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RNA sequencing (RNA-seq) is a sensitive and accurate method for quantifying gene expression. Small samples or those

whose RNA is degraded, such as formalin-fixed paraffin-embedded (FFPE) tissue, remain challenging to study with nonspe-

cialized RNA-seq protocols. Here, we present a new method, Smart-3SEQ, that accurately quantifies transcript abundance

even with small amounts of total RNA and effectively characterizes small samples extracted by laser-capture microdissection

(LCM) from FFPE tissue. We also obtain distinct biological profiles from FFPE single cells, which have been impossible to

study with previous RNA-seq protocols, and we use these data to identify possible new macrophage phenotypes associated

with the tumor microenvironment. We propose Smart-3SEQ as a highly cost-effective method to enable large gene expres-

sion profiling experiments unconstrained by sample size and tissue availability. In particular, Smart-3SEQ’s compatibility

with FFPE tissue unlocks an enormous number of archived clinical samples; combined with LCM it allows unprecedented

studies of small cell populations and single cells isolated by their in situ context.

[Supplemental material is available for this article.]

Omnis cellula e cellula (every cell froma cell): This idea promoted by
Rudolf Virchow, the grandfather of modern pathology, rings no
less true today than 160 years ago (Virchow 1859). Cell-centered
concepts are emerging that suggest it is not just the genomic alter-
ations of a cell but its developmental state that are critical to our
understanding of disease. Technologies to study individual single
cells, not complex aggregates of multiple cell types, will give us a
greater understanding of the biology of many diseases. Multiple
large-scale collaborative projects are underway to understand indi-
vidual cell biology in both normal and pathological tissues (Abbasi
2017; Spira et al. 2017).

Single-cell gene expression profiling is essential for these en-
deavors. Prominent new methods rely on fresh tissue to generate
disaggregated intact single cells that can be profiled using microfl-
uidic technologies (Macosko et al. 2015; Zheng et al. 2017). These
approaches are generating extensive information onnew cell types
and cell-specific transcriptome profiles. Such information will
have a significant impact on the clinical management of disease.
However, this impact is diminished by the limitations of fresh clin-
ical material. Fresh clinical material is difficult to obtain for re-
search, cannot be banked, and the selection of material for
analysis is based on a priori clinical knowledge and gross examina-
tionwithno cellular context.Moreover, the isolation process often
leads to selective degradation of specific cell types leading to a bias
in the profiled cell populations. For these reasons, it is unsuitable
for many clinical study designs.

We have developed an RNA-seq method that addresses these
problems. Our method, Smart-3SEQ, is robust in archival forma-
lin-fixed paraffin-embedded (FFPE) material and allows micro-
scopic selection of specific cells. It combines the template-
switching SMART method (Zhu et al. 2001; Ramsköld et al.
2012) and protocol optimizations of Smart-seq2 (Picelli et al.
2013) with the streamlined 3′ end–targeting approach of 3SEQ
(Beck et al. 2010), yielding a simpler procedure than any of those.
In addition, Smart-3SEQ incorporates uniquemolecular identifiers
to increase the accuracy of transcript counting with low input
amounts (Kivioja et al. 2012). Thismethod has conceptual similar-
ities to the prototype RNA-seq method used to show UMIs, but
with a streamlined protocol and optimizations for LCM and
FFPE material. Thus, our protocol is cost-effective in reagent usage
and working time, sensitive to single-cell amounts of RNA, and ro-
bust to degraded samples. Here, we show that Smart-3SEQ quanti-
fies transcript abundance accurately with a wide range of amounts
of input; in particular it can create libraries from single cells dissect-
ed out of tissue with degraded RNA, which has previously only
been possible with high-quality tissue samples (Nichterwitz et al.
2016), and this enables the study of cells in the tumor microenvi-
ronment with clinical samples.

Results

The Smart-3SEQ method

Previous single-cell RNA-seq protocols, Smart-seq (Ramsköld et al.
2012) and Smart-seq2 (Picelli et al. 2013), generate cDNA libraries
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by the SMART method (Zhu et al. 2001): They take advantage of
Moloney murine leukemia virus–derived reverse transcriptase’s
“template switching” ability to generate full-length, double-
stranded cDNA molecules from RNA templates in a single incuba-
tion. However, when the original RNA is degraded, there may not
be full-length molecules available to reverse transcribe, so RNA in-
tegrity is very important with thesemethods. In contrast, the 3SEQ
method (Beck et al. 2010) is optimal for degraded RNA such as that
from FFPE tissue. In 3SEQ, the RNA is fragmented before reverse
transcription, eliminating the difference between intact and de-
graded samples. Reverse transcription is still primed by an an-
chored oligo(dT) primer, so from each transcript only the
fragment containing the beginning of the poly(A) tail is se-
quenced; this approach, also called digital gene expression, gener-
ates a short identifying “tag” sequence rather than read the full
length of the transcript. Smart-3SEQ combines this 3′-targeted ap-
proachwith template switching in a streamlined and sensitive pro-
tocol (Fig. 1; Supplemental Figs. S1, S2; for a technical description,
see Supplemental File 1; for a step-by-step comparisonwith similar
protocols, see Supplemental Table S1).

Smart-3SEQ has numerous practical advantages for many dif-
ferent applications of gene expression profiling independent of its
usewith FFPE tissue (Supplemental Table S2). Because of themeth-
od’s efficiency, with no inefficient dsDNA ligation and only one
cleanup step, it is sensitive at very small amounts of starting
RNA. The short number of steps and small reaction volumes allow
a batch of libraries to be prepared in half a day with high through-
put in a 96-well plate, at a reagent cost of about 5 USD per sample
(Supplemental File 5). Library yields are predictable enough that
the optimal number of PCR cycles can be reliably estimated from
the amount of input material over five orders of magnitude.
Furthermore, because Smart-3SEQ reads only a single fragment
of each transcript, the one containing the polyadenylation site,
it is not sensitive to transcript length, which is a confounder for
whole-transcript RNA-seq (Oshlack and Wakefield 2009). Thus,
Smart-3SEQ allows simple and accurate quantification of tran-
script abundance; however, it cannot report information about
splicing or genotypes, unless the splice junction or polymorphism
occurs near the end of the gene, and it cannot detect nonpolyade-
nylated transcripts. Like 3SEQ, because RNA fragmentation is the
first step, it is also robust to prefragmented RNA, including dam-
aged RNA from FFPE samples.

Validation with reference samples

Wevalidated the accuracy and sensitivity of the Smart-3SEQmeth-
od by using it to quantify the reference RNAs used in the SEQC
Consortium’s benchmarking study (SEQC/MAQC-III Consortium
2014; Xu et al. 2014), although with lower amounts of RNA input.
In the first experiment, we used ERCC Mixes 1 and 2, which con-
tain 92 in vitro transcribed, polyadenylated transcripts at known
concentrations, which span six orders of magnitude and differ be-
tween the two mixes (Munro et al. 2014). We prepared 10-fold se-
rial dilutions at 1/10–1/100,000 the stock concentration, then
created a library from 1 µL of each (10.4 fmol–1.04 amol, 6.23 bil-
lion–623,000 molecules); at each dilution level we tested two dif-
ferent numbers of PCR cycles (Supplemental Fig. S4).

The proportion of reads aligned to the reference sequences
decreased mainly with RNA input, but the number of PCR cycles
also made a large difference (Supplemental Fig. S5A). Of all
aligned reads, 99.99% were in the expected forward-strand orien-
tation. The abundance of each transcript as measured by Smart-

3SEQ corresponded linearly with its expected copy number in
the sample (average r′ =0.990 in the highest-input, lowest-PCR
samples; see Methods for definition of r′) (Fig. 2A). The lower in-
formation content of the lower-input samples was visible as an
increase in the number of duplicate reads (Supplemental Fig.
S5B): If we assume the lowest-input samples are sequenced to
completion so that all unique sequences in the library have
been detected at least once, our average observation of 189,322
nonduplicate reads among the low-PCR libraries implies a cap-
ture efficiency of 30%; for comparison, the theoretical maximum
efficiency of GGG template switching has been estimated as 46%
(Zajac et al. 2013). As the amount of RNA input decreased, the
accuracy of the measurements worsened for low-abundance
transcripts (for 1 amol RNA, average r′ =0.926) (Supplemental
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Figure 1. Conceptual diagram of the Smart-3SEQ library preparation
method. Hands-on steps are separated by horizontal lines. (A) Total RNA
is denatured and fragmented by hydrolysis. (B) The oligo(dT) primer, in-
cluding a partial sequencing adapter, anneals at the beginning of the
poly(A) tail. (C) Reverse transcriptase synthesizes first-strand cDNA from
the RNA template and adds nontemplate dC at the end of the new strand.
(D) The second primer, which includes a second partial sequencing adapt-
er, anneals to the new dC overhang. (E) Reverse transcriptase synthesizes
the second cDNA strand using the first as a template. (F) After steps C–E,
which occur consecutively in one incubation, the result is a double-strand-
ed cDNA library with partial sequencing adapters at both ends. (G) PCR
with long primers amplifies the library and extends the adapters to full
length, including multiplexing indexes. (H) The only cleanup step in the
protocol uses paramagnetic SPRI beads to purify the amplified library while
excluding adapter dimers and short inserts. (I) The final library contains
the unknown cDNA sequence between the two sequencing adapters.
The cDNA is sequenced in the orientation of the original RNA, yielding
reads upstream of the end of the transcript (Supplemental Fig. S3). See
Supplemental File 1 for a detailed technical description, Supplemental
Figure S1 for a simplified diagram showing the practical workflow, and
Supplemental Figure S2 for a detailed technical diagram.
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Fig. S6). Likewise, the replicate correlations were very high for
high inputs but decreased for low inputs (Supplemental Fig.
S7), and the signal loss compared to the first dilution increased
with subsequent dilutions (Supplemental Fig. S8). However, in
the lowest-input samples, the expected copy number of several
transcripts was less than 1, so we expect considerable sampling
error even in the true copy numbers of low-abundance tran-
scripts, which is magnified by the recursive sampling of the seri-
al-dilution process.

In a second validation experiment, we used the Human Brain
Reference RNA (HBRR) and the Universal Human Reference RNA
(UHRR),whichwere also used in the SEQCbenchmarks.Wemixed
in the ERCC standards at the same relative concentration used by
SEQC (1/500 ERCC stock concentration with 100 ng/µL human
RNA) to make our RNA samples comparable with theirs, then we
serially diluted this mixture down to 10 pg total RNA (Supplemen-
tal Fig. S9), roughly the amount in a singlemammalian cell (Kawa-
saki and Wang 1989; Ogura et al. 1998; Ramsköld et al. 2012;
Picelli et al. 2013; Russo et al. 2014; Finka et al. 2015). As in the pre-
vious experiment, we saw a high proportion of alignable reads in
the high-input samples, which gradually declined as the number
of PCR cycles approached 20 and then declined more steeply
(Fig. 2C); the lowest-input libraries accumulated some short se-
quence artifacts, but most of these did not align to the genome
and a negligible share aligned to the transcriptome (Supplemental
Fig. S10), so they did not affect measurements of gene expression.
The diversity of the libraries also decreasedwith input amount, but
the genome loci detected by the reads stayed fairly constant (Sup-
plemental Fig. S11). Of the reads that aligned outside transcripts’ 3′

ends, only a small fraction aligned upstream of genome-encoded
poly(A) sites (Supplemental Fig. S12), suggesting off-target prim-
ingwas not themajor cause of these artifacts. The true abundances
of the transcripts in these human samples are not known a priori,
but it is still possible to validate Smart-3SEQ’s measurements by
comparing them with those of an alternative method, qPCR, on
the same reference RNA samples. Smart-3SEQ showed a strong
correlation (average Spearman’s ρ=0.845 for high-input sam-
ples) (Fig. 2B; Supplemental Fig. S13) with TaqMan-based
qPCR measurements of 999 genes (MAQC Consortium 2006)
and with SYBR-based qPCR of 20,801 genes (average high-input

ρ=−0.827) (Supplemental Fig. S14; SEQC/MAQC-III Consortium
2014).

We compared the accuracy of Smart-3SEQ side-by-side with
the SEQC data from standard RNA-seq performed on the same
ERCC transcripts and human reference RNAs (250 ng total RNA),
as well as Smart-seq performed on only 10 pg of human reference
RNAs with Smart-seq as implemented in the SMART-Seq v4 kit
from Takara Bio USA (M Bostick, pers. comm.). With moderate
amounts of input RNA, Smart-3SEQ showed equivalent accuracy
to RNA-seq in the ERCC standard curves (Supplemental Figs.
S15, S16). Likewise with ample RNA, Smart-3SEQ corresponded
with both SYBR-and TaqMan-based qPCR roughly as well as
high-input RNA-seq (Supplemental Figs. S17, S18), and with low
input it performed slightly worse than Smart-seq (Supplemental
Figs. S20, S21), although both methods performed worse with
low input than Smart-3SEQ and RNA-seq did with high input.
Although the direct correlation between Smart-3SEQand the other
methods was lower (Supplemental Figs. S19, S22), the qPCR plat-
forms were equally correlated with each other as they were with
the sequencing platforms (Supplemental Fig. S23). Thus, we con-
clude that although Smart-3SEQ and whole-transcript RNA-seq
may have different error profiles, they both quantify biological sig-
nal well.

To test Smart-3SEQ’s robustness to degraded RNA, we repeat-
ed the serial dilutions with pairs of fresh-frozen and FFPE samples.
That is, from each fresh-frozen tissue sample, an FFPE block was
also prepared, as previously described (Beck et al. 2010). We used
two cores each of solitary fibrous tumor and pigmented villonod-
ular synovitis, all from different clinical subjects. Despite the large
differences in RNA integrity, there were only small differences in
the qualities of the final libraries (Supplemental Fig. S24), likely at-
tributable to shorter cDNA inserts from FFPE (Supplemental Fig.
S25). Although there was some bias in the gene expression profiles
according to the preparation method, the separation between bio-
logical categories was much stronger. The artifactual signal in the
no-input controls, which may represent contamination of the li-
brary preparation reagents, cross-contamination of spuriously as-
signed sequence reads from the other libraries, or spuriously
aligned sequencing artifacts, was distinct from the lowest-input
samples (Supplemental Fig. S26). These results show that Smart-

CBA

Figure 2. Technical validation of Smart-3SEQ with reference RNAs. (A) Standard curve from ERCC transcripts, r′ =0.990. Each point represents one tran-
script sequence; the expected copy number is the estimated number of copies of that transcript in the RNA sample (1 µL at 1/10 dilution, 10 fmol total), and
“Smart-3SEQ reads” is the number of postfilter reads aligned uniquely to any part of that transcript’s sequence in the expected orientation (6.4 million).
Data shown are from the first replicate of the conditionwith 10 fmol ERCCmix 2 and seven PCR cycles, which had the highest read count for that condition;
data from all samples are shown in Supplemental Figure S6. (B) Comparison with TaqMan qPCR quantification of human transcripts, r′ =0.854. qPCRmea-
surements are normalized to the expression of RNA polymerase II. Data shown are from the first replicate of 100 ngUHRR, which had the highest read count
for that amount of input RNA (2.7 million sense-aligned to annotated genes); data from all samples are shown in Supplemental Figure S13. (C) Alignability
of Smart-3SEQ reads from human reference RNA dilutions and no-template controls.
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3SEQmaintains its sensitivity and accuracy even with low-quality
RNA samples.

Demonstration with microdissected cells

To take advantage of Smart-3SEQ’s compatibility with small
amounts of degraded RNA, we used the method to study single-
cell gene expression in the context of the tumor microenviron-
ment, which is amix of benign andmalignant cells. We compared
the gene expressionmeasured in single cells to the gene expression
obtained from bulk samples (100–500 cells) of homogeneous cell
populations as identified by cytology and location within the tu-
mormicroenvironment. This is similar to the approach that others
have used to assess the quality of single-cell RNA-seq libraries
(Marinov et al. 2014). The previous 3SEQmethod showed a strong
correlation between gene expression data obtained frommatching
fresh-frozen and FFPE material (Beck et al. 2010). As such, we used
bulk samples fromFFPE as the reference point to comparewith sin-
gle-cell FFPE gene expression.

We reviewed FFPE tissue from a mastectomy specimen ob-
tained within the prior year from a patient with ductal carcinoma
in situ (DCIS), which had typically low-quality RNA (RIN 2.3,
DV200 30%–50%). Wemicrodissected single-cell and bulk samples
from ducts involved by DCIS and from an adjacent focus of stro-
mal macrophages, six bulk tissue samples and 10 single cells of
each type plus six no-cell controls (Fig. 3; for validation of the dis-
section method, see Supplemental File 1). Unlike fresh-tissue sin-
gle-cell RNA-seq, in which the tissue is processed without first
visualizing the cells or their context within the tissue, the use of
LCM allowed us to microscopically identify specific areas and cells
to capture within the mastectomy specimens. This effectively al-
lowed us to pick specific single cells of interest from the millions
of cells present in the clinical archival specimen. Based on the pre-
ceding serial-dilution experiments with the human reference
RNAs, a sample of 500 cells is well beyond enough input for
high-quality data from a bulk library. This number of cells can
also be obtained from a section of a single breast duct involved
by DCIS or a nearby collection of macrophages.

There areminor differences between the quality of the single-
cell and bulk libraries. Of reads from the bulk libraries, 27% were
uniquely alignable (Fig. 4A); this is presumably lower than the
yield from intact reference RNA because the RNA in FFPE tissue
is fragmented below the desired length. The percentage of unique-
ly alignable reads was 17% in the single-cell libraries, likely lower
because of the increased abundance of PCR primer dimers in sam-
ples with very low input. However, only 2% of reads from the neg-
ative-control libraries were uniquely alignable. As expected, we
also saw a higher proportion of duplicate reads in the single-cell li-

braries, but the alignment loci stayed fairly consistent
(Supplemental Fig. S27).

To assess the degree to which Smart-3SEQ’s gene expression
profiles of dissected single cell can recapitulate the information
from bulk cell populations, we first determined which genes
were significantly differentially expressed (multiple testing–ad-
justed Padj < 0.01) between bulk stromal macrophage and ductal
tissue samples. As expected, the gene expression profiles between
ductal cells and stromal macrophages are considerably different
and identify biomarkers indicative of DCIS and macrophage pop-
ulations. The top 100 significantly differentially expressed genes,
according to only the bulk samples, are shown as a heatmap to il-
lustrate the differences (Fig. 4B; these genes can be found by sort-
ing and filtering Supplemental File 3, whose sections are explained
in Supplemental File 1). The significantly differentially expressed
genes include common clinical biomarkers for macrophages
(CD68 and CD163) and DCIS cells (EPCAM, KRT7, KRT18, and
ERBB2 [also known as HER2]) (Fig. 4C; Supplemental File 3). The
single-cell samples generally have gene expression profiles similar
to the cell type–matched bulk samples. All the gene expression pat-
terns of single stromal macrophages match the bulk stromal mac-
rophages. No stromal macrophages match ductal-cell signal.
However, five ductal cells show a gene expression pattern similar
to the bulk stromal macrophages rather than DCIS as expected.

To explore whether we can use the single-cell data to identify
distinct populations of cells, we performed t-SNE, amachine-learn-
ing technique that visualizes multidimensional data in two di-
mensions (van der Maaten and Hinton 2008), on the bulk and
single-cell samples together (Fig. 4D). t-SNE shows that the five
ductal cells whose gene expression profiles resemble those of mac-
rophages also cluster with the stromal macrophage cells and the
bulk stromal macrophage samples. The other five ductal cells clus-
ter with the bulk ductal tissue samples. These findings suggest that
the bulk ductal tissue samples are heterogeneous with at least two
different cell types, DCIS cells and intraductal macrophage cells,
which are resolved with single-cell dissection but not bulk tissue
homogenization. Immunohistochemistry for amacrophagemark-
er on the duct used for dissection (CD163) confirms that there are
macrophages alongside DCIS cells (Fig. 3C).

To further clarify the cell status, we note that the DCIS cells
from this mastectomy have an amplification of a region including
the ERBB2 (HER2) locus, which encodes an important therapeutic
target. Examination of gene expression from the single and bulk
DCIS cells shows a coordinated increase in signal at a possible
amplicon surrounding the ERBB2 locus (Fig. 5). This amplification
appears in all of the bulk DCIS samples as well as the single ductal
cells whose expression profiles match the bulk DCIS, but the am-
plification is absent in the bulk macrophage samples and in the

A CB

Figure 3. Laser-capturemicrodissection of ductal carcinoma in situ. (A) Single cell within a duct involved by DCIS, targeted for dissection (green outline).
(B) Duct postdissection and the captured cell on the LCM cap (inset). (C) Immunohistochemistry for macrophage marker CD163.
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single ductal cells that match the macrophage profile. We note
that this is a qualitative observation to confirm a specific hypoth-
esis; methods for rigorous unsupervised detection of genome
amplifications from expression data are outside the scope of
this report.

There are 52 genes that were significantly differentially ex-
pressed (Padj < 0.05) between single stromal macrophages and sin-
gle ductal cells inferred to be macrophages (Supplemental File 3).
Many of the most significant genes are related to extracellular ma-
trix interactions and leukocyte signaling. These data raise the pos-
sibility that intraductal macrophages have a phenotype that is
distinct from stromal macrophages and further highlight the abil-
ity of single-cell LCM and Smart-3SEQ to dissect complex cell pop-
ulations that would otherwise be missed in bulk analysis.

In a larger-scale replication of this study, we observed the
same pattern of distinct single macrophages and heterogeneous
single tumor cells (Supplemental Fig. S28). In particular, PCA
(Supplemental Fig. S28C) showed several distinct trends. Among
the bulk tissue samples, PC1 separated healthy macrophage from
the tumors, as expected, whereas PC2 showed a continuum of
the tumor samples with invasive ductal carcinoma (a more ad-
vanced tumor stage) at the extreme. On these same PCA axes,
the single epithelium cells formed a new cluster intermediate be-
tween single IDC and single macrophage. However, the single

DCIS cells were more heterogeneous, forming a cluster that
spanned along the bulk DCIS–IDC continuum and subsumed
the cluster of single IDC cells. This is consistent with the biology
of the DCIS analyzed in this case: Unlike the samples in the previ-
ous experiment, these samples were dissected from several differ-
ent ducts in the same patient’s tissue; therefore, these DCIS cells
display more heterogeneity than the previous samples (Fig. 4).
Again, the single cells’ heterogeneity was concealed among the
bulk tissue samples, reinforcing the importance of genome-wide
single-cell analysis, rather than bulk tissue or gene-specific analy-
sis, for understanding the tumor microenvironment.

Discussion

Smart-3SEQ is a streamlined, sensitive, and robustmethod for gene
expression profiling that compares favorably with previous meth-
ods. The protocol has fewer steps and takes less time than any oth-
er RNA-seq method to date, and it keeps costs very low by using
minimal volumes of common reagents (Supplemental Table S2).
Here, we show that Smart-3SEQ quantifies transcript abundance
accurately across at least five orders of magnitude of RNA input
amounts, from common working concentrations down to single
cells, including those with degraded RNA. This accuracy is
maintained even with inexpensive sequencing conditions

A
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Figure 4. Gene expression profiling on bulk and single-cell samples from FFPE tissue dissected by LCM. (A) Alignability of Smart-3SEQ reads from FFPE
bulk tissues, single cells, and negative controls. “ERBB2 amp” denotes the presence of the ERBB2 amplification in some samples (see Supplemental Fig. S5).
(B) Expression (regularized log read count, normalized by row) of the 100 genes with the greatest enrichment in bulkmacrophage relative to bulk DCIS and
the 100 genes with the opposite enrichment, all significant at Padj < 0.01. (C) Expression (transcripts per million) of known marker genes for macrophage
(CD68, CD163) and DCIS (EPCAM, KRT7, KRT18, ERBB2 [HER2]). Single cells from the DCIS tumor that lack the ERBB2 amplification are circled; we infer that
these cells are intraductal macrophages. (D) t-SNE analysis of all genes; same plotting scheme as C.
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(Supplemental Figs. S30, S31); for example, at current list prices,
an Illumina NextSeq run divided over a pool of 96 libraries (4 mil-
lion×76 nt reads each) comes to about 25 USD per library, after
about 5 USD for the library preparation. These attributes make
Smart-3SEQ useful for a variety of biological research applications.

Combining Smart-3SEQ with laser-capture microdissection
(LCM Smart-3SEQ) enables a new kind of single-cell genomics re-
search on clinical FFPE samples. Inmost “single-cell” genomics ex-
periments, a piece of tissue is homogenized and thousands of cells
are used to make individual sequencing libraries, but the position-
al identities of the cells are lost in the context of the tissue and
must be inferred from their genomic data—we propose to call
this “reverse RNA-seq” (Fig. 6), by loose analogy to reverse genet-
ics. In contrast, LCM Smart-3SEQ allows for standard “forward
RNA-seq” on specific single cells: The cells of interest can be
identified under the microscope by markers such as morphology,
location, or biomarker staining, and this prior classification is al-
ready known when the cells are profiled
for gene expression. Our study is an illus-
tration of the knowledge gained: We
identified two sets of macrophages, one
present in the stroma and one present
within the duct associated with ductal
carcinoma in situ. Conventional single-
cell sequencing might fail to distinguish
these two macrophage populations,
which had only a very small number of
differentially expressed genes, whereas
LCM Smart-3SEQ began with the prior
information that they were in different
tissue compartments.

We have shown the success of our
method for single-cell expression pro-
filing on a number of levels: (1) Our
approach is efficient in that we have ob-
tained distinct and reproducible gene ex-
pression profiles from our single-cell
experiments; (2) the single-cell libraries
recapitulate bulk gene expression data;
(3) we identified two distinct cell-type
signatures, the DCIS profile and themac-
rophage profile, with clinically recog-
nized biomarkers of each cell type;
(4) the data are sufficiently quantitative

to be used in conventional single-cell RNA-seq approaches; (5)
the data are sufficiently quantitative that we can detect a DNA
copy-number change; and (6) we can use the data to discover po-
tentially new cell phenotypes, such as stromalmacrophages versus
ductal macrophages, and describe gene expression profile differ-
ences between the two cell subtypes. There are limitations to
LCMSmart-3SEQ. LCM is labor-intensive, and this limits the num-
ber of cells that can be collected and observed. The quality of RNA
from FFPE material is poor. Recent FFPE clinical material that has
been well archived can have an RNA integrity number (RIN) above
3. However, RNA quality from FFPE material decreases with time
and decades-old FFPEmaterial will yield degraded RNA that is chal-
lenging for the LCM Smart-3SEQ method. As single cells already
have a limited amount of RNA, the age of the FFPE specimen
may influence the cell-to-cell variation in absolute RNA expression
and cell profile differences will be altered. The RNA obtained from
a single cell may represent a fraction of the total possible RNA

Figure 5. Inferred DNA copy number for Chromosome 17 in bulk and single-cell samples. Genes are aggregated in blocks of 1 Mb by transcription ter-
mination site. Heatmap cells show expression normalized to the mean of the bulk macrophages. (Red) Lower expression than bulk macrophages; (blue)
higher expression than bulkmacrophages; (gray) no data. The bright red line shows the position of the ERBB2 locus. Legend colors for cell types (left) match
Figure 4.

Figure 6. Conceptual diagram of different RNA-seq approaches. In reverse RNA-seq, cells are disaggre-
gated from tissue, destroying information about histological context and organization. After single-cell
RNA-seq, expression profiles are used to retroactively infer categories of cells. In forward RNA-seq, cells
are dissected in situ according to their histology, so these a priori classes can inform differential gene ex-
pression analysis.
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because the LCM may only capture part of the cell. For these rea-
sons we do not propose LCM as a substitute for microfluidic sin-
gle-cell methods. Rather, they are complementary approaches
that solve different problems; microfluidic RNA-seq remains the
best way to characterize thousands of cells from a single tissue sam-
ple and discover clusters of cell types, while LCM Smart-3SEQ al-
lows the experimenter to choose the specific cells or tissue
regions of interest, from many different tissue samples in a single
experiment, including FFPE tissue. Likewise, LCM Smart-3SEQ is
not a substitute for truly in situ hybridization or sequencingmeth-
ods (Femino et al. 1998; Lee et al. 2014; Lubeck et al. 2014; Chen
et al. 2015), which completely preserve spatial information about
the tissue sample but do not perform gene expression profiling for
the entire transcriptome of every cell. However, it is more sensitive
to small and low-quality input material than previous methods
based on microdissection, such as tomo-seq, which creates se-
quencing libraries from whole sections of tissue (Junker et al.
2014), and Geo-seq, which uses LCM but requires fresh-frozen tis-
sue (Peng et al. 2016).

Our approach addresses a number of experimental-design
problems that are difficult to overcome with conventional sin-
gle-cell RNA-seq. FFPE archival clinical tissue cannot be examined
by conventional single-cell RNA-seq because the cells cannot be
physically dissociated. Nonarchival tissue samples, both fresh
and frozen, are difficult to collect for clinical studies, especially
those that require large numbers of samples for assessing clinical
outcomes. LCM Smart-3SEQ also enables studies on uncommon
or microscopic lesions that are difficult to collect as fresh or
fresh-frozen material. Thus, a much wider variety of cells and dis-
eases can be assessed using archival material with Smart-3SEQ.
There are also technical advantages of LCM Smart-3SEQ owing
to the ability to bank isolated single cells for future experiments.
This includes the spiking in of known cells to control for batch ef-
fects with biological replicates.

The LCM Smart-3SEQmethod creates a new histologically fo-
cused approach to studying small cell populations and individual
cells. Cells of interest can be chosen by morphology, microenvi-
ronment location, or in situ biomarker status and then profiled
to uncover previously unappreciated heterogeneity in gene expres-
sion, including subtle changes that might escape reverse RNA-seq
analyses. This approach will allow transcriptome profiling to iso-
late andmeasure each cell individually,moving histology andmo-
lecular pathology to the level of cell-to-cell variation.

Methods

Reference RNA preparation

ERCC standards and Human Brain Reference RNAwere purchased
from Thermo Fisher Scientific (4456739 and AM6050, respective-
ly). Universal Human Reference RNA was purchased from
Agilent Technologies (740000) and resuspended in RNA Storage
Solution (Thermo Fisher Scientific AM7001), which was also
used for all RNA dilutions. HBRR and UHRR stocks were measured
with a Quant-iT RNA Assay Kit (Thermo Fisher Scientific Q10213)
on a Qubit fluorometer, and these concentrations were used to cal-
culate dilutions. All RNA stocks were stored at −80°C.

Tissue preparation

Samples were collected with the approval of a HIPAA-compliant
Stanford University Medical Center institutional review board.
The FFPE tissue blocks were archived with the Stanford

University Hospital Department of Pathology. RNA quality for
the FFPE block was measured by extracting total RNA from a sepa-
rate sectionwith the RNeasy FFPE Kit (Qiagen 73504) and testing it
on an Agilent Bioanalyzer with the RNA Pico kit.

Slide preparation

Consecutive sections of the FFPE block were taken on amicrotome
at 7 µm thickness and mounted on glass slides with polyethylene
naphthalate membranes (Thermo Fisher Scientific LCM0522).
Slides were stored overnight in a nitrogen chamber. The next
day, slides were immersed 20 sec each in xylenes (three times),
100% ethanol (three times), 95% ethanol (two times), 70% etha-
nol (two times), water, hematoxylin (Dako S3309), water, bluing
reagent (Thermo Fisher Scientific 7301), water, 70% ethanol
(two times), 95% ethanol (two times), 100% ethanol (three times),
xylenes (three times).

Laser-capture microdissection

Slides were dissected immediately after staining. Histologywas cat-
egorized by a board-certified pathologist (R.B.W.) according to ini-
tial sections stained with hematoxylin and eosin. Cells were
dissected on an ArcturusXT LCMSystem using both the ultraviolet
(UV) laser to cut out each sample and the infrared laser to adhere it
to a CapSure HS LCM Cap (Thermo Fisher Scientific LCM0215).
For bulk samples, roughly 500 cells were captured by area, accord-
ing to density estimates by cell counting on small areas. For single
cells, a cell was dissected from the same area as the corresponding
bulk sample, then any additional cells adhering to the capwere ab-
lated with the UV laser. For the ablation validation experiment,
two regions of both types (still roughly 500 cells each) were cap-
tured on the same cap, and then one region or the other was ablat-
ed with the UV laser, except the no-ablation controls (therefore
they had roughly 1000 cells). After LCM, the cap was sealed in a
0.5 mL tube (Thermo Fisher Scientific N8010611) and stored at
−80°C until library preparation, which was performed within 3 d
of dissection.

Microscopy image preparation

LCM photographs were captured in JPEG format with the built-in
camera and software of the ArcturusXT system. Photographs in
Figure 3 and Supplemental Figure S29 were color-corrected to en-
hance contrast with the automatic “Stretch HSV” function in
GNU Image Manipulation Program 2.8.20. All photographs were
recompressed to reduce file sizewith the “jpeg-recompress” feature
in JPEG Archive 2.1.1, using “veryhigh” quality, “accurate”mode,
and themean pixel error algorithm. All photographs are presented
at the original resolution. A complete archive of microscopy pho-
tos from all dissections is included in Supplemental File 4.

Library preparation

Sequencing libraries were prepared according to the Smart-3SEQ
protocol (Supplemental File 2). Reference RNA libraries were pre-
pared using the standard protocol for nondegraded RNA and the
pre-SPRI pooling option, one batch for the ERCC experiment
and one for the human reference RNAs, with the numbers of
PCR conditions shown in Supplemental Figures S4, S9. The
fresh-frozen versus FFPE experiment used the corresponding ver-
sions of the protocol and only libraries of the same version were
pooled; no-template controls were prepared with both versions.
The fresh-frozen versus FFPE experiment used the same numbers
of PCR cycles for the same dilutions as the reference RNA experi-
ment. The LCM experiments used the special protocol for FFPE
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tissue on an Arcturus LCM HS cap and the pre-SPRI pooling op-
tion, a single batch for all LCM samples, using 22 PCR cycles for
the bulk and ablated samples with roughly 500 cells, 25 cycles
for the single cells, and 20 cycles for the no-ablation controls
with roughly 1000 cells. No-template controls were prepared
identically to single-cell samples in the same batch using empty
LCM caps. Libraries were characterized immediately and stored at
−20°C until sequencing.

Library characterization and sequencing

Libraries were profiled for size distribution on an Agilent 2200
TapeStation with High Sensitivity D1000 reagent kits and quanti-
fied by qPCR with a dual-labeled probe (Quail et al. 2008), and li-
braries were mixed to equimolarity according to the qPCR
measurements. In the reference RNA experiments, libraries were
prepared according to the manufacturer’s instructions with a 1%
spike-in of the φX174 control library (Illumina FC-110-3002) and
sequenced on an Illumina NextSeq 500 instrument with a High
Output v2 reagent kit (Illumina FC-404-2005), reading 86 nt for
read 1 and 6 nt for the P7 index read. The LCM experiments
used 76 nt for read 1. In the experiment for testing the effect of
read lengths, libraries were prepared according to the manufactur-
er’s instructions with a 1% φX174 spike-in and sequenced on an
Illumina MiSeq instrument with a reagent kit v3 (Illumina MS-
102-3001), reading 169 nt for read 1 and 6 nt for the P7 index read.

Data preprocessing

In most experiments, base calls from the NextSeq were demulti-
plexed and converted to FASTQ format with bcl2fastq (Illumina);
adapter trimming was enabled and short trimmed sequences
were retained for diagnostic purposes. For the MiSeq run, FASTQ
generation, demultiplexing, and adapter trimming were per-
formed by the MiSeq Reporter in “Generate FASTQ” mode. Only
reads that passed the chastity filter were included in the total
read count and further analysis. The first 5 nt of each read were re-
moved from its sequence and appended to the read name as its
UMI; the following 3 nt were assumed to derive from the G-over-
hang of the template-switch oligonucleotide and were discarded.
Reads shorter than 8 nt after adapter trimming were assumed to
be primer dimers and were excluded from other analysis, but still
counted toward the total number of sequenced reads. Software ver-
sions and command-line arguments are listed in Supplemental
Table S3.

Read alignment and counting

Reads from the experiment that used only ERCC RNAs were
aligned to NIST’s empirical ERCC sequences (Lee et al. 2016) by
NovoAlign (Novocraft Technologies Sdn Bhd), using A30 as the
“adapter” sequence, and alignments with MAPQ<10 (posterior
probability < 0.9) were discarded. Reads from the experiment that
mixed human reference RNAs with ERCC spike-ins were aligned
by STAR (Dobin et al. 2013) to a combination of the ERCC se-
quences and the hg38 reference genome sequence, masked for
SNPs according to dbSNP version 150 (obtained from the UCSC
Genome Browser) (Sherry et al. 2001), and the GENCODE version
27 gene annotations (Harrow et al. 2012) were provided as the ref-
erence transcriptome. Reads from the experiments with human
tissue were aligned in the same way except their reference index
contained no ERCC sequences. Alignments per human transcript
were counted by featureCounts from the Subread suite (Liao et al.
2014), including only nonduplicate alignments in the correct
(sense) orientation. In the replication of the FFPE LCM experi-
ment, we discarded 19 failed libraries with fewer than 10,000 reads

aligned to genes, including all six of the no-template controls.
When a read aligned tomore than one annotated gene, the catego-
ry was decided by order of priority, with the most likely categories
first: A read was considered “3′ end” if it aligned to the end of any
annotated transcript, regardless of where it aligned on any other
transcripts, or assigned to “exon” only if it did not align to
any ends, or to “intron” only if it did not align to any exons,
and so forth.

Detection of duplicate reads

Smart-3SEQ reads only a small number of possible fragments from
each transcript, so it is likely that some of them will break at the
same base position by chance, and traditional deduplication
according to genome position will incorrectly mark these as dupli-
cates. The incorporation of UMIs before PCR allows distinguishing
coincidental fragmentation duplicates from true PCR duplicates
among reads that align to the same position. However, as reported
previously (Smith et al. 2017), the simplistic approach of allowing
only one hit per UMI per position also fails when the read density
is high and the number of possible UMIs is low, such that even du-
plicates with the same genome position and same UMI may occur
by chance.

We solved this problem with an extension of the algorithm
proposed by Hatsugai et al. (2017). All reads that start at the
same genome position are considered potential PCR duplicates.
Among that set of reads, across the vector of read counts per
UMI, the frequencies of observed counts are tallied. Then the num-
ber of nonduplicate reads is estimated as the weighted average of
all counts’ predictions, in which each observed count c predicts
that all counts greater than c +1 per UMI are PCR duplicates, and
the weight is the number of UMIs with that count. That is, the
nonduplicate read count is estimated as

1
n

∑n

i=1

∑n

j=1

min (cj, ci + 1), (1)

where ci is the number of reads with UMI i out of n possible UMIs
(n=1024 here because the UMIs are 5 nt long). Zero counts are in-
cluded, so each UMI with zero hits votes for a limit of one nondu-
plicate read per UMI. Therefore, when the total number of reads
aligned to the genome position is small, this formula produces
the same results as the traditional approach of allowing only
one hit per UMI. However, unlike the traditional approach, it
does not underestimate the nonduplicate read count when the to-
tal is large.

Quantification of transcript abundance

Transcripts per million were computed differently between Smart-
3SEQ and whole-transcript RNA-seq because the latter must be
normalized by transcript length:

TPMRNA−sep(i) =
ci
li

∑
i

ci
li

, (2)

where ci is the number of reads aligned to transcript i and li is the
length of the annotated transcript.

TPM3SEQ(i) = ci∑
i
ci
. (3)

Because transcript abundances and Smart-3SEQ read counts
by transcript were log-distributed, but some counts were zero, we
defined the linear correlation between read counts and other
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abundance measurements as

r′ = corr(log10A,log10(C+ 1)). (4)

where A and C are the random variables of which the abundance
measure a and read count c, respectively, are particular realizations,
and corr(X, Y) is Pearson’s product-moment correlation.

Analysis of gene expression

Differential gene expressionwas analyzedwithDESeq2 1.6.1 (Love
et al. 2014). All default options were used except dispersions were
estimated with local fitting. The regularized log transformation
was used to normalize read counts. PCAwas performed on the nor-
malized data with the prcomp function, and t-SNE was performed
with the Rtsne package (https://github.com/jkrijthe/Rtsne) on the
Euclidean distance matrix of the normalized data.

Data access

The sequencing data generated in this study have been submitted
to the NCBI BioProject database (https://www.ncbi.nlm.nih.gov/
bioproject) under accession number PRJNA413176. Data process-
ing pipeline scripts are collected at https://github.com/jwfoley/
3SEQtools. Scripts used to perform the analyses in this study are
collected in Supplemental Code and at https://github.com/
jwfoley/Smart-3SEQ_paper_scripts. Additional support for the
Smart-3SEQ protocol is available in an online forum at https
://groups.google.com/forum/#!forum/smart-3seq.
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