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Differential genetic interactions of yeast stress
response MAPK pathways
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Abstract

Genetic interaction screens have been applied with great success
in several organisms to study gene function and the genetic archi-
tecture of the cell. However, most studies have been performed
under optimal growth conditions even though many functional
interactions are known to occur under specific cellular conditions.
In this study, we have performed a large-scale genetic interaction
analysis in Saccharomyces cerevisiae involving approximately
49 × 1,200 double mutants in the presence of five different stress
conditions, including osmotic, oxidative and cell wall-altering
stresses. This resulted in the generation of a differential E-MAP (or
dE-MAP) comprising over 250,000 measurements of conditional
interactions. We found an extensive number of conditional genetic
interactions that recapitulate known stress-specific functional
associations. Furthermore, we have also uncovered previously
unrecognized roles involving the phosphatase regulator Bud14, the
histone methylation complex COMPASS and membrane trafficking
complexes in modulating the cell wall integrity pathway. Finally,
the osmotic stress differential genetic interactions showed enrich-
ment for genes coding for proteins with conditional changes in
phosphorylation but not for genes with conditional changes in
gene expression. This suggests that conditional genetic interac-
tions are a powerful tool to dissect the functional importance of
the different response mechanisms of the cell.
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Introduction

Cells need to constantly evaluate and adapt to changes in environ-

mental conditions. Variation in these conditions can result in

suboptimal growth, and therefore, cells use complex response

pathways that sense environmental changes and promote the

appropriate response resulting in adapted cellular states. MAPK

(mitogen-activated protein kinase) pathways are widely used

through evolution to perform this essential function (Raman et al,

2007). Changes in environmental conditions are commonly detected

by sensors located at the cell surface, and the signal is transduced

by GTPase nodes to MAPK phosphorylation cascades. These

cascades are characterized by a three-tiered module comprising a

MAPK kinase kinase (MAPKKK), a MAPK kinase (MAPKK) and the

MAPK itself, whose activation results from the sequential phosphor-

ylation of each component kinase in turn (Marshall, 1994). Once

activated, MAPKs target different downstream effectors ranging

from cytoskeletal proteins to transcription factors that lead to

changes in transcriptional programs (Yoon & Seger, 2006). The

importance of phosphorylation in the transmission of the signal

makes protein phosphatases the main negative regulators of signal-

ling through MAPK pathways (Martı́n et al, 2005).

The budding yeast S. cerevisiae uses MAPK pathways to adapt to

a wide variation in physical environmental conditions and chemical

stimuli, such as osmotic stress or agents that disrupt the integrity of

the cell wall. Whereas the high osmolarity glycerol (HOG) pathway

is essential for an appropriate response and adaptation to hyperos-

molarity, the cell wall integrity pathway (CWI) detects and responds

to the cell wall stress that occurs under normal growth conditions or

through environmental change (Levin, 2011; Saito & Posas, 2012).

Due to the conservation of MAPK pathways, yeast studies have

provided key advances in identifying components and elucidating
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molecular mechanisms underlying eukaryotic cellular signalling.

Large-scale gene expression studies have been used to identify the

transcriptional responses to different sets of conditions (Gasch &

Werner-Washburne, 2002), and proteomic approaches have contrib-

uted to our understanding of MAPK-mediated phosphorylation

(Soufi et al, 2009; Mascaraque et al, 2013). These regulatory

networks result in functional inter-dependencies that can also be

studied by large-scale genetic approaches. For example, chemical

genetic studies have been used to identify genes that, when knocked

out, increase sensitivity to external stress factors (Hillenmeyer et al,

2008). In addition, these regulatory networks have been analysed

using quantitative genetic interaction mapping (Fiedler et al, 2009).

Genetic interactions quantify the extent by which the phenotype

of a double mutant deviates from the expected combination of the

individual mutations (Boone et al, 2007; Mani et al, 2008; Beltrao

et al, 2010). In yeast, fitness measurement and knock-out libraries

have been extensively used to measure genetic interactions. If a

double mutant grows better than expected, then a positive or allevi-

ating genetic interaction exists between the two genes. Conversely,

it is said that a negative or aggravating genetic interaction exists

when the double mutant grows worse than expected based on the

fitness of the single mutants. It has been previously shown that

quantitative genetic interaction mapping can be used to study the

functional organization of regulatory networks in unstressed condi-

tions (Tong et al, 2001; Pan et al, 2004; Lehner et al, 2006; Collins

et al, 2007; Roguev et al, 2008; Typas et al, 2008; Costanzo et al,

2010; Braberg et al, 2013). However, it is known that these genetic

inter-dependencies can change with variations in external condi-

tions (Harrison et al, 2007; St Onge et al, 2007; Musso et al, 2008).

We have previously developed a large-scale approach to map differ-

ential genetic interactions, termed dE-MAP, and have applied this

method to study changes in genetic interactions in the presence of

DNA-damaging agents (Bandyopadhyay et al, 2010; Ideker &

Krogan, 2012). However, little is known about the specificity of

differential genetic interactions towards distinct environmental

perturbations. To study this, we applied the dE-MAP strategy to a

diverse set of five stress conditions including osmotic, oxidative and

cell wall stress agents. We observed a large number of conditional

dependent genetic interactions that are specific and reflect previ-

ously known conditional dependent functional interactions. We

have additionally identified many novel functional conditional

gene–gene and gene–complex associations. Finally, we have

compared osmotic differential genetic interactions with large-scale

condition-dependent phosphoproteomics and gene expression infor-

mation to dissect the contribution of these different types of regula-

tion to the conditional fitness measurements.

Results and Discussion

Quantitative differential genetic interactions of stress
response pathways

A quantitative differential genetic map, or dE-MAP, of yeast MAPK

stress response pathways was constructed based on two experimen-

tal screens (Materials and Methods). A total of 49 signalling-related

query genes covering different pathways were crossed with an array

containing approximately 1,200 genes that broadly cover different

yeast cellular complexes and processes (Fig 1A and B). The query

genes are comprised of stress-sensing proteins, kinases, phosphata-

ses, transcription factors and a few additional adaptor proteins

(Fig 1A). Many of the components overlap with the known

members of the cell wall integrity (CWI) and the high osmolarity

glycerol (HOG) pathways. The double mutants were arrayed on agar

plates either in optimal growth conditions or in the presence of five

different agents to provide distinct stresses: sorbitol (SO) as high

osmotic stress; H2O2 (OX) as oxidative stress; zymolyase (ZY) and

Congo red (CR), both cell wall-altering agents and thus CWI-activating

agents; and caffeine (CA) which in addition to stimulating the CWI

pathway (Martin et al, 2000) seems to inhibit the TOR pathway

(Kuranda et al, 2006). Therefore, some mutants affected in TORC1

and TORC2 complexes, which have distinct physiological functions

(Loewith et al, 2002), were also included in the query mutant collec-

tion. ZY is also known to activate the HOG pathway, which is

required for sequential CWI pathway activation. In fact, activation

of the CWI pathway is independent of the main receptors operating

in this pathway, Wsc1 and Mid2, but requires the Sho1 branch of

the HOG pathway (Bermejo et al, 2008). Double mutant colony sizes

were quantified in each of the conditions, normalized and analysed

to calculate a quantitative genetic interaction score (S-score) (Collins

et al, 2006, 2010). A total of 343,200 genetic interaction scores were

measured for the generation of this dE-MAP which allowed us to

test for approximately 257,000 differential interactions. Biological

replicates for S-scores derived from unstressed and for ZY-treated

cells showed correlation coefficients similar to previous genetic

interaction screens (Collins et al, 2007) (Supplementary Fig S1).

The significant genetic interactions (here defined as

|S-score| ≥ 3) constitute the ‘static’ networks obtained from both

stressed and unstressed conditions. In order to estimate the repro-

ducibility of ‘static’ genetic interactions at this S-score cut-off, we

compared biological replicates for two conditions (no-stress and ZY)

for the double mutants that were screened in both conditions. For

the normal growth condition, 53 and 55% of genetic interactions

identified in screen 1 and screen 2, respectively, are detected at the

same or higher threshold in the replicate. For the ZY condition, 51

and 63% of genetic interactions observed in screen 1 and screen 2,

respectively, are detected at the same or higher threshold in the

replicate. We have also compared the genetic interactions reported

here with a previous study that contained many of the signalling

same gene pairs (Fiedler et al, 2009). For the normal growth condi-

tion, 33 and 42% of genetic interactions identified in screen 1 and

screen 2, respectively, were also found in that previous study. These

results are in line with previous comparisons of genetic interaction

screens (Ryan et al, 2012). We then defined as the conditional or

differential genetic interactions those that significantly change from

the unstressed to the stress conditions using an approach we have

previously described (Bandyopadhyay et al, 2010). The variance of

S-scores was determined as a function of its magnitude for the

unstressed condition, and a z-score value was calculated for each

gene pair in the presence of each stress condition (Materials and

Methods). An absolute value z-score cut-off of 2 was used to define

the significant differential genetic interactions. We show in Fig 2A a

scatterplot with S-scores for the same gene pairs screened in

the presence or absence of ZY. The gene pairs with a conditional

genetic interaction z-score higher than 2 are highlighted in the

Figure (Fig 2A, red and green dots).
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Benchmarking of the conditional genetic interaction networks

In order to assess the quality of the conditional genetic interactions

determined in this study, we have assessed reproducibility across

biological replicates and validated a subset of interactions using

viability spot assays. For the ZY condition, genetic interactions that

exist in both biological replicates display a correlation of 0.46

(Supplementary Fig S2). We have also tested the reproducibility of

the ZY conditional interactions at the threshold selected. Using this

condition, 44 and 36% of conditional genetic interactions identified

in screen 1 and screen 2, respectively, are detected at the same or

higher threshold in the replicate. In order to further validate the

conditional genetic interactions experimentally, we re-generated a

set of 31 double mutants, including 21 pairs with HOG1 and 10 with

SLT2, and compared the viability of the single and double mutants

in stress and no stress using spot assays (total of 93 conditional

interactions) (Supplementary Fig S3). For all but 2 of the 31 pairs,

the double mutant did not appear to have a genetic interaction in

absence of stress, consistent with the no-stress S-score value for

90% of the pairs. We scored the change in genetic interaction in a

qualitative schema with five groups from strongly conditional nega-

tive to strongly conditional positive (– –/�/n/+/++). Two gene

pairs displayed negative interactions in the absence of stress in the

spot assays (HOG1-PHO80 and HOG1-VPS9). For these, we could

not easily score the change in genetic interaction in SO or ZY in the

spot assays. For all other gene pairs, we then compared the condi-

tional genetic interaction score with the phenotypes observed in the

conditional viability assays. The median conditional z-scores were

found to be correlated with the qualitative ranking of the condition

viability spot assays with median values of �3.64 for strong nega-

tive, �0.72 for negative, �0.014 for neutral, 0.94 for positive and

2.27 for strongly positive (Supplementary Fig S4). At the cut-off

selected here, ~70% (62/89) of the conditional genetic interactions

showed a similar phenotype (positive, neutral or negative) as the

viability assays. It is worth pointing out that visual inspection of

spot tests is far less quantitative than S-scores derived from the

genetic interaction screens. Nonetheless, the results above suggest

that the static and conditional genetic interactions obtained are of
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Figure 1. A differential epistatic interaction map (dE-MAP) of Saccharomyces cerevisiae MAPK stress pathways.

A A total of 49 deletion query genes related to MAPK signalling (i.e. kinases, phosphatases, transcription factors, adaptors) were crossed against a deletion array of
approximately 1,200 genes. The double mutants were screened in five different stress conditions.

B The selected query genes broadly cover the cell wall integrity (CWI) and high osmolarity glycerol (HOG) pathways as well as a few members of the target of
rapamycin (TOR) pathway. Genes in grey circles were not selected for screening.
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high quality. The S-score and z-score values for gene–gene pairs in

each condition are available in Supplementary Table S1.

Specificity and functional relevance of conditional
genetic interactions

For each of the conditions, we counted the number of conditional

genetic interactions and the fraction of those that overlap with static

genetic interactions in the same condition. Across all conditions,

32% of the conditional genetic interactions are observed in the

corresponding static genetic interaction network. For the different

conditions, this value ranges from 22% for CR and SO to 44% for

one of the ZY experiments, which is similar to what was reported in

a DNA damage differential E-MAP (38%) (Bandyopadhyay et al,

2010). This suggests that the static and differential interactions are

mostly non-overlapping. In addition, the majority of differential

interactions are not shared across stress conditions (Fig 2B). We

next studied the functional relevance and specificity of these two

different networks by calculating the enrichment of known stress

response genes. For each stress condition (except CR), we were able

to compile a list of genes that, when mutated, confer sensitivity

to the stress from unbiased genome-wide studies (Materials and

Methods). We observed that pairs of these stress-sensitive genes are

most often found to be significantly and specifically enriched in the

corresponding differential network but not in the corresponding

static network (Fig 2C). Some of the observed cross-stress
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Figure 2. Differential genetic interactions are extensive and specific and recapitulate previously known functional associations.

A Scatterplot of the genetic interaction S-scores in the presence and absence of zymolyase. Strong genetic interactions were defined as |S-score| ≥ 3, and strong
differential interactions were defined as |z-score| ≥ 2. Dashed lines delineate the S-score threshold values for strong positive (yellow line) and strong negative (blue
line) static interactions. The differential interactions were highlighted in green (differential positive) and red (differential negative).

B Venn diagrams with the total number and overlaps of differential genetic interactions in each condition.
C Gene deletions causing sensitivity to different stress conditions were collected from previous chemical genetic studies. The enrichment of pairs of these sensitivity

genes was calculated for each static and differential genetic interaction network. The significance of the enrichment tests was converted to –log(P-value).
D For each condition, we calculated the fraction of the total differential interactions explained by each of the query strains. The query strains were ranked according to

this metric, and the top 20 most interacting strains are represented here.
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enrichment is expected. For example, the sorbitol-sensitive pairs are

specifically enriched in the SO and also in the ZY differential

network. This could be anticipated as ZY also activates the HOG

pathway (Bermejo et al, 2008). Furthermore, since cell wall mutants

are frequently caffeine sensitive, zymolyase-specific pairs are highly

enriched in CA. Interestingly, hydrogen peroxide pairs are enriched

under SO and ZY treatment, suggesting that members of the HOG

and CWI pathways also collaborate in the response to oxidative

stress. These results support previous reports that have related

oxidative stress with these two pathways in yeast (Rep et al, 2001;

Alic et al, 2003; Bilsland et al, 2004; Staleva et al, 2004; Petkova

et al, 2012). We also observed that genes sensitive to rapamycin (a

TORC1 complex inhibitor; Heitman et al, 1991) were specifically

enriched in the caffeine differential network, reinforcing the idea

that both drugs share cellular targets. Importantly, the enrichment

of these known stress-related genes is much less significant and less

specific in the static networks (Fig 2C), showing the value of our

approach for connecting the distinct signalling components with

specific cellular stresses. These results suggest that genes that cause

a conditional fitness defect when mutated are more likely to show

conditional genetic interactions. To test this notion explicitly, we

tested the correlation of single-mutant fitness (SMF) defect with

the number of conditional genetic interactions for all array genes.

We observed a significant but weak correlation between the

absolute change in SMF and number of conditional interactions

in SO (r = 0.11, P-value = 0.0003) and OX (r = 0.13, P-value =

4.52 × 10�5). These observations suggest that changes in SMF are

significantly associated with the changes in genetic interactions in

the same stress, but these account for a small fraction of the total

variation observed.

Degree of conditional interactions highlights key
pathway-specific genes

We next asked whether the differential networks could be used to

rank the query genes according to their involvement in the response

to the distinct stresses. To this end, we ranked query genes accord-

ing to the number of differential interactions in each condition

(Fig 2D). We note that only 12 query signalling genes were screened

in both experiments (Fig 1A, stared genes in Fig 2D). The observed

ordering recapitulates much of what was previously known about

the protein members and the cellular functions of these pathways

(Fig 1B). The top-ranked query genes in SO include the MAPK and

MAPKK of the HOG pathway, Hog1 and Pbs2, respectively, as well

as Nmd5, a carrier protein required for the nuclear/cytoplasmic

shuttling of Hog1 (Ferrigno et al, 1998). This suggests that the Hog1

nuclear translocation is important for full long-term response to

osmostress. Nmd5 is in contrast absent from the list of top-ranked

genes in ZY, consistent with the fact that Hog1 is not translocated to

the nucleus after zymolyase-induced stress (Bermejo et al, 2008).

The next top-ranked genes include the HOG pathway sensors Sho1

and Msb2 as well as Nbp2, an adaptor protein that targets the phos-

phatase Ptc1 to Pbs2/Hog1 to inactivate the pathway, suggesting the

importance of Ptc1 for the modulation of the osmotic response.

Among the top-ranked osmotic responding query genes is also the

Ptk2 kinase. Although it has not been associated with the response

to osmotic stress, Ptk2 is involved in the regulation of ion transport

across the plasma membrane (Goossens et al, 2000). Our results

underscore the relevance of this process in the long-term response

to osmotic stress. Furthermore, Ptk2 has been shown to contribute

to the osmotic stress response in Neurospora crassa (Lew &

Kapishon, 2009). As expected, whereas kinases of the CWI and

HOG pathway modules are in the top-ranked for ZY, only the ones

belonging to the CWI cascade are in the top-ranked for CA. Under

CA treatment, we find specifically members of the TORC1 (Tor1 and

Kog1) but not TORC2 complex (Tor2 and Avo1). These results

provide additional evidence on the functional connection between

TORC1 and the CWI pathway (Yan et al, 2012). We also find Skn7

as the most responsive query gene under H2O2 in accordance with

its role in the response to oxidative stress (Krems et al, 1996). Curi-

ously the osmotic stress sensors Sho1 and Msb2 and the CWI

kinases Pkc1 and Bck1 are also among the top-ranked genes in

oxidative stress. Among them, only Pkc1 has been previously

shown to be involved in the response to oxidative stress (Vilella

et al, 2005). Although this work indicates that components down-

stream to Pkc1 in the CWI pathway do not participate in this

response, our results suggest that Bck1 is relevant for the cellular

response to this stress. For CR, we observed, as expected, members

of the CWI pathway (Pkc1, Bck1 and Slt2) as well as the Tor2 and

Ypk2 kinases. These results illustrate the close link between TORC2,

the actin cytoskeleton regulation, and the CWI pathway. Further-

more, they also provide evidence that the homolog of mammalian

kinase SGK Ypk2 is not only one of the TORC2 substrates (Kamada

et al, 2005), but probably a major TORC2 downstream effector.

We compared the ranking of query genes obtained above with

the fitness defect the same genes have when knocked out under

the same conditions. For each of the query genes, we counted the

number of differential interactions in SO, OX and CA and

compared this value with the single-mutant fitness defect in appro-

priate conditions. We observed a significant correlation between

the single-mutant fitness (SMF) defect and number of interactions

in SO (r = 0.72, N = 28, P-value = 7 × 10�6) and OX (r = 0.52,

N = 28, P-value = 0.0012) but not in CA (r = �0.04, N = 27).

However, there is a correlation between the SMF defect in rapa-

mycin and number of interactions in caffeine (r = 0.71, N = 24,

P-value = 5 × 10�5). These observations lend credence to the

notion that the degree of differential interactions associates signal-

ling genes with their respective pathways. However, these correla-

tions are driven by a small number of genes. For example,

excluding HOG1 and PBS2 in SO, SKN7 in OX and TOR1 and SLT2

in CA (versus rapamycin SMF) abolishes the correlations

(r = �0.32, r = �0.26, r = 0.15, respectively). For the HOG path-

way, we compared the ranking of known pathway members

according to the number of differential interactions and SMF defect

scores in osmotic stress. Some pathway members (MSB2, NBP2

and SHO1) are among the top genes with most differential interac-

tions but do not have a strong SMF defect. Similarly, HOT1 and

SSK22 show a significant SMF defect but have fewer differential

genetic interactions. Both the SMF and the degree of conditional

interactions appear to provide complementary condition-specific

functional information regarding single genes.

Together, the results on the specificity (Fig 2C), reproducibility

and functional ranking of query signalling genes (Fig 2D) support

the view that the differential genetic networks provide an accurate

representation of the known functional interactions of these

environmental response pathways. Furthermore, the unexpected
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observations constitute putative novel functional associations

between signalling genes and the corresponding stress response.

Condition-dependent gene–complex functional associations

Having established that the differential networks are enriched in

known functional associations, we set out to identify previously

undiscovered roles for protein complexes in the response to stress.

For each protein complex represented in our array with at least four

genes, we calculated the enrichment of differential interactions with

each query gene in each stress condition (Materials and Methods).

To summarize the results, we then summed the total number of

significant gene–complex associations for each condition and ranked

each complex according to these values (Fig 3A). The most stress-

responsive complex is the ribosome, likely due to the known impor-

tance of translational control in the cellular stress response (Holcik

& Sonenberg, 2005). Several of the top-ranked complexes are related

to membranes (e.g. Clathrin AP complexes, Golgi transport,

SNAREs), which highlights the importance of membrane trafficking

for the response to environmental changes. Genes responsible for

membrane trafficking have also been shown to be a hub in the static

genetic interaction network of growing cells (Costanzo et al, 2010).

We also noted that the nuclear pore complex (NPC) has several

functional associations with signalling genes in the presence of SO,

suggesting a relevant involvement of this complex in response to

osmotic stress. In fact, several nuclear pore proteins had been

shown previously to have changes in phosphorylation after expo-

sure to SO (Soufi et al, 2009). Hog1 has been shown to phosphory-

late nucleoporins to control mRNA export upon stress, placing NPC

as a clear HOG target for osmostress response (Regot et al, 2013).

The membrane-related adaptor protein (AP) complexes, which

coordinate cargo recruitment and clathrin assembly during clathrin-

coated vesicle biogenesis (Yeung & Payne, 2001), show strong asso-

ciation with the CWI Slt2 and Bck1 kinases under the cell wall stress

ZY (Fig 3B). These results illustrate that not only exocytosis but also

the endocytic process is important for cell wall homeostasis in

conditions that alter the cell wall. Accordingly, deficiencies in these

complexes would exacerbate the effects of ZY and trigger higher

activity through the CWI pathway. In line with this prediction, we

observed an increase in the phosphorylation of the CWI Slt2 kinase

when the cargo-binding subunit of the AP-2 complex either Apm4

or Cog6 is removed and cells stressed with either ZY or CR (Fig 3C).

In fact, it has been recently described the role of Apm4 in the cell

wall damage response, since the cell wall stress sensor Mid2 is a

cargo for the AP-2 complex (Chapa-y-Lazo et al, 2014). It is interest-

ing to note the retromer complex, which mediates sorting of retro-

grade cargo from the endosome to the trans-Golgi network (Attar &

Cullen, 2010), also displays genetic interactions in the presence of

ZY. We speculate that endocytic organelles also could play a direct

role in yeast signalling modulation, as proposed for mammalian

cells (Miaczynska et al, 2004).

The Slt2 and Bck1 kinases also show ZY-dependent associations

with the histone H3 lysine 4 (H3K4) methylase COMPASS complex

(Shilatifard, 2012) (Fig 3B). Deletion of the COMPASS subunit-

encoding genes SWD3 or BRE2 displays a significant reduction of

the ZY-dependent induction of the MLP1 promoter, a well-established

reporter of the CWI transcriptional response (Rodriguez-Peña et al,

2008) albeit they show an increased Slt2 phosphorylation compared

to the wild-type (Fig 3D). A similar behaviour was observed in

mutants affected in other components of COMPASS (spp1D, sdc1D
and swd1D), suggesting that this complex participates in the

Rlm1-regulated transcriptional response to cell wall stress (Fig 3D).

We also observed a decreased induction from the CHR1 promoter

(another reporter for the CWI pathway) in bre2D mutant cells

(Supplementary Fig S5). The bre2D mutants do not show reduced

induction of an osmostress-responsive promoter (STL1) or a mating

pathway promoter (FIG1) under osmotic stress or in response to

pheromones, respectively (Supplementary Fig S5).

Since the monoubiquitinase Rad6 is required for H3K4 trimethy-

lation by COMPASS and Bre1 is in turn required for Rad6 recruit-

ment to chromatin (Shilatifard, 2012), we next tested MLP1

expression in mutants lacking components of this ubiquitin ligase

complex. As observed in Fig 3D, both Rad6 and Bre1 are required

for ZY-induced MLP1 expression. Strikingly, bre1D mutants do not

show Slt2 phosphorylation and Rlm1 accumulation upon pathway

stimulation, pointing to a role not only in transcription but in signal

transmission to the MAPK. This result also suggests the importance

of ubiquitination for post-transcriptional modulation of the path-

way. We have also observed that the Paf1 complex (Paf1C), a plat-

form for the recruitment of histone methyltransferases (Krogan

et al, 2003), could also be participating in MLP1 transcription, since

paf1D also showed very reduced transcriptional induction of MLP1-

LacZ (Fig 3D). However, similar to bre1D, paf1D cells display low

Slt2 phosphorylation and Rlm1 activation after ZY and CR stress

(Fig 3D), suggesting that this complex is also affecting signal trans-

mission through the CWI pathway. Of interest, the Paf1 complex is

necessary to prevent a defect in transcription elongation of the FKS2

gene, a gene induced by an Rlm1-independent non-kinase-Slt2-

dependent mechanism of transcription (Kim & Levin, 2011).

These results suggest that the differential interaction networks

allow for an unbiased large-scale exploration of conditional depen-

dent functional interaction networks. The full list of gene–complex

conditional associations is provided in Supplementary Table S2.

Conditional variation in genetic ‘finger prints’ recapitulates
known condition-dependent associations

The vector of genetic interaction scores for each gene constitutes a

functional ‘finger print’ that can be compared to highlight function-

ally related genes (Beltrao et al, 2010; Costanzo et al, 2010). Genes

with highly correlated genetic interactions tend to be part of the

same pathway/complex, and clustering of these scores has been

shown to be a powerful way to identify novel pathway/complex

members (Schuldiner et al, 2005; Collins et al, 2007; Ryan et al,

2012). We reasoned that condition-induced changes in correlation of

genetic interactions scores could equally be used to identify condi-

tional functional associations. For each pair of query signalling

genes, we calculated the correlation of their genetic interaction

scores in the presence and absence of stress. We then performed

hierarchical clustering on the matrix of pair-wise correlations, and a

heat-map representation of the clustering in the presence or absence

of ZY is shown in Fig 4A. As expected, regardless of the stress condi-

tion, the most correlated signalling genes tend to operate within the

same pathway and very often their products physically interact (e.g.

Nbp2-Ptc1, Pbs2-Hog1). In addition, we noted that, in the presence

of stress, there are substantial changes in the clustering. In the
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presence of ZY, we noted in particular that a cluster containing

Nbp2, Ptc1, Swi4 and Bud14 becomes more correlated with the

Pbs2/Hog1 and Pkc1/Bck1 clusters (Fig 4A). The changes in correla-

tion for gene pairs between NBP2/PTC1/BUD14 and HOG1/PBS2

have a higher average increase under ZY than random gene pairs

(0.12 versus �0.005, P-value = 0.0006; Wilcoxon rank test). The

gene pairs between PKC1/BCK1/PTP2 and NPB2/PTC1/BUD14 also

show a significant but marginal increase in average correlation in ZY

compared to random pairs (0.04 versus �0.005, P-value = 0.04

Wilcoxon rank test). These changes are consistent with the well-

characterized role of Nbp2-recruiting Ptc1 for the inactivation of

Hog1 during adaptation (Mapes & Ota, 2004). Ptc1 and Nbp2 have

also been shown to regulate Slt2 activity (Stanger et al, 2012). The

similar behaviour between Bud14 and Nbp2/Ptc1 was not expected

and suggests a role for Bud14 in either the HOG or the CWI path-

ways. Deleting BUD14, which codes for a regulatory subunit of the

protein phosphatase type 1 Glc7, results in Slt2 hyper-phosphorylation

even in the absence of stress (Fig 4B), as it has been reported for

nbp2Δ or ptc1Δ cells (González et al, 2006; Stanger et al, 2012).

Thus, the CWI pathway activation could account for the close clus-

tering of these mutants. Interestingly, in bud14Δ cells, the reduced

transcriptional induction of MLP1 does not correlate with the high
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Figure 3. Putative gene–complex associations highlight novel roles for membrane trafficking and the COMPASS complexes in modulating the cell wall
integrity pathway.

A Condition-specific associations between the query genes and protein complexes were predicted based on the enrichment of differential interactions. The total
number of conditional gene–complex associations was calculated and complexes ranked based on the sum across all conditions.

B Network diagram of the predicted zymolyase-specific gene–complex associations for Bck1 and Slt2 CWI kinases.
C Western blotting analysis of Slt2 phosphorylation in WT (BY4741) and isogenic mutant cells lacking Amp4 (component of the AP complex) or lacking Cog6

(component of the COG complex). Cells were grown to mid-log phase at 24°C in YPD, and then, culture aliquots were treated or not with Congo red (30 lg/ml) or
zymolyase 100T (0.8 U/ml) for 4 h. Proteins extracts were prepared, and phosphorylated Slt2 and actin (as a loading control) were detected with anti-phospho-p42/44
and anti-actin antibodies, respectively.

D CWI pathway activity in WT (BY4741) and isogenic mutant strains lacking different components of the COMPASS, Paf1C and Rad6/Bre1 complexes. Top: Slt2- and
Rlm1-dependent transcriptional induction of MLP1-lacZ was examined by b-galactosidase activity determination in cell extracts in the absence or presence of ZY.
Aliquots of exponentially growing cultures of the distinct strains bearing the plasmid YEp352MLP1-lacZ were left untreated or treated with zymolyase 100T (0.8 U/ml)
for 4 h, and b-galactosidase assays were performed. Data shown are the average of three independent experiments performed in triplicate. Error bars indicate
standard deviations. Bottom: Western blotting analysis of cell extracts from exponentially growing cultures of the same strains as above, left untreated or
treated with zymolyase 100T (0.8 U/ml) or Congo red (30 lg/ml) for 4 h. Phospho-Slt2, Rlm1-myc and actin or G6PDH (as a loading control) were detected
with specific antibodies.
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MAPK phosphorylation (Fig 4C), suggesting a role for Bud14 either

in the appropriate signal transmission from Slt2 to the transcription

factor Rlm1 or in the transcriptional process. No significant effect

was observed either on the activity of the mating pathways as deter-

mined by Fus3 or Kss1 phosphorylation analysis (Fig 4B) and FIG1

transcription or on the activity of the HOG pathway, as measured by

STL1 transcriptional activation (Supplementary Fig S6).

Overall, the conditional changes in genetic interaction as

measured by differential interaction scores or by changes in the

correlation patterns are a powerful tool to identify condition-dependent

functional interactions.

Dissection of conditional genetic interactions using large-scale
conditional regulatory data

As we described above, differential genetic interactions are a

measure that relate to the functional importance of pathway condi-

tional interactions. This genetic information is highly complemen-

tary to other studies that attempt to dissect the post-translational or

transcriptional mechanisms of stress response pathways. Previous

studies have combined genetic and physical interaction data

to study the interrelationships between pathways and complexes

(Kelley & Ideker, 2005). We reasoned that combining differential

genetic data with conditional phosphoproteomic and transcriptional

information would allow us to dissect the relative importance of

these different response mechanisms. To test this, we focused on

the HOG pathway and compiled previously published phosphopro-

teomic (Soufi et al, 2009) and gene expression changes (Gasch et al,

2000) in the presence of SO. We first ordered the query signalling

genes screened in our study according to their role in the

information flow of the pathway (i.e. sensing, post-translational and

transcriptional). We observed that the upstream sensing and post-

translational regulators, in particular for the Sho1 branch of the

pathway, explained more of the differential interactions than the

downstream transcriptional regulators (Fig 5A). From the set of

approximately 1,200 genes tested in our array, we then looked at

the overlap between those that had at least two differential interac-

tions and those that showed changes in phosphorylation or changes

in gene expression in the presence of SO (Fig 5B). The genes with

differential interactions overlapped significantly with the set of

proteins that are regulated by phosphorylation (1.4 times above

random, P-value = 0.0051 with a Fisher’s exact test) but not with

the set of differentially expressed genes (0.8 of random expectation,

P-value = 0.08 for depletion with a Fisher’s exact test). Finally, we

tested the enrichment of different gene pairs in the differential

networks: gene pairs that code for SO phospho-regulated proteins;

gene pairs that code for known kinase–substrate interactions in the

CWI or HOG pathways (obtained from phosphoGRID—www.phos-

phogrid.org); and gene pairs that are differentially expressed after

exposure to SO. Only the gene pairs related to post-translational

regulation were enriched in SO differential network (Fig 5C).

Kinase–substrate interactions are enriched fourfold (P-value =

3 × 10�4), while the phospho-regulated protein pairs are enriched

twofold (P-value = 1 × 10�14). Overall, these results suggest that,

for the HOG pathway, the sensing and post-translational regulation

is of higher functional importance than the down-stream transcrip-

tional response to stress. An alternative explanation for these

observations would be that the post-translational regulatory

Nbp2,Ptc1,Swi4
Bud14,Msg5

Pkc1,
Bck1,Rlm1

Clustering of genetic similarity (Zymolyase)

Ptp2,
Bck1,

Nbp2,Ptc1
Swi4,Bud14

Pbs2,Hog1

Pkc1
Bck1

Pbs2
Hog1

Nbp2

Ptc1

Bud14

Swi4

Nbp2

Ptc1

Bud14

Pkc1
Bck1

Pbs2
Hog1

Swi4

+zy

No stress

PTP2
BCK1
PKC1
SWI4
BUD14
PTC1
NBP2
SKN7
HOG1
PBS2
MSG5
PPG1

MSG5
SWI4
BUD14
PTC1
NBP2
PPG1
RLM1
BCK1
PKC1
CRZ1
PTK2
HOG1
PBS2
SSK2

Clustering of genetic similarity (no stress)
Δ

- + - +

G6PDH

WT bud14
Zymolyase

Slt2-P

Kss1-P
Fus3-P

W
T

bu
d1
4

200

100

M
LP
1-
la
cZ

Pbs2, Hog1
Ptk2, Ssk2

C

BA

Pkc1

No Stress
Zymolyase

Figure 4. Correlation of genetic profiles under different conditions provides insights into condition-dependent functional interactions.

A The vector of genetic interaction S-scores for each query gene was used to calculate pair-wise Pearson correlation coefficients for each condition. The matrix of
correlations in the presence and absence of zymolyase was clustered and represented in the form of a heat-map. We highlighted the sections containing 3 clusters:
Hog1/Pbs2 cluster; Pkc1/Bck1 cluster; and a cluster containing Nbp2, Ptc1 and Bud14. White arrows highlight the increase in average correlation of genetic-
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B, C CWI pathway activity in WT (BY4741) and the isogenic bud14D strain, in the presence or absence of ZY. (B) Phospho-Slt2 levels and (C) transcriptional induction of
MLP1-lacZ were analysed as in Fig 3D and E. Phospho-Fus3 and Phospho-Kss1 are also detected with the anti-phospho-p42/44 antibody.

Molecular Systems Biology 11: 800 | 2015 ª 2015 The Authors

Molecular Systems Biology Yeast stress response dE-MAP Humberto Martin et al

8

http://www.phosphogrid.org
http://www.phosphogrid.org


response is more condition specific than the gene expression

program. In fact, it has been shown that many stress conditions as

well as many genetic perturbations result in a common change in

the gene expression program that is commonly known as the envi-

ronmental stress response (ESR) (Gasch et al, 2000). The ESR

expression signature has been more recently linked to changes in

the distribution of cells along the cell cycle caused by many stresses

or genetic perturbations (Brauer et al, 2008; Duibhir et al, 2014).

For this pathway, previous experimental evidence validates this

prediction as it has been shown that the cell can grow under osmotic

stress in the absence of a Hog1-dependent transcriptional response

(Westfall et al, 2008). The changes in gene expression might be

more relevant as a general stress response mechanism. We note that

this might not be a general case for all pathways. Based on the frac-

tion of differential interactions explained by each query gene

(Fig 2D), transcriptional related genes are highly ranked in the

response to OX (Skn7) and CR (Swi4), but kinases dominate the top-

ranked genes for the other stresses. These analyses suggest that

differential genetic networks provide a way to dissect the functional

relevance of different cellular response mechanisms.

Perspective

We provide here an extensive exploration of the differential genetic

interactions for the environmental response MAPK pathways of

S. cerevisiae using the dE-MAP approach. Differential genetic

networks recapitulate many of the known condition-specific func-

tional interactions and allowed us to predict novel functional associa-

tions. Conditional genetic interactions tend to have little overlap

across conditions and show a small but significant correlation with

the changes in single-mutant fitness under the same conditions. This

is in line with the observation that gene knock-outs with slow growth

under optimal conditions display more negative genetic interactions

(Costanzo et al, 2010). Conditional single-mutant fitness information

is less costly to collect than conditional genetic interactions so it can

be used as an indicator for genes that are more likely to show changes

in functional associations in a given condition. However, conditional

single-mutant fitness information alone cannot identify the pairs of

genes that show changes in functional associations under certain

conditions, much like the growth phenotype of single-gene deletions

under normal growth cannot identify specific pairs of genes that are

synthetic lethal. We believe the data provided here will spur addi-

tional studies of such conditional functional and physical interactions.

Understanding the genetic make-up of an organism is important

not just to discover novel functional associations but also to under-

stand evolutionary constraints and the complexity of trait heritabil-

ity. Studies in yeast suggest that genetic interactions contribute very

significantly for quantitative trait heritability (Bloom et al, 2013).

Therefore, genetic interactions across multiple loci are likely to be

playing a significant role in the susceptibility to common human

diseases. Given the lack of statistical power to identify genetic inter-

actions of even the largest association studies, it becomes increas-

ingly important to understand the general properties of the genetic

architecture of the cell. While recent studies have made progress in

predicting phenotypes from genome sequence (Jelier et al, 2011),

we expect that static and differential genetic interactions will

provide additional power for such predictions. It will also be

increasingly important to understand what properties of the genetic

architecture of the cell are conserved across species (Roguev et al,

2008; Ryan et al, 2012) and tissue types.

Materials and Methods

‘Static’ and differential genetic interactions

Genetic interaction screens were performed as previously described

(Collins et al, 2006) with the exception that the last selection step

A B C

Figure 5. Dissection of differential genetic interactions into post-translational and transcriptional regulatory components.

A Representation of the HOG pathway and the fraction of SO-dependent genetic interactions explained by different types of query genes: sensors (black), kinases (blue)
and transcription factors (orange).

B Venn diagram with the overlap between array genes that show at least two SO conditional genetic interactions, conditional changes in gene expression or
conditional changes in phosphorylation.

C Significance of enrichment of post-translational or transcriptionally regulated gene pairs in differential genetic interaction networks.
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was done by replica-plating cells onto DM medium (no stress) and

DM medium containing 0.6 M SO, 50 lg (1 U)/ml zymolyase 20T

(MP Biomedicals Inc, Aurora, OH, USA) or 1.5 mM H2O2 (Sigma)

for the first screen and 30 lg/ml Congo Red (Sigma), 4 mM caffeine

(Sigma) or 50 lg (1 U)/ml zymolyase 20T for the second screen.

For Congo red and zymolyase plates, the medium was buffered with

50 mM MES pH 6.5. Plates were incubated for 24/36 h at 30°C.

Query mutant strains lacking genes OPY2, MSB2, RLM1, HOT1,

SKO1, NMD5, MSN1, MLP1, CHS3, SLM1 and SLM2 were obtained

as previously described by deleting the corresponding genes with

the NATr gene, after PCR amplification from plasmid pFA6-NAT-

MX6 (Goldstein & McCusker, 1999). Other query strains were previ-

ously described (Fiedler et al, 2009). The static genetic interactions

(S-score) in each condition were scored as previously described

(Collins et al, 2006). Values of |S-score| ≥ 3 were considered strong

static genetic interactions. In order to identify genetic interactions

that change significantly in the presence of a stress conditions, we

calculated a z-score for each stress S-score (Sstress) using an

approach similar to that used by Bandyopadhyay and colleagues

(Bandyopadhyay et al, 2010). As previously noted, the standard

deviation of S-scores increases non-linearly with the magnitude

(Bandyopadhyay et al, 2010). For this reason, the mean and stan-

dard deviation of the non-stressed S-score (Scontrol) were calculated

as non-parametric functions l(Scontrol) and r(Scontrol) using a slid-

ing window. The differential z-score was calculated as (Sstress �
l(Scontrol))/r(Scontrol). We used a threshold of |z-score| ≥ 2 to define

the set of differential interactions in each condition. The S-score and

z-score values for gene–gene pairs in each condition are available in

Supplementary Table S1.

Validation with spot assays

Qualitative ranking of cellular fitness in spot assays was performed

with wild-type BY4741 or isogenic mutant cells. SLT2 was deleted on

selected single mutants included in the array (BY4741 background)

with a PCR-amplified SLT2 deletion cassette containing the Kluyver-

omyces lactis URA3 marker. In this cassette, the marker is flanked by

identical Staphylococcus aureus Sau96I DNA methyltransferase

sequences. Following gene deletion, these sequences allow FOA selec-

tion of URA3 popping-out cells. hog1D double mutants were

constructed with a similar strategy or using a NATr deletion cassette.

Enrichment of gene-sensitive pairs

Genes that result in sensitivity to stress, when knocked out, were

compiled from previously genome-wide studies (curated from the

SGD database—www.yeastgenome.org). We calculated the enrich-

ment of pairs of sensitive genes in the static and differential genetic

interactions, and significance was assessed using the hypergeo-

metric distribution.

Gene–complex associations

For each protein complex represented in our array with at least four

genes, we calculated the enrichment of differential genetic interac-

tions with each query signalling gene and each condition. Statisti-

cally significant signalling gene–complex associations were then

selected for each condition. We summarized the results for each

complex by summing the number of significant query–complex

associations found in each condition. For this analysis, we used a

larger number of differential interactions using a threshold of

|z-score| ≥ 1.7. Enrichment significance was calculated using the

hypergeometric distribution, and false discovery rates were

determined by permutations as implemented in GO-TermFinder. A

false discovery rate < 15% was used as the cut-off to select the

gene–complex associations based on the differential genetic interac-

tions. A list of gene–complex associations with significance values is

provided in Supplementary Table S2.

Plasmids

In order to determine MLP1 transcriptional induction, the episomic

vector YEp352 bearing a MLP1-GFP fusion (pMLP1-GFP) (Rodriguez-

Peña et al, 2008) and the pMLP1-LacZ, carrying the transcriptional

fusion of the MLP1 promoter to the lacZ gene (Garcı́a et al, 2009),

were used. pCRH1-LacZ was also used to analyse CRH1 transcrip-

tional induction and therefore CWI activity (Bermejo et al, 2008).

pRS315 backbone vectors carrying GFP under the control of the

STL1 (Wei et al, 2012) or FIG1 promoters (Bashor et al, 2008) were

used for analysis of the HOG and mating transcriptional induction,

respectively.

Immunoblot analysis of yeast cell extracts

Budding yeast extracts and Western blotting analysis of the distinct

proteins were performed as previously described (Martin et al,

2000). Immunodetection of actin, Rlm1-Myc and glucose-6-

phosphate dehydrogenase proteins was carried out using monoclonal

C4 (Immuno MP Biomedicals, Catalog #: 69100), 9E10 (Santa Cruz

Biotechnology, SC-40) and polyclonal anti G-6-PDH (Sigma, Product

No. A 9521) antibodies, respectively. Monoclonal anti-phospho-

p44/p42 MAPK (Thr202/Tyr204, Cell Signaling, mAb #: 4370) was

used for detecting phospho-Slt2, phospho-Fus3 and phospho-Kss1.

These primary antibodies were detected using a fluorescently conju-

gated secondary antibody from LI-COR Biosciences with an Odyssey

Infrared Imaging System (LI-COR Biosciences).

b-Galactosidase activity and flow cytometry assays

b-Galactosidase activities were determined according to Guarente

(1983). Values are averages of at least three independent transfor-

mants assayed in triplicate. For GFP analysis, cells were collected,

washed twice with PBS, treated with cycloheximide (10 lg/ml) and

then analysed by flow cytometry in a Guava EasyCyte flow cyto-

meter, acquiring green fluorescence through a 488 excitation laser

and a 525/30 BP emission filter (BFP). The marker was set using

unstained yeasts as controls.

Supplementary information for this article is available online:

http://msb.embopress.org
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