities. The mice were housed in a 12-hour light/12-hour dark

cycle with food and water freely available. All animal studies were carried out in accordance

with the Association for Research in Vision and Ophthalmology Statement for the Use of Ani-

mals in Ophthalmic and Vision Research and were approved by the Institutional Animal Care

and Use Committee of the University of Wisconsin-Madison School of Medicine and Public

Health (protocol # M005242).

Intraocular pressure measurements and dexamethasone treatment of mice

Male mice (8–16 weeks of age) were anesthetized intraperitoneally with a ketamine/xylazine

mix (90mg/10mg per kg) and IOP was measured as soon as the mice stopped moving before

the anesthesia effect on IOP occurred using an Icare Tonolab. Three IOP measurements from

each eye were averaged together at each time point. After baseline IOP was measured, the right

eye was treated topically with one drop (~30μl) of either 0.1% DEX sodium phosphate ophthal-

mic solution (Bausch & Lomb) or sterile PBS 3 times daily, 4 hours apart, for up to 5 weeks.

The contralateral eyes were left untreated. IOP was measured weekly at approximately the

same time of the day under light conditions. This procedure was repeated six times using 8 or

16 mice in each group.

Tissue processing

After 3–5 weeks of DEX or PBS treatment, mice were euthanized with carbon dioxide and eyes

were enucleated and processed one of three ways. Some eyes were bisected just posterior to the

limbus and the anterior segments were put into RNA Later (Invitrogen) and frozen for subse-

quent RNA isolation. Other eyes were bisected and the anterior segments were lysed for west-

ern blotting. Lastly, some anterior segments were fixed in 4% paraformaldehyde and paraffin

embedded for immunohistochemistry.

RNA isolation and RT-PCR

Anterior segments were processed as individual eyes. Total RNA was isolated using the QIAsh-

reddar and RNeasy Plus Mini Kits (Qiagen, Inc.) according to the manufacturer’s instructions

after homogenizing the anterior segments (including scleral, cornea, iris, ciliary muscle and

TM) with a disposable micropestle in 350μl of lysis buffer provided by the kit. RNA concentra-

tion was determined using a NanoDrop spectrophotometer. RT-PCR was performed using the

Superscript SYBR Green 1-step RT-PCR kit according to the manufacturer’s instructions

(Thermo Fisher Scientific). Fold changes in gene expression were determined using the method

described by Pfaffl [34] that corrects for primer efficiency. Data were normalized to no treat-

ment and fold change compared to the housekeeping gene succinate dehydrogenase complex

subunit A (SDHA) was determined. Primers used are in Table 1.

Lack of secondary glucocorticoid response
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Western blotting

Anterior segments were immediately placed in 200μl ice cold lysis buffer after dissection

(25mM Hepes, pH 7.4, 150mM NaCl, 1mM EDTA, 1mM NaF, 1% NP-40, 0.25% DOC, and

Halt protease and phosphatase inhibitor cocktails (Thermo Fisher Scientific)). Tissue was then

sonicated (Branson Sonifier SLPe) 5 times for 1 second using 30% amplitude and insoluble

material was removed by centrifugation at 14,000 rpm for 10 min at 4˚C. A BCA assay (Thermo

Scientific Pierce Micro BCA Protein Assay Kit) was performed on the supernatant to determine

protein concentration. Lysate (10μg) was separated on a 10% SDS-PAGE (6% for FN) and trans-

ferred to Immobilon-FL (Millipore Corp). The membrane was blocked with 3% bovine serum

albumin (BSA) or 5% milk (for FKBP5 antibody) in Tris buffered saline with 0.5% Tween-20

(TBST) for at least 1h at room temperature. Membranes were then incubated overnight at 4˚C

with primary antibody diluted in 1% BSA or 5% milk (FKBP5) in TBST. After washing, mem-

branes were incubated for 1h at room temperature with IR Dye 800 conjugated goat anti-mouse

or anti-rabbit secondary antibody (Licor) diluted 1:15,000 in 1% BSA or 5% milk (FKBP5) in

TBST with 0.01% SDS. Membranes were washed and then scanned using the Odyssey CLx

imager (Licor). Antibodies used include mouse anti-β3 integrin clone AP-3 (1:1000; Kerafast),

rabbit anti-MYOC (1:1000; Abcam ab41552), rabbit anti-FKBP5 (1:1000; Cell Signaling Tech-

nologies 12210S), rabbit anti- (1:1000 [35]), rabbit anti-CHOP (1:500; Abcam ab179823), and

rabbit anti-β-actin (1:1000, Abcam ab8227). Densitometry of the bands was determined using

Image Studio v. 5.0 software (Licor).

Immunohistochemistry

Anterior segments were fixed in 4% paraformaldehyde in PBS for 1 h then transferred to PBS

until embedded in paraffin. Sections (5μm thick) were deparaffinnized in xylene and rehy-

drated through a series of 100–50% ethanol solutions followed by immersion in water. Antigen

retrieval was performed on the sections by incubated in 1 mM EDTA, pH 8.0 for at 95˚C for

20 min. Once cooled, sections were blocked at least 2 h in 3% BSA in PBS at room tempera-

ture. Sections were then incubated overnight at 4˚C with rabbit anti-β3 integrin antibody

(Abcam ab197662) at 1:50. After washing 5 times with PBS, sections were incubated for 1 h at

room temperature with Alexa 546 conjugated goat anti-rabbit secondary antibody (Invitrogen)

at 1:500. Sections were then stained with Hoescht 33342 (Invitrogen) in PBS to label nuclei

and then mounted with Immu-mount (Thermo Scientific Shandon). Images were acquired

with a Nikon A1Rs confocal microscope using NIS Elements software at the University of Wis-

consin Optical Imaging Core.

Data analysis

Data are presented as mean ± S.E.M. Statistical comparisons were done using the Student

unpaired t-test and a p value <0.05 was considered significant. For RT-PCR analysis, statistical

comparisons were done on the log scale using the Student unpaired t-test and a p value <0.05

Table 1. Primers used for RT-PCR.

Gene Forward primer (5’ to 3’) Reverse primer (5’ to 3’)

SDHA GGAACACTCCAAAAACAGACCT CCACCACTGGGTATTGAGTAGAA

Itgb3 (β3 integrin) GCTCATTGGCCTTGCTACTC GGTGGAGGTGGCCTCTTTAT

FKBP5 GATGAGGGCACCAGTAACAATG CAACATCCCTTTGTAGTGGACAT

MYOC GACAGCACAGTTCCGAAAGG GGGCAGCTAGATTCATTGGGG

DDIT3 (CHOP) ACAGAGGTCACACGCACATC GGGCACTGACCACTCTGTTT

https://doi.org/10.1371/journal.pone.0192665.t001

Lack of secondary glucocorticoid response

PLOS ONE | https://doi.org/10.1371/journal.pone.0192665 March 2, 2018 4 / 18

https://doi.org/10.1371/journal.pone.0192665.t001
https://doi.org/10.1371/journal.pone.0192665


was considered significant. Means with 95% confidence intervals were then transformed back

to the original scale on which they are represented.

Results

A total of 48 mice were treated with DEX or PBS for 4 or 5 weeks. During the study, two mice

treated with DEX died due to causes unrelated to the study. One DEX treated mouse responded to

the DEX treatment with a large increase in IOP. This mouse was excluded in the final analysis

since we are studying mice who do not respond to glucocorticoids with a sustained increase in

IOP. As shown in Fig 1A, IOP increased after 3 weeks of DEX treatment compared to PBS treat-

ment, but then returned to baseline by 5 weeks of DEX treatment. At 3 weeks of treatment, the

average IOP of DEX treated eyes was statistically significantly higher than the average IOP of PBS

treated eyes (Fig 1A; 21.4+/- 0.6 vs. 18.7+/- 0.5 mmHg; p<0.05). This elevation of 2.7mmHg,

although mild, is very similar to what was seen by others following treatment with a glucocorticoid

[14, 16]. Out of the 21 mice treated with DEX, 17 mice (81%) showed at least a 2 mmHg increase

(2 to 8.1mmHg) in their IOP relative to baseline and 4 showed less than a 2 mmHg increase or a

decrease in IOP (-3.2 to 1.7mmHg) after 3 weeks of the treatment (Table 2). In contrast, out of the

24 mice treated with PBS, only 7 mice (29%) inthe PBS treatment group showed an increase of at

least 2 mmHg in IOP (2 to 7.3mmHg) compared to baseline while 17 mice showed near baseline

IOP or a decrease in IOP (-5.6 to 1.2mmHg) compared to baseline. By 4 weeks the IOP of DEX

treated mice had decreased and was no longer significantly different compared to PBS treated

mice (20.2+/- 0.6 vs. 19.2+/- 0.7 mmHg) and by 5 weeks the groups were the same (19.1+/-0.7 vs.

19.6+/- 0.8 mmHg). We also looked at the IOP differences of individual mice at 5 weeks of treat-

ment to determine if any DEX treated mice still exhibited increased IOP, i.e. steroid responders.

Of the eyes treated with DEX or PBS for 5 weeks, 5 of the 17 (29%; 2.2 to 6.6mmHg) DEX treated

eyes and 5 of the 20 (25%; 2.2 to 6.2mmHg) PBS treated eyes were at least 2 mmHg higher than

baseline. Because these percentages are similar it suggests that none of the mice in our DEX study

developed a prolonged elevation in IOP. Fig 1C and 1D show the range of the IOPs for each week

of treatment. We also compared IOPs to baseline IOP for each treatment. DEX treated eyes exhib-

ited higher IOPs compared to baseline IOP of the same eyes after 3 weeks (21.4+/-0.6 vs. 18.2

+/-0.6 mmHg; p<0.05) and 4 weeks (20.2+/-0.6 vs. 18.2+/-0.6 mmHg; p<0.05) of treatment while

PBS treated eyes were no different from baseline. Thus in our experiments, IOP was not increased

in mice treated for 5 weeks with topical DEX eye drops. The mice treated with DEX, however,

showed a steady and significant decrease in their weight over the 5 week period that was greater

than the weight loss in the PBS treated mice (Fig 1B) indicating that systemic effects with the DEX

treatment [14, 16] resulting from either absorption through the nasalacrimal mucosa or through

ingestion from grooming had occurred. This systemic absorption or contralateral effect has been

observed in mice with atropine [36, 37] and clinically in humans following topical application of

beta-blockers or timolol to reduce IOP [38, 39] Immunohistochemical studies indicated that the

anterior segments of mice treated with DEX appeared similar to PBS treated mice and did not

show any gross morphological differences despite the 5 week treatment with DEX (Fig 2).

We then performed western blotting analysis to determine if proteins known to be upregu-

lated by DEX treatment in human TM cell cultures established from anterior segments [19, 24,

40] were also upregulated in the anterior segments from mice treated with topical DEX. We

first looked to see if FKBP5 was upregulated. FKBP5 is known to contain glucocorticoid resp-

onse elements (GREs) and upregulation of its expression would demonstrate that the primary

glucocorticoid response was activated (Fig 3). As shown in Fig 4A and quantitated in Fig 4C,

FKBP5 was upregulated in DEX treated eyes versus PBS treated eyes as determined by densi-

tometry (9.8 +/- 0.5 vs. 1.6 +/-0.2; p<0.05). FKBP5 was also upregulated in the contralateral

Lack of secondary glucocorticoid response
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untreated eyes of the DEX treated mice (Fig 4B), supporting the fact that there were systemic

effects from the topical DEX treatments.

We then looked for proteins associated with the secondary glucocorticoid response in

human TM cells (Fig 3). As shown in Fig 4A and 4C, there was no difference in β3 integrin or

MYOC expression between DEX treated eyes compared to PBS treated eyes. We also looked at

FN expression whose increased expression levels may also result from a secondary glucocorti-

coid response like MYOC and β3 integrin, since it does not contain any GREs [23]. As shown

in Fig 4A, there was a trend of higher FN expression in DEX treated eyes compared to PBS

treated eyes, but this was not statistically significantly different by densitometry (Fig 4C).

Finally, we looked for an increase in CHOP which has also been reported to be increased in

the anterior segments of mice treated with topical DEX drops [15]. However, we were unable

to detect CHOP expression in the DEX or PBS treated eyes (S1 Fig). These data suggest that

the secondary glucocorticoid response was not activated in the DEX treated mice after 5 weeks

of treatment.

We then labeled sections of paraffin embedded eyes treated with DEX or PBS for β3 integ-

rin and MYOC. Fig 5A and 5B show no obvious differences in β3 integrin levels in the TM

between DEX and PBS treated eyes. We were unable to detect any MYOC expression using

two different antibodies, despite being able to detect MYOC by western blotting (S2 Fig). It is

unclear if that is because the antibodies used did not work for this application. Together these

Fig 1. DEX treatment transiently increases IOP in mice. (A) Topical DEX or PBS was administered 3 times a day for 4 to 5 weeks (n = 17–21 for DEX and

n = 20–24 for PBS; see Table 2). Graph shows average IOP. IOP of DEX treated eyes is significantly different than PBS treated eyes, �p<0.05. (B) Average

weight of mice over the course of treatment. Weight is significantly different than at baseline (BL), �p<0.05. (C) Box and Whisker plot of IOP data from

DEX treated mice showing IOP distribution. (D) Box and Whisker plot of IOP data from PBS treated mice showing IOP distribution.

https://doi.org/10.1371/journal.pone.0192665.g001
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Table 2. Individual mouse IOPs.

DEX treated eyes BL 1 week 2 weeks 3 weeks 4 weeks 5 weeks

Group 1 M7 14.7 14.5 16 22.8 16.7 20.8

M8 13.8 18.7 22.3 18.3 21.7 15.5

M9 14 17.6 21.3 16.6 15.7 15.3

Group 2 M15 15.7 19.5 19.8 19.5 17

M16 17.3 14.6 20 21.2 14.8

M17 18.3 20 17.5 22.7 19

M18 17.5 19.7 17.8 19.2 19.3

Group 3 M31 17.8 20.2 17.6 19.8 21.8 20

M32 15.8 18.4 17 18.4 18.2 19.8

M33 19.8 17 16.8 16.6 19.6 19

Group 4 M39 17.2 18.4 15.4 24.6 19.4 15.4

M40 17.4 18.2 15.2 25.4 19.4 13.2

M42 14.4 22 18.8 19 19.6 21

Group 5 M453 19.0 22.3 20.3 21.3 23.3 20.7

M454 23.3 21.8 21 25.7 22 20.7

M455 22.7 23.7 22.7 24.7 24.8 21.8

M456 22 15.3 16.3 23 18 18

M457 21 23.7 20.3 24.3 19.7 23.7

M458 20.7 22 23.3 22.3 25.7 22.3

M459 19.7 21.3 25 24.5 23.8 19

M460 20.7 21.3 20.7 20.3 23 19.3

PBS treated eyes BL 1 week 2 weeks 3 weeks 4 weeks 5 weeks

Group 1 M11 18.3 14.6 16.7 19.5 16 17.3

M12 13.1 18.1 20.7 18 19.5 14.2

M13 14.9 20.2 21.8 14.3 21.1 15.5

M14 15.3 17.7 17.5 19.5 16.3 21.5

Group 2 M19 16 18.7 22.8 18.2 18.8

M20 15.7 21.2 22.2 23 20.3

M21 16 17.8 18.5 19.8 18.7

M22 17.5 19.5 18.8 17.5 16.8

Group 3 M35 17.4 17.6 17 16.4 13.8 15.2

M36 18.4 18.6 18.6 12.8 15.6 20.6

M37 18.8 17 19 18.4 16.8 19.4

M38 15.4 19.4 16.4 19.4 16.6 20.8

Group 4 M43 17.2 19.2 12.8 16 19.4 17.8

M44 16.2 18.4 16 16 17.8 15.8

M45 15.8 20.6 16.4 18 17 16.6

M46 18 17.2 16.6 15.8 15.2 15.4

Group 5 M449 22.3 25 20.8 22 20 25

M450 25.3 22.3 19.3 19.7 25 20.7

M451 24.7 23 22 21 25.3 16.3

M452 21.3 25 19.7 21 21.7 23.3

M461 22 19.7 21.3 20.3 25.7 25.3

M462 20.3 23.8 23.3 21 22 24.3

M463 19.7 20.7 19 19.7 18.7 22.7

M464 22.7 19.3 21.7 22.3 22.7 24.3

https://doi.org/10.1371/journal.pone.0192665.t002
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data suggest that the secondary glucocorticoid response in the TM of DEX treated mice was

not activated or was downregulated after 5 weeks of treatment.

To get a better understanding of why an elevation in IOP was not maintained at 5 weeks

despite the response to the DEX treatment and initial elevation in IOP, we repeated the study

so we could examine the tissues after 3 weeks of DEX treatment when the IOP was increased

compared to the control group of mice. Fig 6A shows the average IOP of mice treated in this

group. As before we saw an increase in IOP by 3 weeks of treatment with DEX. The average

IOP of DEX treated eyes compared to PBS treated eyes was statistically significantly greater at

3 weeks (24.0+/-0.5 vs. 21.9+/-0.4 mmHg; p<0.05). Fig 6B and 6C show the range of the IOPs

for each week of treatment. Anterior segments of mice from each group were then evaluated

by western blotting for the same proteins as the 5 weeks of treatment shown above. As shown

in Fig 7A, there was no change in β3 integrin, MYOC or FN levels between DEX treated versus

PBS treated mice eyes, similar to the 5 week data. Like the 5 week data, FKBP5 was significantly

upregulated in the DEX treated eyes as well as the contralateral eyes from the same mice com-

pared to the eyes from PBS treated mice. The expression of CHOP, however, was different

from the 5 week samples and we were able to detect CHOP in lysates from both the DEX and

PBS 3 week treated samples. Interestingly, densitometry of the western blot showed a signifi-

cant decrease in the amount of CHOP present in DEX treated eyes compared to PBS treated

eyes (p<0.05).

Lastly, we performed RT-PCR using some of the anterior segments of mice from the 3 week

treatment group. As shown in Fig 8, there was no change in β3 integrin or CHOP mRNA levels

when comparing DEX treated versus PBS treated eyes. We did detect significant increases in

FKBP5 (14.6 fold; p<0.05), FN (2.91 fold; p<0.05) and MYOC (11.4 fold; p<0.05) mRNA in

DEX treated eyes compared to PBS treated eyes. This suggests that DEX may have activated gene

expression of some genes associated with the primary and secondary glucocorticoid responses

after 3 weeks of treatment. However, this did not result in an increase in expression at the protein

level (Fig 5A). This supports an earlier report by Bermudez et al [23] which suggested FN levels

may be a secondary response in DEX treated TM cells. In addition, they found while mRNA lev-

els often correlate with protein levels, this is not always the case, as we show here [41].

Fig 2. Hematoxylin and eosin (H&E) stain of paraffin sections. Representative H&Es of the chamber angle of eyes

treated for 5 weeks with DEX (A) or PBS (B). Magnification bar = 100μm.

https://doi.org/10.1371/journal.pone.0192665.g002
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Discussion

Our results showed that in mice which did not respond to DEX treatment with a prolonged ele-

vation in IOP, there was a noticeable lack of the secondary glucocorticoid response. Neither

β3 integrin nor MYOC, which are associated with the secondary glucocorticoid response, were

upregulated in DEX treated eyes at either the 3 week time point where IOP was increased or at

the 5 week time point where the IOP had returned to baseline. In addition, FN which also lacks

GREs and thus can be considered part of the secondary glucocorticoid response was not statisti-

cally altered. This suggests that in mice which would be considered ”steroid non-responders”

because they did not demonstrate a sustained increase in IOP, there was failure to elicit a sec-

ondary glucocorticoid response. Clearly, it cannot be due to the responsiveness of the mice to

DEX since the DEX treatment was effective. There was an increase in FKBP5 expression that

resulted from a primary glucocorticoid response and the mice exhibited weight loss which is

Fig 3. Primary vs. secondary glucocorticoid response pathways. A primary glucocorticoid response pathway (shown

in green) occurs when exposure to glucocorticoids such as DEX causes activation of the glucocorticoid receptor (GR)

in the cytoplasm. The GR/DEX complex then translocates to the nucleus and within minutes activates gene

transcription of genes that contain glucocorticoid response elements. FKBP5 is an example of a primary glucocorticoid

response gene. During a secondary glucocorticoid response (shown in blue), the GR/DEX complex induces

transcription followed by translation of some soluble factor (?) that in turn is needed to activate transcription of a

second gene. This process often takes hours to days to occur and can be inhibited by cycloheximide (CHX). This

model shows the activation of the secondary glucocorticoid response genes myocilin (MYOC) and β3 integrin by the

transcription factor NFATc1 [19, 24]. It is unknown how the soluble factor induced by the GR/DEX complex activates

the transcription factor NFATc1. It could act directly, through the phosphatase calcineurin which in turn activates

NFATc1 or it could be part of the complex responsible for the nuclear translocation of NFATc1. Alternatively, it could

interact with NFATc1 to co-regulate transcription of secondary glucocorticoid response genes.

https://doi.org/10.1371/journal.pone.0192665.g003
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consistent with systemic effects of DEX. Also there was a short lived increase in IOP following

the DEX treatment at 3 weeks. Thus the data suggest that in mice there may be a compensatory

Fig 4. Western blotting of lysates from anterior segments of mouse eyes treated with DEX or PBS for 5 weeks. (A) Western blots of lysates from eyes

treated with DEX or PBS for 5 weeks. (B) Western blot of lysates from the contralateral untreated eyes of the same mice as in (A). (C) Densitometry of

western blots shown in (A), normalized to the β-actin loading control. DEX treated versus PBS treated eyes were significantly different, �p<0.05.

https://doi.org/10.1371/journal.pone.0192665.g004

Fig 5. β3 integrin labeling of paraffin sections. Representative β3 integrin labeling (green) of paraffin sections from

eyes treated for 5 weeks with DEX (A) or PBS (B). Sections were stained with Hoechst 33342 (blue) to view nuclei.

Schlemm’s canal (SC) is indicated with a closed arrow. TM is indicated with an open arrow. Magnification bar = 10μm.

https://doi.org/10.1371/journal.pone.0192665.g005
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mechanism that can prevent or turn down the secondary glucocorticoid response to DEX. To

the best of our knowledge this is the first attempt to study the secondary glucocorticoid response

in vivo in association with IOP.

Interestingly, mice who responded to steroids with prolonged elevation in IOP showed an

induction in the secondary glucocorticoid response [14, 15]. This suggests that the secondary

glucocorticoid response may be responsible in part for the chronic elevation in IOP following

steroid treatments. Similar to other studies [14, 16] we saw ~3mmHg increase in IOP with

DEX treatment, although it was only transient in our mice. Why some C57BL/6 mice respond

and others do not is unknown. It is possible that it could be the effectiveness of the delivery

method. In the Overby et al. study [14], DEX was administered through a subcutaneous

osmotic mini-pump implanted in the back, which could have resulted in a more effective and

higher systemic DEX concentration. However, even with this technique the IOPs of some of

their DEX treated mice fell within the range of their control mice. Zode et al. [15] gave eye

Fig 6. DEX treatment increases IOP in mice. (A) Topical DEX or PBS was administered 3 times a day for 3 weeks

(n = 8 for DEX and n = 8 for PBS). Graph shows average IOP. IOP of DEX treated eyes is significantly different than

PBS treated eyes, �p<0.05. (B) Box and Whisker plot of IOP data from DEX treated mice showing IOP distribution.

(C) Box and Whisker plot of IOP data from PBS treated mice showing IOP distribution.

https://doi.org/10.1371/journal.pone.0192665.g006
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drops similar to our method but they treated both eyes with DEX and we only treated one eye

again raising the possibility that systemic levels were higher, although mouse weight and a

Fig 7. Western blotting of lysates from anterior segments of mice eyes treated with DEX or PBS for 3 weeks. (A) Western

blots of lysates from eyes treated with DEX or PBS and the contralateral untreated eyes of the same mice. (B) Densitometry of

western blots shown in (A), normalized to the β-actin loading control. DEX treated versus PBS treated eyes were significantly

different, �p<0.05.

https://doi.org/10.1371/journal.pone.0192665.g007
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systemic effect were not discussed in this paper. They also reported that 5–10% of their mice

did not respond to the DEX eye drops with increased IOP. Interestingly, although we both

used C57BL/6 strain of mice, their mice were bred in-house whereas ours were bought directly

from Jackson Labs raising the possibility that differences in their mice response to DEX and

others could be due to genetic differences in the various C57BL/6J mouse colonies.

To the best of our knowledge, this is the first time a weight loss has been reported in mice

receiving topical eye drops of DEX. We attributed the weight loss in our DEX-treated mice to

a systemic effect of the DEX since it is consistent with the systemic effect observed by Overby

et al. [14] in mice who had DEX delivered via an implanted pump. The volume of the DEX

drops used in our study (~30μl) most likely contributed to the systemic effects seen in our

mice and enabled them to ingest the excess fluid not absorbed by the eye. Interestingly, despite

this systemic effect we still did not see the sustained increase in IOP as seen in other studies

[14–16], again supporting our conclusions that our mice exhibited a compensatory mecha-

nism to the DEX induced increase in IOP.

Out of the 5 cohorts of mice we used for this study, one cohort of mice (Group 5) had

abnormally high baseline IOPs. The normal range reported for C57BL/6J mice is between

12–18 mmHg [14, 15, 42–44]. This group of mice which were brought in at a later date than

the first 4 cohorts had baseline IOPs ranging from 19–25 mmHg. Although it is not known

why these mice had a higher baseline IOP, IOP can be affected by environmental factors

such as the bedding, diet, light cycle, humidity and noise level of the housing and procedure

rooms [43]. These environmental factors can also affect how rodents respond to anesthesia

[43], which might affect IOP. Qiu et al. [45] published that ketamine can cause in increase

in IOP in C57BL/6J mice within the first 5 minutes after anesthesia administration. Since

the treatment of this particular group of mice was done after there were environmental

changes in the bedding and diet in our animal facility, it is possible that one or all of these

factors may have had an influence on IOP. Despite the high baseline IOPs, however, this

cohort of DEX-treated mice still exhibited the same trend. There was an initial increase in

IOP after 3 weeks of DEX treatment when compared to the PBS treated mice that returned

to baseline by 5 weeks.

Several papers have shown that sensitivity to glucocorticoids may be dependent on poly-

morphisms in the glucocorticoid receptor (GR) gene (NR3C1)[46] or the ratio of the expres-

sion levels of the alternatively spliced isoforms GRα vs. GRβ [18, 47–50]. Unfortunately, we

were unable to look at expression levels of GRα or GRβ in our mice because of the limited sam-

ples available for analysis. However, it is unlikely the ratios were different among our mice

Fig 8. RT-PCR of RNA isolated from anterior segments of mice eyes treated with DEX or PBS for 3 weeks. Data

are fold changes of DEX vs. PBS treatment after normalizing to the housekeeping gene SDHA. A fold change of 1 = no

difference between DEX vs. PBS. Error bars represent lower and upper confidence levels. RNA levels significantly

higher in DEX treated eyes, �p<0.05.

https://doi.org/10.1371/journal.pone.0192665.g008
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since the mice we used were an inbred strain. Furthermore, the fact that our mice showed an

elevation of FKBP5 in response to DEX suggested there was an initial response to DEX and

that the alternative spliced isoforms of GRβ may not be a factor.

A recent study by Bermudez et al. [23] supports our findings that a secondary glucocorti-

coid response is not always observed. In this study gene expression profiles of TM cells isolated

from DEX responder or non-responder bovine organ cultured anterior segments were com-

pared. As in our study they found that the cultured non-responder cell strains treated with

DEX did not show an increase in FN expression, while the responders did. Furthermore, they

were unable to detect any induction of MYOC which is also an indication the secondary gluco-

corticoid response was not activated. Thus, the lack of an increase in FN and MYOC expres-

sion in the non-responders support the idea that the “non-responders” fail to elicit the

secondary glucocorticoid response and there may be a compensatory mechanism that controls

the secondary glucocorticoid response.

Induction of MYOC and β3 integrin expression during the secondary glucocorticoid

response in human TM cells is dependent on the phosphorylation of NFAT and its nuclear

translocation via activation of the calcineurin/NFAT pathway (Fig 3) [19, 24]. A number of

mechanisms have been reported to regulate NFAT nuclear translocation. For instance, poly-

morphisms in NFATc1 associated with congenital heart disease [51] may lead to impaired

nuclear translocation and DNA binding affinity [52]. Translocation of cytoplasmic NFAT

to the nucleus is also negatively repressed by a large complex of proteins that includes the

noncoding repressor of NFAT (NRON) RNA molecule [53]. One of the proteins found in

this NRON-protein complex called LRRK2 has recently been shown to contain polymor-

phisms that appear to alter or “fine tune” inhibition of NFAT translocation [54]. Expression

of LRRK2 is also transactivated by the GR receptor and upregulated at both the transcrip-

tional and translational levels [55]. Thus, depending on the functional activity of LRRK2

which can vary widely throughout the population due to its polymorphisms or NFATc1

polymorphisms, some individuals with certain alleles would exhibit a more robust response

to glucocorticoids than others. Whether this complex which inhibits translocation indepen-

dent of NFAT phosphorylation is responsible for regulating the secondary glucocorticoid

response in TM cells is unknown. Gene array analysis has shown that LRRK2 is found in

human TM cells and is upregulated 3.5 fold in DEX treated human TM cell cultures (the

data can be downloaded from ProteomeCommons.org Tranche using the following hash:

DzOJRE0nJjl7HokcNP3oq3iBcaPkLnMRCkjukv87GRvIYnN0nCCn-ZHpNuyvYjGEi9iOO

[56]) suggesting that this protein would be present in DEX treated TM cells.

It was interesting that we saw a decrease in CHOP expression in the anterior segments at

3 weeks in DEX-treated mice. Recent studies have shown that in DEX-treated mice exhibit-

ing an elevation in IOP, CHOP expression is upregulated and deletion of CHOP prevented

the DEX induced ocular hypertension [15]. The failure to upregulate CHOP expression in

this study might also partially explain why our mice did not develop a prolonged elevation

in IOP. The mechanism used by the mice TM to prevent or downregulate the secondary glu-

cocorticoid response would have prevented the over expression of proteins and activation

of the UPR pathway which in turn causes an increase in CHOP and ER stress reported by

Zode et. al. [15].

In summary, mice appear to have a compensatory mechanism that can prevent the second-

ary glucocorticoid response from occurring. Whether the secondary glucocorticoid response is

responsible for the long term and chronic elevation of IOP in SIG remains to be determined.

Clearly, more experiments need to be done to determine what role the secondary glucocorti-

coid response may play in the development of glaucoma and how it is regulated.
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Supporting information

S1 Fig. CHOP expression after 5 weeks of DEX or PBS. No CHOP was detected in the

treated, control or contralateral eyes, although it was detected after 3 weeks of DEX as indi-

cated in Fig 7. CHOP ~ 27kDa. MW = molecular weight marker.

(EPS)

S2 Fig. MYOC labeling of mouse eye treated with DEX for 5 weeks. (A) MYOC sera labeling

shown in red (kindly provided by S.I. Tomorav, Mol. Bio. Cell. 2001; 21(22):7707–7713). The

level of MYOC in the TM (red rectangle) is not higher than the rabbit non-immune sera shown

in (B) indicating no MYOC labeling. Nuclei labeling is in blue. Each micrograph is two images

merged together to show the entire iridocorneal angle and was taken using the same exposure

times. Tissue processing and antibody labeling was done as described in Materials and methods.

MYOC antibody was diluted 1:50. CM = ciliary muscle, R = retina. Similar results were seen

with a commercial rabbit anti-MYOC antibody (Abcam cat #ab41552). Scale bar = 20 microns.

(EPS)
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