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1  | INTRODUC TION

Studies demonstrating significant reductions in insect biomass are 
currently an issue of scientific debate and public concern (Hallmann 
et al., 2017; Seibold et al., 2019; Wagner, 2020), with many terres-
trial invertebrate species showing large declines in abundance (Dirzo 
et al., 2014). Herbivore dung supports a rich biodiversity of such in-
vertebrates in terrestrial habitats (Floate, 2011; Lee & Wall, 2006; 
Skidmore, 1991), which in turn serve as an important food source for 
insectivorous birds and mammals (Liu et al., 2019; Skidmore, 1991; 
Vickery et al., 2001; Virgós et al., 2004). More than 400 species 

of insects are known to be associated with dung in Britain alone 
(Skidmore, 1991), and additional groups such as mites (Arjomandi 
et al., 2013), centipedes (Wall & Strong, 1987), nematodes (Weller 
et al., 2010) and fungi (Richardson, 2001) are also numerous in these 
miniature ecosystems. Dung provides a vital food source as well as 
protection and moisture for its inhabitants. Several insect species feed 
on the dung itself (e.g., Scarabaeidae, Sepsidae etc), while other spe-
cies feed on dung-associated fauna as predators (e.g., Staphylinidae, 
Hydrophilidae, Muscidae etc) or on dung-associated fungal spores (e.g., 
Ptillidae, Acari, Collembola) (Skidmore, 1991). The decline in dung-asso-
ciated fauna has been most thoroughly illustrated using dung beetles as 
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indicators (Aguilar-Amuchastegui & Henebry, 2007; Davis et al., 2001; 
Filgueiras et al., 2015). Dung beetle species richness is positively asso-
ciated with grazing continuity - especially for habitat specialists (Buse 
et al., 2015), while grazing abandonment and hunting of medium- and 
large-bodied mammals have been shown to lead to significant de-
creases in alpha diversity and biomass / abundance of dung beetles 
(Nichols et al., 2009; Tonelli et al., 2018). In European ecosystems, dung 
beetles were formerly abundant and diverse, but especially large-bod-
ied species have declined in association with the progressive loss of 
megafauna since the Late Pleistocene (Sandom et al., 2014; Schweiger 
& Svenning, 2018). Thus, if appropriately tailored to the ecosystem 
and its history (Schweiger et al., 2019), trophic rewilding (Svenning 
et al., 2016) via restoring megafauna is expected to benefit dung-bee-
tle faunas (Brompton, 2018) by expanding the ecospace (increasing the 
amount and diversity of organic matter; Brunbjerg et al., 2017).

Studies of dung-fauna communities have traditionally relied on 
methods such as dissolving cowpats in water, or using anoxic condi-
tions or funnels to extract the animals (Skidmore, 1991). These meth-
ods are needless to say both messy and cumbersome, and will probably 
overlook species that are only in brief contact with the cowpats, such 
as flying species that only feed on dung as adults. Moreover, consid-
erable taxonomic expertise is required to be able to morphologically 
identify all dung-associated taxa. This expertise is generally declining 
(Hopkins & Freckleton, 2002; Sangster & Luksenburg, 2015; Wheeler 
et al., 2004) and even for experts, morphology-based taxonomic iden-
tification of arthropods poses difficulties, e.g., for species with large 
intraspecific morphological variation, closely related species, and juve-
nile stages. With insects in steep decline globally, more intensive data 
collection is needed (Montgomery et al., 2020), but this will require 
time- and cost-efficient monitoring approaches.

Within the last decade, it has been demonstrated that vari-
ous sources of contemporary environmental samples contain DNA 
from a diverse range of macroorganisms, and that such noninvasive 

environmental DNA (eDNA) analyses have the potential to supple-
ment many traditional sampling approaches in ecology (Sigsgaard, 
Jensen, et al., 2020; Taberlet et al., 2018; Thomsen & Willerslev, 2015). 
Environmental DNA analyses of soil (Taberlet, Prud'Homme, et al., 
2012; Yoccoz et al., 2012; Zinger et al., 2018) and water (Ficetola 
et al., 2008; Sigsgaard et al., 2016; Stat et al., 2017; Thomsen, Kielgast, 
Iversen, Møller, et al., 2012; Thomsen, Kielgast, Iversen, Wiuf, et al., 
2012) have proven successful, although many other sources of eDNA 
have also provided valuable data. For example, insect eDNA has been 
found on wild flowers (Thomsen & Sigsgaard, 2019), pollen attached 
to insects has been used for retrieving information on plant–pollinator 
interactions (Bell et al., 2017; Pornon et al., 2017) and eDNA from 
bulk samples (insect soups) reflect the species present in the samples 
(Arribas et al., 2018; Elbrecht et al., 2016; Yu et al., 2012). Furthermore, 
eDNA analyses of faecal samples have been especially popular for ob-
taining insights on animal diet for e.g., mammals (Berry et al., 2017; 
Pompanon et al., 2012; Valentini, Miquel, et al., 2009; Valentini, 
Pompanon, et al., 2009), fish (Jensen et al., 2018), birds (Thalinger 
et al., 2016) and insects (Valentini, Miquel, et al., 2009; Valentini, 
Pompanon, et al., 2009). DNA metabarcoding—high-throughput 
sequencing of PCR amplicons using generic primers—is currently 
the most efficient approach for analysing eDNA samples (Taberlet, 
Coissac, et al., 2012; Taberlet et al., 2018; Zinger et al., 2019), and was 
used in most of the above-mentioned studies.

Here, we analyse eDNA from cattle dung using eDNA metabar-
coding, but with a focus on the dung-associated invertebrate fauna 
rather than the diet of the herbivore. Van der Heyde et al. (2020) re-
cently found beetle DNA in scat samples from herbivores, supporting 
the idea that faecal samples may contain eDNA from invertebrates 
that have come in contact with the substrate after defecation. We 
hypothesize that dung-associated invertebrates leave DNA traces in 
the dung, and investigate: (i) to what extent this eDNA can be ob-
tained, (ii) whether it reflects the taxonomic and functional diversity 

F I G U R E  1   Map of sampling sites in 
Mols Bjerge with inset overview map of 
Denmark. Sample names are indicated 
for each site. Map data: (main map) 
Agency for Data Supply and Efficiency. 
GeoDanmark Ortofoto. 2019, (inset map) 
ESRI. World Imagery 2013
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of the local assemblage of dung-associated fauna; and (iii) whether 
the assemblage detected in dung from a forest is different to that 
found in dung from two open grassland habitats.

2  | MATERIAL S AND METHODS

2.1 | Study sites

The study was carried out in the Natura 2000 site Mols Bjerge, located 
in Mols Bjerge National Park in Denmark (56°13′36″N, 10°34′33″E; 
Figure 1). Within this area, the Natural History Museum Aarhus owns a 
highly biodiverse natural hotspot of 1.5 km2 managed with conservation 
of biodiversity and ecosystem restoration as its primary purpose. The main 
habitat types are dry grassland, deciduous forest, and rich fen/meadows. 
The area is known as Rewilding Mols at The Mols Laboratory, where a 
mixed population of feral Galloway cattle (Bos taurus Linnaeus, 1758) and 
Exmoor ponies (Equus caballus Linnaeus, 1758) have been introduced 
in accordance with the idea of trophic rewilding (Svenning et al., 2016) 
and the population densities are regulated by humans based on resource 
availability and animal condition, without any supplementary feeding (mi-
cronutrients and water are provided). The Rewilding Mols project was 
launched in November 2016 with late autumn population densities of the 
two large herbivore species counting 13 and 12 in 2016, 22 and 18 in 
2017, 32 and 27 in 2018, and 44 and 36 in 2019, respectively. At the time 
of sampling in June 2019, 43 cattle and 30 horses were present.

2.2 | Sampling

Dung samples from the cattle were collected in the Rewilding Mols 
project area in June 2019 on the following dates; tx.1–tx.3: 12 June 
at 1:35–1:55 p.m., tx.4–tx.6: 14 June at 4:34–4:40 p.m., and tx.7–
tx.9: 17 June at 4:57–5:07 p.m. (Figure S1). Based on the visual char-
acteristics of their surface, we selected the nine individual cowpats 
so that they appeared to have the same relative age (Figure S1). One 
dung sample of ca. 5 ml was collected from each of the nine indi-
vidual cowpats found in three different habitats; dry grassland (tx.1–
tx.3), meadow (tx.4–tx.6), and forest (tx.7–tx.9; Figure 1, Figure S1). 
Each dung sample consisted of five subsamples from the same cow-
pat, each of ca. 1 ml, which was pooled together in a sterile 5 ml 
Eppendorf tube using single-use nitrile gloves, disposable face mask 
and plastic spoons. During collection, samples were thoroughly in-
spected to ensure that they did not contain any visible animals. All 
samples were kept in a box with ice blocks immediately after sam-
pling and stored at –20°C after return from the field (maximum a few 
hours after sampling). They were kept at –20°C until DNA extraction.

2.3 | DNA extraction

DNA extractions were performed in the clean laboratory facil-
ity at the Department of Biology, Aarhus University, which is a 

dedicated laboratory for working with samples of low DNA con-
centration. Regular decontamination routines are in place, including 
UV light, and only pre-PCR work is carried out in this laboratory. 
DNA was extracted using QIAamp Fast DNA Stool Mini Kit (Qiagen, 
Germantown, USA). Before extraction, the samples were trans-
ferred to 50 ml falcon tubes, using the handle of a metal spoon, to 
allow thorough mixing of the dung. Spoons were cleaned before use 
and between samples by wiping twice with DNAaway, then wiping 
with ethanol, and lastly leaving the spoons under UV light for 10 min 
with the front surface of the spoon facing upwards, and 10 min with 
the back surface facing upwards. Despite visual inspection during 
sampling, two unidentified larvae were found in the sample tx.5, 
and were removed before sample mixing. Samples were mixed thor-
oughly by vortexing, and a subsample of ~220 mg was taken out 
from each sample for extraction. The manufacturer's protocol for 
human DNA analysis was thereafter followed with the following ex-
ceptions; after addition of InhibitEx buffer and vortexing, samples 
were shaken on a thermomixer for 2 h and were then centrifuged for 
5 min. Elution of DNA was done in 2*60 µl ATE buffer, with an incu-
bation of 5 min at room temperature before each centrifugation. An 
extraction blank was included throughout the extraction process, 
and final DNA extracts were stored at –20°C.

2.4 | PCR amplification

For DNA metabarcoding, we used a primer set (BF1 and BR1) target-
ing the mitochondrial cytochrome c oxidase subunit I (COI) gene and 
designed for invertebrates (Elbrecht & Leese, 2017). Primers were 
uniquely tagged. Tags were designed using the OligoTag program 
(Coissac, 2012), and consisted of six nucleotides with a distance of 
at least three bases between any two tags. Tags were preceded by 
two or three random bases; NNN or NN (De Barba et al., 2014) to 
increase sequence complexity, and identical tags were used on the 
forward and reverse primers for each sample to avoid tag jumps 
(Schnell et al., 2015).

Two replicate PCR reactions were carried out for each sample in-
cluding the extraction blank, using identical tags for PCR replicates, 
but a unique tag for each sample. Two PCR blanks were also in-
cluded. PCR reactions were performed in 25 µl volumes of 3 µl tem-
plate DNA, 10 ul HotStarTaq Master Mix (Qiagen), 8 µl ddH2O, 1.5 µl 
of each primer (10 µM), and 1 µl bovine serum albumin (BSA; 20 mg/
ml). Thermocycling parameters were: 95°C for 15 min, 50 cycles of 
94°C for 30 s, 46°C for 30 s, and 72°C for 1 min, and a final elon-
gation of 72°C for 7 min. The initial heat deactivation, denaturation 
and extension steps were chosen based on the guidelines for the 
HotStarTaq Master Mix, while the annealing temperature followed 
Elbrecht and Leese (2015). The number of PCR cycles was deter-
mined from previous eDNA optimization experiments in the labora-
tory with the same primers (unpublished data).

Fragment sizes were verified on 2% agarose gel stained with 
GelRed. PCR products were mixed in two pools each containing one 
PCR replicate of each sample, one replicate of the extraction control 
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and one PCR blank (2 µl per replicate). In addition to the samples 
included in this study, 17 other samples were included in the pools, 
also with one PCR replicate in each pool. The pools were purified 
using Qiagen's MinElute PCR purification kit, along with a purifica-
tion blank. The manufacturer's protocol was followed with the ex-
ception that samples were incubated with the elution buffer (2*20 µl 
EB) over two rounds of 37°C for 10 min.

2.5 | Library building and next-
generation sequencing

Approximately 750 ng of PCR product from each pool, as determined 
with the Qubit HS DNA Kit (Thermofisher Scientific, Carlsbad, CA, 
USA), was used as input for the libraries. Library building was per-
formed on the purification blank and each of the purified pools of 
PCR products using the TruSeq DNA PCR-free LT Sample Prep kit 
(Illumina, San Diego, California). The concentration and fragment 
size distribution of the libraries were verified using Qubit and an 
Agilent 4200 TapeStation before sequencing (150 bp paired-end) 
in a single run on the Illumina MiSeq platform, at the Microbiology 
Section, Department of Biology, Aarhus University.

2.6 | High-throughput sequencing data analyses

After primer removal and demultiplexing using the software 
Cutadapt (Martin, 2011), Illumina sequences were trimmed with 
Sickle (Joshi & Fass, 2011), applying a required average quality score 
of 28 in the sliding window. The sequences were then analysed 
using DADA2 (Callahan et al., 2016), to clean the data from errors 
generated during PCR and sequencing (Ficetola et al., 2015; Murray 
et al., 2015; Olds et al., 2016). The error filtering in DADA2 is based 
on error models inferred from the data itself, and was therefore 
done separately for each of the four fastq files (reads 1 and 2 for 
each of the two libraries). Initial filtering was set to allow a maximum 
of two expected errors (maxEE = 2) and to truncate reads at the 
first instance of a quality score at or below 2 (truncQ = 2, default). 
Forward and reverse reads were then merged (minimum of 5 bp 
overlap following Frøslev et al., 2017, no mismatches allowed) and 
likely chimeras were removed with the DADA2 function removeBi-
meraDenovo. All remaining sequences were then searched against 
the GenBank nt database (Benson et al., 2005) on 17 October 2019, 
using blastn (Altschul et al., 1990), requesting a maximum of 500 
aligned sequences per query, and minimum thresholds of 90% query 
coverage per high-scoring segment pair and 80% sequence simi-
larity. The blast hits displaying an incomplete final coverage of the 
query sequence were removed and taxonomically classified using 
the R package taxize (Chamberlain & Szocs, 2013). Sequences clas-
sified as metazoan were then searched against the Barcode of Life 
Data Systems (BOLD; Ratnasingham & Hebert, 2007) and taxonomi-
cally classified using the bold package (Chamberlain, 2019) in r ver-
sion 3.5.0 (R Core Team, 2019). Each sequence was then assigned to 

the lowest common ancestor of all matching taxa that overlapped 
in their range of sequence similarities with that found for the taxon 
(or taxa) with the highest sequence similarity; i.e., if the best hit was 
for example a 99% match to a certain fly species, but other BOLD 
sequences from this species yielded only a 98.5% match, all taxa 
with a hit of at least 98.5% were considered. If there was no over-
lap in sequence similarity between the taxon producing the best hit, 
and other taxa, and this highest-matching taxon produced a hit of 
at least 98% similarity, the sequence was assigned to species. For 
assignment to genus or family level, thresholds of 91% and 83% se-
quence similarity were used, based on calculations following Alberdi 
et al. (2018). Until this point, data analyses were conducted using 
the high-performance computing facility GenomeDK, Center for 
Genome Analysis and Personalized Medicine, Aarhus University, 
while the following analyses were conducted on a local computer. To 
produce a conservative estimate of the diversity obtained by eDNA, 
we excluded taxa found in only a single PCR replicate across all sam-
ples (Alberdi et al., 2018; Thomsen & Sigsgaard, 2019), and we report 
this as the final data (Table 1). Sequences identified as originating 
from cow (Bos taurus) were also removed from the final data.

2.7 | Rarefaction analyses

To check whether sequencing depth was sufficient to capture the 
taxonomic diversity represented in the PCR replicates, rarefaction 
curves for each of the individual replicates were performed using 
the function rarecurve in the R package vegan v. 2.4-6 (Oksanen 
et al., 2018).

2.8 | Accumulation analyses

To determine whether sampling effort had been sufficient to cover 
taxonomic diversity within each habitat, and within the entire study 
area, respectively, taxon accumulation curves were performed using 
the function specaccum from vegan. The “exact” species accumula-
tion method was used, which finds the mean species richness across 
sites.

2.9 | Differentiation analyses

In order to investigate whether the invertebrate assemblages were dif-
ferentiated according to habitat, we performed several different analy-
ses. Raup–Crick distances, which are presence-absence based, were 
calculated with the vegdist function in vegan, and subjected to a per-
mutational analysis of variance (PERMANOVA) test using the function 
adonis (number of permutations = 999). Because the dissimilarity data 
did not meet the assumption of multivariate homogeneity of group 
dispersions (permutation test, p < .05), the data were transformed 
using inverse normal transformation. Using the package pheatmap 
(Kolde, 2019), we then produced heatmaps combined with hierarchical 
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clusters, showing the presence or absence of taxa in specific samples, 
the similarity in assemblage composition between different samples, 
and the similarity between taxa with regard to the samples they ap-
peared in. The same was done for trophic groups, as modified from 
Skidmore (1991). Clustering was set to the average-linkage method and 
was done using the Raup–Crick distances from vegdist, transformed 
with cube transformation (n1/3) to obtain an appropriate scale for the 
figure. Additionally, a detrended correspondence analysis (DCA) of 
invertebrate assemblages in the different samples was performed, 
using the decorana function in vegan (Hill & Gauch, 1980; Oksanen & 
Minchin, 1997). The read abundances were not transformed for this 
analysis, as they did not have any effect on the grouping of the sam-
ples. All analyses were performed in r v. 3.6.1 (R Core Team, 2019).

3  | RESULTS

3.1 | PCR amplification

One sample (tx.6) from the meadow habitat (Figure S1) did not yield 
visible gel bands, and was therefore not included in sequencing 

libraries. All other PCRs on the eight remaining samples gave vis-
ible bands and were included in sequencing libraries along with the 
DNA extraction blank and PCR blanks (the latter two gave no visible 
bands, but were sequenced nonetheless).

3.2 | DNA metabarcoding reads

A total of 15,336,282 raw reads corresponding to 7,668,141  read pairs 
were produced on the Illumina MiSeq platform. We obtained similar se-
quencing depth across the two libraries (PCR replicates) with 4,514,166 
and 3,153,975 read pairs obtained per library, respectively. After initial 
data cleaning and merging of paired reads, a total of 1,453,478 reads 
were retained in total for the samples included in this study (excluding 
blanks), of which 652,590 reads were classified as metazoans and ap-
peared in at least two PCR replicates in the data set. The eight samples 
tx.1–tx.9 (excl. tx.6) had similar sequence depths with 81,574 ± 19,422 
final reads (mean ± SEM). No metazoan sequences were retained in the 
extraction blank or PCR blanks.

The final sequences represented 64 amplicon sequence variants 
(ASVs, see e.g., Callahan et al., 2017) covering 12 orders, 29 families 

F I G U R E  2   Photos of invertebrate families found with eDNA in dung samples in this study. A representative for each family is shown. 
*The taxon found in the study is different from the one in the example photograph, see Table 1. See the Acknowledgements section for 
photograph credits. ARACHNIDA: (1) Macrochelidae (Macrocheles montanus*); (2) Ceratozetidae (Trichoribates incisellus); (3) Chamobatidae 
(Chamobates birulai); COLLEMBOLA; (4) Entomobryidae (Entomobrya nivalis*); (5) Isotomidae (Isotomurus maculatus*); (6) Hypogastruridae 
(Ceratophysella bengtssoni*); (7) Sminthuridae (Sminthurus viridis); INSECTA: (8) Curculionidae (Hypera plantaginis); (9) Histeridae (Margarinotus 
neglectus*); (10) Hydrophilidae (Sphaeridium lunatum); (11) Phalacridae (Olibrus bicolor); (12) Scarabaeidae (Aphodius haemorrhoidalis); (13) 
Staphylinidae (Oxytelus laqueatus); (14) Forficulidae (Forficula auricularia); (15) Anisopodidae (Sylvicola sp.); (16) Anthomyiidae (Hylemya 
vagans); (17) Chironomidae (Smittia nudipennis*); (18) Muscidae (Neomyia cornicina); (19) Psychodidae (Psychoda sp.); (20) Scathophagidae 
(Scathophaga stercoraria); (21) Sepsidae (Sepsis sp.); (22) Sphaeroceridae (Lotophila atra); (23) Stratiomyidae (Microchrysa polita); (24) Aphididae 
(Euceraphis betulae*); (25) Miridae (Rhabdomiris striatellus); (26) Pentatomidae (Dolycoris baccarum*); (27) Formicidae (Lasius niger); (28) 
Bovicoliidae (Bovicola sp.*); CHROMADOREA: (29) Ancylostomatidae (Bunostomum sp.*). Panel (30) shows one of the sampled cowpats, 
Mols_tx.1 [Colour figure can be viewed at wileyonlinelibrary.com]
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and at least 54 different species of invertebrates (of which seven 
are only identified to genus level and two to order level; Table 1, 
Figures 2 and 3). The vast majority of species obtained were insects, 
and the order with most sequencing reads was Diptera, which ac-
counted for the top seven most abundant species (Table 1). The top 
three most abundant taxa (Psychoda phalaenoides Linnaeus, 1758, 
Musca autumnalis De Geer, 1776, and Sepsis cynipsea Melander and 
Spuler, 1917, respectively) accounted for 66% of the total reads, and 
37% of the total reads belonged to Psychoda phalaenoides. In addi-
tion to insect sequences, we also found eDNA from other arthro-
pods such as mites and springtails, as well as one species of parasitic 
nematode Bunostomum phlebotomum Railliet, 1900, and not sur-
prisingly, cow (Bos taurus). We did not include a mock sample in this 
study, as several previous studies have shown accordance between 
tissue-extracted DNA amounts added to the mock and subsequent 
DNA reads (Sigsgaard et al., 2019; Thomsen et al., 2016), and since 
we do not make any strong assumptions regarding quantitative esti-
mates such as number of individuals or biomass in this study.

3.3 | Taxonomic and functional diversity

Our study detected eDNA from species across both taxonomic and 
functional groups of invertebrates (Table 1, Figure 3). Specifically, 
we detected eDNA from several species representing the fol-
lowing groups: (i) species feeding entirely or mainly on the dung 
itself (e.g., Scarabaeidae, Hydrophilidae, Staphylinidae, Sepsidae, 
Sphaeroceridae, Scathophagidae); (ii) predatory species living as 
facultative or obligate carnivores feeding on other invertebrates 
in the dung (e.g., Histeridae, Muscidae); (iii) species feeding on the 
fungi associated with the dung (e.g., Collembola, Acari); (iv) species 
using the dung as habitat where they can e.g. hide in moist crev-
ices during the day (Dermaptera); (v) external or internal parasites 
of the cow (Bovicoliidae and Ancylostomatidae, respectively); and 
(vi) species that have no association with the dung, but are present 
in the grassland habitat and thus in the near surroundings (e.g., 
Curculionidae, Phalacridae, Aphididae, Miridae, Pentatomidae, 
Formicidae).

F I G U R E  3   Trophic network representation of invertebrate genera found in the study. Modified from Skidmore (1991). (i) Cow from 
the sampling site; (ii) cow dung; (iii) fungus on cow dung. Coleoptera A, beetles and their larvae which feed entirely or mainly on the dung 
itself (some of these are probably also partly feeding on other arthropods, fungi and bacteria); Coleoptera B, predatory beetles and their 
larvae which feed on other arthropods; Diptera D, flies and mosquitos whose larvae feed on the dung itself and associated fungi and 
bacteria; Diptera E, members of Muscidae in which the larvae feed as Diptera D in the first instars but become facultative carnivores in 
the final instar; Diptera F, members of Muscidae in which the larvae are obligate carnivores; Collembola, springtails, which are hexapods 
often numerous in dung where they feed on associated fungi, though most belong to the soil fauna; Acari, mites, which are arachnids often 
numerous in dung and feed on dung and associated fungi (Trichoribates, Chamobates) or sometimes as predators or parasites on insect 
larvae and eggs (Macrocheles); Dermaptera, earwigs, which are insects not primarily associated with dung, but which can utilise dungpats 
for laying eggs and brooding the nymphs; Nonspecific insects found in the study, which are not associated with dung but are abundant at the 
site. See also Discussion section. Photo credits: Ole Martin (left), Philip Francis Thomsen (middle), Morten D. D. Hansen (right) [Colour figure 
can be viewed at wileyonlinelibrary.com]
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3.4 | Differentiation of cow dung assemblages 
by habitat

The PERMANOVA test indicated that 72% (p = .02) of the variation 
in similarity between sampling sites could be explained by habitat 
type. Results from the cluster analysis (heat map) showed that the 
cow dung assemblages obtained from the eDNA segregate into for-
est and open grassland (meadow and dry grassland), and that this 

signal is driven by several taxa that only occur in the forest dung 
samples (Figure 4a). No species occurred in all eight dung samples. 
In contrast, each trophic group occurred in at least two different 
habitats, with the exception of Dermaptera and external parasites, 
which were only detected in the dry grassland habitat (Figure 4b). 
However, both these groups were represented by a single species. 
Correspondence analyses also indicated that samples from forest 
formed a distinct group (Table 1, Figure 5). The forest habitat also had 

F I G U R E  4   Cluster analyses and heat 
map at the level of (a) species and (b) 
trophic group (based on Skidmore, 1991), 
showing presence (red) and absence (blue) 
of each species or trophic group found 
in the dung samples from dry grassland 
(tx.1–tx.3), meadow (tx.4–tx.5), and forest 
(tx.7–tx.9)
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the lowest number of associated invertebrate species (Figure 6a), 
although there was no statistically significant difference in species 
richness between habitat types (ANOVA, p = .5).

3.5 | Sequencing depth and replication

Rarefaction curves indicated that sequencing depth was sufficient 
(Figure S2), but accumulation curves indicate that greater sampling 
effort would increase detected diversity (Figure 6b, Figure S3).

4  | DISCUSSION

Wild herbivores in natural population densities are associated 
with large quantities of dung, which support a rich and special-
ized community of invertebrates and fungi (Byk & Piętka, 2018; 
Richardson, 2001). However, wild megafauna have undergone ex-
tinction (Sandom et al., 2014) or experienced dramatic decline (Dirzo 
et al., 2014; Ripple et al., 2015) all over the world. Trophic rewild-
ing supports the existence of dung communities, though population 
regulation based on resource availability and animal condition as in 
the Rewilding Mols area is rare for large herbivores in a European 
context. Discontinuity of grazing, abandonment and habitat modi-
fication thus continue to pose threats to the fauna associated with 
herbivore dung (Carpaneto et al., 2007; Nichols et al., 2009; Tonelli 
et al., 2018). In order to investigate the effect of rewilding practices 
on general biodiversity, extensive monitoring is needed. However, 
species-rich groups such as arthropods can be very resource de-
manding to monitor, and alternative noninvasive genetic approaches 
for studying dung fauna are appealing.

In this study, we explore the potential of eDNA metabarcoding as 
a supplementary approach to obtain information on species compo-
sitions and associations in complex dung assemblages. We demon-
strate that samples of cow dung can be a valuable source of eDNA 
from terrestrial invertebrates—particularly insects—associated with 
the dung. We found eDNA from a range of species representing both 
taxonomic and functional diversity, including herbivores (e.g., dung 
beetles, dung flies), predators (e.g., clown beetles), fungal feeders 
(e.g., springtails, mites) and parasites (e.g., lice, nematodes). Several 
of these groups, such as the dung beetles, are completely dependent 
on dung, and are therefore especially relevant in the context of re-
wilding. Additionally, eDNA was obtained from a few common grass-
land species not associated with dung, which probably represented 
random contact with the dung (e.g., ants, shield bugs, weevils). We 
also found that the cow dung assemblages obtained from eDNA were 
differentiated among habitats with forest being different from open 
grassland (meadow and dry grassland). Finally, accumulation curves 
show that our approach was not exhaustive, indicating that more 
comprehensive dung fauna analyses can be made using an eDNA 
approach with more cowpat samples per sampling site. Importantly, 
this final point also illustrates that our study should be regarded as 
proof-of-concept of the approach, given the limited number of sam-
ples and spatial replication. Nonetheless, it can hopefully show the 
way for more extensive studies on dung fauna ecology using eDNA.

4.1 | Differentiated cow dung assemblages obtained 
from eDNA

The dung assemblages recovered from eDNA separated according to 
openness of the habitat, in that forest was clearly distinct from open 

F I G U R E  5   Detrended correspondence 
analysis at species level showing samples 
from three habitats; meadow (red circles), 
dry grassland (blue circles) and forest 
(green circles) [Colour figure can be 
viewed at wileyonlinelibrary.com]
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grassland habitats. This indicates that temperature and light could be 
important factors for defining the dung assemblages in this particu-
lar locality, as these are probably the abiotic factors differing most 
between the sampled habitats. It is noteworthy that forest dung as-
semblages were differentiated from the assemblages of the open 
habitats despite the fact that forest and meadow are the habitats 
situated most closely together geographically, while the dry grassland 
habitat is further away (Figure 1). The forest habitat had the lowest 
richness of associated invertebrates (Figure 6a), which is in accordance 

with the temperature-dependence of many dung-associated insects 
(Landin, 1961). Nevertheless, the forest habitat seems to have a dis-
tinct assemblage, and several species were only obtained from forest 
dung samples (Figure 4a). Interestingly, the dung beetles Aphodius 
sticticus Panzer, 1798, and Aphodius depressus Kugelann, 1792, were 
only found in forest samples. Both of them, and especially Aphodius 
sticticus, is associated with forest habitats and lower temperatures 
compared to the two other dung beetle species Aphodius haemorrhoi-
dalis Linnaeus, 1758, and Aphodius sphacelatus Panzer, 1798, found in 

F I G U R E  6   Species richness in cow 
dung samples shown for (a) each habitat; 
and (b) as an accumulation curve for the 
entire study area (grey shading, 95% CIs 
based on unconditional SD) [Colour figure 
can be viewed at wileyonlinelibrary.com]
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this study (Roslin et al., 2014), which were only found in open habitats. 
Also, the springtail Ceratophysella denticulata Bagnall, 1941, has been 
described as usually occurring in humid conditions (Fjellberg, 1998), 
and this species was also only obtained in forest habitat (in all three 
samples). Focusing on the functional groups for habitat differentiation, 
it seems that the species mainly responsible for the separate clustering 
of the forest habitat are facultative and obligate carnivorous dipterans 
(Diptera E and F), while herbivorous dung-feeding dipterans (Diptera 
D) and dung-feeding beetles (Coleoptera A) are found across all sam-
ples and habitats (Figure 4b). It should be noted that these findings 
do not reflect the actual number of taxa in the dung samples, as PCR 
replication was probably insufficient.

4.2 | Other sources of invertebrate eDNA in 
cow dung

Some of the invertebrate DNA obtained from dung in this study might 
not be eDNA in the strict sense, but could originate from for instance 
eggs, larvae, or small imagoes. Such individuals may easily have been 
overlooked during sampling and DNA extraction. However, such de-
tections would still indicate presence of the species in question. In 
contrast, larger more mobile individuals might potentially carry eDNA 
from other invertebrate species on their surface and thus “contami-
nate” dung samples with exogenous eDNA. Dung-associated species 
may also carry dung from previous visits to other cowpats. Such trans-
port of eDNA potentially leading to false positive results has been a 
recurring concern in eDNA studies (Goldberg et al., 2016; Thomsen 
& Willerslev, 2015). However, most studies indicate that eDNA com-
position reflects local species composition at a fine spatial scale (Port 
et al., 2016; Tillotson et al., 2018; Yoccoz et al., 2012), and we assume 
that such contamination is very infrequent compared to the amounts 
of eDNA deposited by species in direct contact with the dung.

4.3 | Caveats of eDNA metabarcoding studies

Besides the above-mentioned challenges of establishing how and why 
invertebrate eDNA can be found in samples of cow dung, other issues 
should also be carefully considered in eDNA metabarcoding, and we 
discuss the most important ones in the following. Although the primers 
used in this study were designed for metabarcoding of diverse inver-
tebrates and were successfully tested both in silico and in vitro, a few 
invertebrate groups (e.g., Hirudinea or leeches) are less compatible or 
incompatible with these primers (Elbrecht & Leese, 2017). Also, in vivo 
the primers appeared to amplify quite a large proportion of nontarget 
sequences (less than half of the reads in the present study were from 
metazoans), a general metabarcoding issue which has been highlighted 
in previous studies (Alberdi et al., 2018). Thus, some invertebrate 
groups may have been amplified inefficiently or not at all in our study. 
The resulting metabarcode provided high taxonomic resolution how-
ever, with only nine taxa (16%) that could not be identified to species. 
This resolution was also a result of the availability of a well-curated and 

(at least in our case) comprehensive database of reference sequences, 
namely the BOLD database. The existence of erroneous sequences 
such as sequences that are wrongly identified taxonomically are a sig-
nificant issue in large public databases such as GenBank (Steinegger & 
Salzberg, 2020) and can lead to false positive or negative results, and 
lower taxonomic resolution. False positive or negative results can also 
arise from sequencing or PCR errors, as well as from contamination 
from various sources (Thomsen & Willerslev, 2015). In this study, to 
avoid false positive results we applied software for removing sequenc-
ing reads likely to be the result of sequencing or PCR errors, and also 
required sequences to be present in two PCR replicates to be retained 
in the final data. This approach could be further improved by running 
a larger number of PCR replicates, something which our accumula-
tion analyses indicate would also provide a more exhaustive coverage 
of the taxonomic diversity in the samples. One of our samples failed 
to produce visible amplification, perhaps because of PCR inhibition 
despite the use of BSA. As both plants and faecal samples can con-
tain a variety of substances inhibitory to PCR (Schrader et al., 2012), 
some level of inhibition is to be expected in dung samples, but several 
measures can be taken to reduce it if needed (Schrader et al., 2012). 
While we did not experience issues with contamination in the current 
study, it is important to be aware of potential contamination through-
out the eDNA workflow by, for instance, using a separate laboratory 
dedicated to extraction of eDNA samples. A general issue with eDNA 
data, especially that resulting from PCR amplification, is that the ability 
to make quantitiative inferences is less straight-forward than for tradi-
tional monitoring approaches (Taberlet et al., 2018). However, several 
studies conducted in the field have indicated that at least for aquatic 
vertebrates, there appears to be a correlation between biomass and/
or number of individuals, and eDNA concentration or sequencing 
read numbers (Biggs et al., 2015; Thomsen et al., 2016; Yamamoto 
et al., 2016). An important factor in eDNA studies is the degradation 
time of DNA which can range from hundreds of thousands of years 
in ancient permafrost (Willerslev et al., 2003) to a few days or weeks 
in contemporary water samples (Thomsen, Kielgast, Iversen, Møller, 
et al., 2012; Thomsen, Kielgast, Iversen, Wiuf, et al., 2012). The eDNA 
persistence in dung remains unknown and should be a focus of future 
studies. In temperate soil, DNA can potentially be obtained many years 
after deposition from the organisms (Yoccoz et al., 2012), but as dung-
pats are produced continuously, it should be possible to avoid sampling 
“old” eDNA.

4.4 | Future perspectives

Environmental DNA metabarcoding of dung has perspectives for 
both fundamental and applied research, as well as for monitor-
ing and conservation of dung assemblages. The approach could 
improve estimates of species composition, abundances and dis-
tributions by supplementing existing methods, and allow for 
more extensive long-term monitoring of such variables (Hallmann 
et al., 2017). In the case of endangered species, the high sensi-
tivity and noninvasiveness of the eDNA approach makes the 
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method especially advantageous. However, as the metabarcoding 
approach makes it possible to study a wide diversity of species 
simultaneously, these species can be included in a broadly tar-
geted approach, which also includes less prolific species that may 
nonetheless be vital to the ecosystem. In this way, unknown spe-
cies or unknown ecological interactions may also be detected. As 
an interesting example from this study, we found eDNA from the 
moth fly species Psychoda grisescens Tonnoir, 1922 (Psychodidae). 
This species is not yet recognised as a Danish species (Petersen & 
Meier, 2001), but since the faunistics of moth flies is poorly known, 
it might well occur in Denmark unnoticed or not yet registered. 
Indeed, specimens seem to have been collected from Denmark in 
a previous study (Espíndola & Alvarez, 2011), and since all nine 
Danish species of the genus (www.allea rter-datab asen.dk, ac-
cessed 14 September 2020) have sequences deposited in BOLD, 
incomplete database coverage cannot explain the detection. This 
case illustrates the usefulness of the present eDNA approach for 
obtaining information on unknown species. Importantly, we stress 
that issues related to unknown factors such as eDNA quantifica-
tion, degradation and transport should be studied further in dung 
samples before the approach can be considered for integration 
into monitoring. Finally, as we are well aware of the limited number 
of samples in our study, we recommend that the current approach 
of detecting dung-associated fauna using eDNA metabarcoding is 
repeated in other settings.
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