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In this study, we show how light can be absorbed by the body of a living rat due to an injected pigment circulating in the blood
stream. This process is then physiologically translated in the tissue into a chemical signature that can be perceived as an image
by magnetic resonance imaging (MRI). We previously reported that illumination of an injected photosynthetic
bacteriochlorophyll-derived pigment leads to a generation of reactive oxygen species, upon oxygen consumption in the
blood stream. Consequently, paramagnetic deoxyhemoglobin accumulating in the illuminated area induces changes in image
contrast, detectable by a Blood Oxygen Level Dependent (BOLD)-MRI protocol, termed photosensitized (ps)MRI. Here, we show
that laser beam pulses synchronously trigger BOLD-contrast transients in the tissue, allowing representation of the luminous
spatiotemporal profile, as a contrast map, on the MR monitor. Regions with enhanced BOLD-contrast (7-61 fold) were deduced
as illuminated, and were found to overlap with the anatomical location of the incident light. Thus, we conclude that luminous
information can be captured and translated by typical oxygen exchange processes in the blood of ordinary tissues, and made
visible by psMRI (Fig. 1). This process represents a new channel for communicating environmental light into the body in certain
analogy to light absorption by visual pigments in the retina where image perception takes place in the central nervous system.
Potential applications of this finding may include: non-invasive intra-operative light guidance and follow-up of photodynamic
interventions, determination of light diffusion in opaque tissues for optical imaging and possible assistance to the blind.
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INTRODUCTION
Magnetic Resonance Imaging (MRI) is an established, powerful,

noninvasive method for tomography of otherwise opaque tissues

[1,2]. While optical imaging techniques are limited by tissue

depth, due to absorption, light scattering and photon diffusion

processes [3], the study of light diffusion in opaque tissues may

now be facilitated based-on the detection of luminosity by Blood

Oxygen Level Dependent (BOLD)-MRI, as shown below.

BOLD-MRI provides monitoring of acute changes in tissue

oxygenation status, endowing spatiotemporal information [4], as

routinely performed in functional fMRI during neuroimaging

([5,6] and references therein). This technique, based on the

magnetic properties of endogenous deoxyhemoglobin (deoxyHb),

enables rapid readouts of the dynamic balance between circulating

paramagnetic deoxyHb and diamagnetic oxyHb. Image contrast

of BOLD-MRI may also be affected by blood flow, carbon dioxide

tension, hematocrit, pH or the presence of biphosphoglycerate [7].

Applications of BOLD-MRI include evaluation of tissue oxygen

levels [8], studies of angiogenesis [9] and evaluation of

pathological ischemia in the kidney [10], brain [11] and heart

[12]. In other applications, like neuroimaging [5,6], hypercapnia/

hyperoxia studies [13], and Vascular Targeted Photodynamic

Therapy (VTP) [14], BOLD MRI-contrast is artificially manip-

ulated. In VTP, an externally triggered localized photochemical

process generates reactive oxygen species (ROS) in the circulation,

inducing focal deoxyHb accumulation and BOLD contrast [14]

upon oxygen [15] consumption.

Vascular Targeted Photodynamic Therapy is a local treatment

modality used to ablate solid tumors upon focal illumination of

tumor-bearing animals pretreated with a photosensitizer drug. This

treatment involves intravenous injection/infusion of Pd-bacterio-

chlorophyll derivatives [16] (e.g. WST09 [14,17–21], or WST11

[22,23]) as photosensitizing drugs, followed by immediate local

transdermal or interstitial illumination provided by optic-fiber at

matched near-infrared wavelengths (763 or 755nm respectively).

Consequently, cytotoxic ROS (mainly superoxide and hydroxyl

radicals [24]) are generated in the tumor vasculature, resulting in

acute vascular occlusion and blood stasis, development of necrosis

and tumor eradication. This therapeutic modality is presently in

phase II clinical trials for prostate cancer therapy, in collaboration

with Steba-Biotech and Negma France [18].

This study describes how an illuminated tissue and the

photochemistry involved in VTP can act together as a detector-

screen to translate a spatiotemporal light profile into paramagnetic

information imaged by psMRI (Fig. 1). This detector-screen

consists of the photo-excited pigment that circulates in the blood

vessel network, driving an oxygen-exchange cascade, which

culminates with image mapping of light dependent deoxyhemo-

globin distribution. The performance of the detector-screen is
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influenced by its matrix density and uniformity. Biological

implications are discussed, and possible practical applications of

this new imaging concept are suggested.

RESULTS
We hypothesized that if a pigment-treated animal is illuminated,

the luminous incident-image displayed on the animal tissue can be

translated in vivo into a deoxyHb-dependent BOLD-MRI contrast

map, reproducing its spatiotemporal profile. A laser beam

(755 nm) was directed at a subcutaneous (s.c.) tumor, grafted to

the thigh of a rat, which was placed in the MRI magnet (Fig. 1,

Fig. 2). Following the pretreatment (PC) and light (LC) control

scans, the animal was i.v. injected with WST11 and the tumor was

illuminated by an alternate light:dark (12 s:110 s) sequence

paradigm (P1). Decreases in MR signal intensity, due to local

deoxyHb accumulation, were used to create maps of the BOLD-

contrast changes, relative to the PC baseline (see methods). Well-

defined BOLD-contrast activation spikes (7–8% higher than PC)

demonstrating synchrony with the illumination paradigm were

instantaneously observed, while BOLD-contrast reverted to the

baseline values during the intervening dark phases, where

DeoxyHb was apparently washed out upon re-oxygenation

(Fig. 2A). No contrast changes were observed in the PC and LC.

Processing of the collected data into a BOLD-MRI contrast

map (for example at 6 min, 2nd pulse, Fig. 2B), overlaid onto the

anatomic image (Fig. 2C), appeared to represent the boundaries of

the incident display rather poorly, most likely due to low signal to

noise ratio, motion or detector-screen artifacts. To overcome this

problem, all 60 sequential BOLD activation maps collected were

processed into a single map, termed the correlation map. This

map was obtained by computing the temporal correlation between

BOLD activation and the illumination sequence paradigm

(p,0.02), on a pixel-by-pixel basis (see Methods). Pixels whose

BOLD contrast responded in synchrony with the illumination

paradigm were identified, as illuminated. Repetition of the 12 s

light pulses progressively contributed to the image quality and to

the reduction of the surrounding noise, as shown for the first three

light pulses (Fig. 2D–F). The final correlation map presents pixel

clusters which allow deduction of the illuminated zone that

overlapped with the anatomic location of the incident light, as

determined with the aiming laser beam (Fig. 2G, white circle).

Relative to the surrounding area, this zone demonstrated

Figure 2. Temporal correlation between illumination and BOLD-contrast
changes. A. Time-course of the BOLD response in the deduced illuminated
area (white circle in G). The first 4 min included the pretreatment (PC) and
the light control (LC) pulses (200 mW/cm2). Each time point corresponds
to a 12 s T2* BOLD-sensitive image. Black arrow indicates WST11 injection
to begin photosensitization, using an alternating light:dark sequence
(12 s:110 s), paradigm P1 (red bars). B. Percent BOLD activation map at
t = 6.4 min, overlaid on the anatomic image, C. C. MRI coronal view of the
rat thigh, s.c. grafted with MADB106 tumor. A light beam (w 1 cm) was
projected onto the tumor area. The white dotted circle depicts the tumor.
D–F. Correlation coefficient maps (p,0.02) obtained after the 1st, 2nd and
3rd light pulses respectively, overlaid on the anatomic image. G. Correlation
coefficient map of the entire paradigm (60 images) overlaid on the
anatomy, allowing deduction of the illuminated field on the psMR image
(white circle) that spatially overlaps with the incident light. The colored
pixel clusters represent high blood vessel densities and/or larger vessels in
the illuminated zone; while the dark areas represent low/no vascularity.
The contrast enhancement ratio of illuminated relative to the surrounding
areas was 49-fold (average 33623SD, n = 8). H. Gd-DTPA contrast
enhanced imaging (20 min post-treatment) marks functional, permeable
blood vessels. The inset shows the correlation map overlaid on the
GdDTPA enhanced image. Note: non-illuminated vasculature is not visible
on the correlation map (compare red arrows in G versus H). Dashed white
circles represent copies of the white circle in G. BOLD-contrast scale bar
relates to (B) and correlation scale bar to (D–G).
doi:10.1371/journal.pone.0001191.g002

Figure 1. Schematic view of the experimental set up for in-vivo
translation of light into an MR-image. The laser pulses are projected
onto the pigment-treated animal placed inside the MRI magnet. The
illuminated display is physiologically translated in the tissue into
a chemical signature and reproduced as an image on the MRI monitor.
doi:10.1371/journal.pone.0001191.g001

BOLD View of Light
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a significantly positive contrast enhancement ratio of 49-fold in

this experiment (average 33623SD, n = 8), whereby false-positive

pixels were barely detectable (0.6%, average 1%60.4SD). The

non-uniform distribution of the pixel clusters within the illumi-

nated region may reflect variations in tumor vascular density, as

independently verified by GdDTPA-contrast-enhanced MRI of

the tumor’s vascular functionality. The enhanced pixels of the

correlation map, which lie within the illuminated display (white

circle Fig. 2H & insert), indeed coincide with the tumor vascular

pattern, as confirmed by GdDTPA contrast-enhanced MRI.

However, GdDTPA-enhanced areas outside the deduced illumi-

nated zone (red arrow) were not identified in the correlation map

(compare red arrows in Figs. 2 G&H). Thus, psMRI features the

unique ability to detect and differentiate illuminated, from non-

illuminated vascular regions. Additionally, the synchrony between

the BOLD response pattern and the pulsed light paradigm

illustrates the reversible nature of the photosensitization process

(Fig. 2A). Although GdDTPA-enhanced imaging demonstrated

vascular functionality at the treatment site following the eight

consecutive 12 s light pulses (Fig. 2H), 90% tissue necrosis was

histologically observed in the tumor 24 h later (not shown). Yet,

negligible necrosis was observed following a single 12 s light pulse

of 200 mW/cm2 (2.4 J/cm2), equivalent to 0.6–4% of the light

dose routinely used in standard therapeutic VTP protocols (60–

360 J/cm2) used to induce acute, irreversible blood stasis before

the end of the treatment [25,26]. The gradual decline in spike

height seems to reflect WST11 clearance and possibly develop-

ment of vascular photo-damage (Fig. 2H). No significant

correlation was found when the BOLD contrast results were

tested against delayed illumination paradigms, eliminating the

possibility of a random or deferred relationship.

The non-uniform vascular pattern of the tumor was found to

dominate the BOLD activation map, creating a detector-screen

artifact that interfered with the recognition of the spatiotemporal

profile of the incident light beam. To improve the performance of

the tissue as a detector screen we chose a different model, where

a light beam was directed onto healthy, striated muscle tissue in

the rat thigh. This tissue contains a rich, uniform vascular matrix.

Light beams with a circular, or kite-shaped cross-section were

created by placing respective masks in the light path (Figs. 3 A&E).

In these experiments, we used a 10 min illumination paradigm, P2

(55 mW/cm2, 33 J/cm2, Fig. 2J). As in the tumor model, the

anatomic location of these light fields were fully ascertainable by

the correlation maps (Figs. 3 C&G), calculated from the BOLD-

contrast maps (Figs. 3 B&F). The contrast enhancement ratio of

the deduced illuminated areas was 2362SD (n = 3) fold higher

than in the respective non-illuminated surroundings. These results

suggest that when detector uniformity increases, as in the case of

the capillary bed of striated muscle tissue, the accuracy of the

psMRI image increases. While image location coincided with the

incident light, deviations from the circular shape of the display

were observed on the psMR image (Fig. 3C). This was probably

related to a downstream effect of deoxyHb. The magnified size of

the registered images, relative to the original, may stem from

inherent photon diffusion and tissue light scattering. A slight

degree of photo-damage, marked by edema and scattered

Figure 3. Shape-recognition of illumination field by BOLD-contrast changes: P2 paradigm. Homogeneous light (55 mW/cm2) was delivered via
a diffuser onto the rat thigh. With the use of respective masks the light beam-cross section was circular (w 1.6 cm, A–D) or kite-shaped (0.6 cm length,
E–H). B&F. Representative BOLD-contrast activation maps acquired at the end of the photosensitization phase are overlaid on the anatomic image
and D&G. are the respective correlation coefficient maps (p,0.02). Colored pixel clusters on the anatomic image outline the deduced shape of the
light field. Contrast enhancements of the deduced circle and the kite shapes were respectively 21 and 24-fold higher than their neighboring
surroundings. D&H. Locations and shapes of the projected light fields on the respective anatomic images are deduced from the above correlations
(white shapes). I. The BOLD-MRI protocol, using an acquisition time of 25 s/image yielded a total of 45 (A–D) or 40 images (E–H). J. Paradigm P2
consists of a single 10 min illumination. PI = Post-illumination.
doi:10.1371/journal.pone.0001191.g003
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myonecrosis, was histologically observed in the muscle 24 h post

illumination. However, it should be noted that the vasculature of

normal healthy tissues is generally less sensitive to VTP, as

compared to tumor tissue [19].

DISCUSSION
This study provides evidence that a luminous display, projected

onto tissues of animals treated with a photosensitizer, can be

captured, viewed and recognized by psMRI. Furthermore, it is

possible to distinguish illuminated from non-illuminated blood

vessels (Fig. 2), due to endogenous deoxyHb and its reactivity in

the illuminated regions. Under the conditions used, an increase in

signal to noise ratio of the correlation maps was gained with

increased light pulse number, improving the clarity of the psMR

image. In contrast, a decline in the correlation values was observed

at the same time (Fig. 2 D–G), possibly due to accumulating

biological effects (sensitizer clearance and/or photo-damage); this

will have to be considered when programming future stimulation

paradigms. It is anticipated that by manipulation local phototox-

icity, forthcoming improvement of experimental conditions,

optimization of MRI and better image processing algorithms can

reduce the light pulse energy requirements for its imaging. These

improvements will provide an increase in the efficiency of BOLD

contrast recording and, subsequently, minimize, or fully eliminate

imaging-associated vascular damage. In the case of the therapeutic

VTP protocol, whereby target tissue destruction is the objective,

damage contributed by simultaneous psMR imaging becomes

irrelevant. These predictions are compatible with previous findings

in our lab, which demonstrated reversible enzymatic and cellular

processes induced by low levels of photosensitized ROS at

nondestructive, physiological conditions [27].

When comparing the basis of a BOLD contrast response in

psMRI and fMRI, a few points must be considered. Although the

response to the light signal is instantaneous in psMRI, the response

to neuronal stimulation by fMRI is delayed [28,29]. This stems

from the fact that in psMRI, deoxyHb accumulation is coupled to

oxygen consumption by photon-capture of the sensitizer and

diffusion-limited dissociation of oxyHb. In contrast, in fMRI-based

neuroimaging, deoxyHb accumulation is coupled to stimulation by

neuronal input via metabolic consumption of oxygen with a slower

hemodynamic response that develops in a matter of seconds.

In summary, the displayed incident image is captured by the tissue

as an invisible chemical signature, represented by the spatiotemporal

distribution of photogenerated deoxyHb. The dynamic presentation

by psMRI of a BOLD contrast map permits recognition of the

original incident display, in analogy to visual perception by the brain.

The quality of the psMR image is affected by the density and

uniformity of the vascular detector-screen (Fig. 3). Furthermore, it is

suggested that living organisms have the capacity to detect such light

imprinted images, by a circulating detector-pigment (administered or

ingested) in tandem with de-saturation of ubiquitous Hb, in

a reaction that is unrelated to the visual process. The question of

whether endogenous pigments in animals may reflect on environ-

mental luminosity, in a similar manner, as a mode of light detection,

remains open. Preliminary results show promising results in the

acquisition and imaging of three-dimensional optical information

from the vascular detector screen by psMRI.

We envisage psMRI as a means of tracking BOLD contrast

changes, following sub-lethal photosensitization in normal tissues,

where reduced photo-damage is expected. Immediate applications

of this phenomenon may include intra-operative light guidance

and a follow-up of photodynamic interventions, as well as a unique

option for investigating light diffusion during the development of

optical imaging in opaque tissues. Other possibilities may relate to

the study of hemodynamic response to light-generated oxygen

sinks and, possibly, also assistance to the blind.

METHODS

Tumor model
MADB106 rat mammary carcinoma cells were cultured in RPMI

medium, supplemented with 10% heat inactivated fetal calf serum,

1% non essential amino acids, 100 U/ml penicillin, 0.1 mg/ml

streptomycin, 0.25 mg/ml amphotericin B, 2 mM L-glutamine

and 1 mM pyruvate (Biological Industries, Kibbutz Beit Haemek,

Israel), in an atmosphere of 8% CO2 at 37uC. Cells (26106 cells in

60 ml saline) were grafted s.c. to the thigh of female Fisher rats and

the tumors were allowed to grow to treatment size of ,1 cm. All

protocols were approved by the Institutional Animal Care and Use

Committee.

Normal tissue model
The thigh quadriceps muscle of Wistar female rats was used as

a normal tissue model.

Anesthesia and experimental setup
Rats were anesthetized (i.p Ketamine 100 mg/kg, Diazepam

7.5 mg/kg), shaved and positioned supine/laterally above the

tumor or thigh, and the examined leg was fixed to the plexiglass

tray with adhesive tape to minimize motion artifacts.

Light source
Illumination was provided by a 1W, 755 nm diode laser, equipped

with a 3 mW aiming laser beam (660 nm) (CeramOptec, Germany).

Light was delivered with a cleaved bare optic fiber projecting a light

field of (w 1 cm) with Gaussian light distribution onto the skin of the rat

(Fig. 2). Alternatively, the light beam was delivered through a diffuser

(HoloOr, Rehovot, Israel), creating a circular (top hat cross section)

homogeneous light field (w 1.6 cm) on the animal’s skin (Fig. 3). Light

delivery to the treated rat inside the MRI magnet was remotely

controlled by an electronic inline shutter (Ocean Optics, Dunedin, Fl.

USA), gated with the magnetic resonance image scan acquisition.

Photosensitization protocol
The entire treatment protocol was conducted inside the MRI

magnet, where the anesthetized rat was placed in position (Fig. 1).

Sequential coronal gradient echo T2* weighted images, sensitive to

BOLD-contrast (40–60 images/experiment), were acquired during

the following four experimental steps: (i) Pretreatment Control

(PC); (ii) Light Control (LC) with illumination only. The target

tissue was illuminated from below the animal at the indicated

fluency rate and duration through a hole in the plexiglass tray

holding the rat; (iii) Photosensitization, triggered by bolus injection

into the tail vein of 10 mg/kg WST11, dissolved in saline, by

remote control through a previously placed catheter, while

illumination proceeded according to the preset paradigm indicated

in the individual experiments; and (iv) Post-illumination (PI),

during which the light is switched off.

Two illumination paradigms, synchronized with image acquisi-

tion, were used: P1, consisting of repeated light:dark periods

(12 s:110 s, a single image/light period); and P2, consisting of

continuous 600 s illumination (16 images/light period). The light

energies (2.4–33 J/cm2) are indicated for the individual experiments.

MRI set up
BOLD-contrast: Sequential coronal gradient echo T2* weighted

images, sensitive to BOLD-contrast, were acquired during all four

BOLD View of Light
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experimental steps by using a horizontal 4.7T Biospec spectrom-

eter (Bruker, Germany) and a 7.5 cm volume coil with the

following parameters: Scan acquisition times (12 s or 25 s), as

indicated in the individual experiments, inter-scan time interval 9–

12 s, TR/TE/a 100 ms/10 ms/30u, in plane resolution 430 mm,

matrix 1286128, FOV 5.5 cm. Three slices (1.5 mm thickness)

were collected in tumor or muscle tissue. The data presented show

the slice positioned closest to, but just below the skin.

GdDTPA enhanced contrast
Following the VTP protocol, while the rat remained in position,

Gd-DTPA (0.1 mmol/kg, Magnevist, Schering, Berlin, Germany)

was injected i.v. to examine tumor vascularity, using the same

geometry as above with the following parameters: T1 weighted

spin echo sequence: TR/TE 140/9 ms, one scan. Due to its small

molecular weight, GdDTPA leaks from permeable vessels,

enhancing MRI signal from these areas.

Data Processing
In house programs for data processing were conducted with

Matlab 7.1 (The MathWork, Inc., Natik, MA.).

BOLD-contrast change maps: BOLD-contrast maps relative to

the average PC control baseline were calculated, pixel-by-pixel,

from sequential T2* weighted images (one map per time point,

total 40–60 per experiment, as indicated in the individual

experiments).

BOLD activation (%) = (1–BOLD image/average of BOLD

images in PC)6100.

In these experiments the loss in MR signal intensity is presented

as a gain in BOLD-contrast. Changes in BOLD-contrast maps are

color-coded according to the attached color scale in a range of 25

to +10%.

Correlation coefficient maps were extracted, by normalized,

pixel-by-pixel, correlation between the light paradigm and the

respective BOLD-contrast maps (calculated over the entire

experiment, 40–60 maps). The correlation coefficients are

presented in the interval of 0 to 1, where 1 stands for full

agreement between data and paradigm. Only correlation

coefficients that matched a p-value ,0.02 are displayed in the

maps. If the significance p(i,j) is small, then the correlation R(i,j) is

significant, so as to discard hazardous probability of synchrony. P-

values were calculated to test the hypothesis of no correlation. The

respective values in the maps were color-coded, according to the

attached color scale and overlaid on the anatomical image.

Contrast enhancement was calculated from the correlation

coefficient maps (p,0.02) as the ratio between densities of positive

pixels in the illuminated area and the rest of the image.

False positive pixels in the non-illuminated area refer to the

percentage of pixels that correlated with the paradigm (p,0.02)

outside the illuminated area.

Histology
Target tissues were excised from euthanized rats 24 h after

treatment, fixed in 3.8% formaldehyde, followed by standard

histological preparation and hematoxylin eosin staining. Patho-

logical evaluation was conducted by Dr. O. Brener, from the

Weizmann Institute Pathology Service Unit.
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