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Abstract. Adipose-tissue derived mesenchymal stem cell 
(ADSC)-based therapy is a promising option for patients 
with atherosclerotic conditions, including coronary artery 
disease. However, the potential differences in the metabolic 
characteristics between bone marrow-derived mesenchymal 
stem cells (BMSCs) and ADSCs have remained to be fully 
elucidated. The present study aimed to compare the metabolic 

profiles of BMSCs and ADSCs via liquid chromatography 
quadrupole time-of-flight mass spectrometry. BMSCs and 
ADSCs obtained from elderly coronary heart disease patients 
were cultured, and after three passages, supernatants of 
each cell type were collected and systematically analysed. 
Substantial differences were detected between the metabo-
lite signatures of ADSCs and BMSCs. In addition, further 
analysis using partial least-squares discriminant analysis 
score plots indicated significant differences between the 
supernatants of the two cell types. The following metabolites 
were deemed to be responsible for the potential differences in 
the metabolic characteristics of BMSCs and ADSCs: D-lactic 
acid, hydroxyindoleacetaldehyde, α-D-glucose, bovinic acid, 
9,10-epoxyoctadecenoic acid, glyceraldehyde, phenylpyruvic 
acid, L-octanoylcarnitine, retinyl ester, α-ketoisovaleric acid, 
guanidoacetic acid, N-acetylneuraminic acid, imidazoleacetic 
acid riboside, sphingosine and pseudouridine 5'-phosphate. 
Based on these findings, there may be significant differences 
in the following metabolic pathways: The linoleic acid meta-
bolic pathway, galactose metabolism, argentines and proline 
metabolism, retinol metabolism, glycine and serine metabo-
lism, galactose metabolism, and amino sugar and nucleotide 
sugar metabolism. In conclusion, substantial differences in 
metabolic characteristics were detected between BMSCs and 
ADSCs, which may be associated with the different efficacies 
of atherosclerosis therapies employing these cell types.

Introduction

Despite significant improvement in diagnosis and treatment 
strategies in recent years, atherosclerosis and the consequent 
diseases remain major contributors to mortality and morbidity 
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worldwide  (1). Pathophysiologically, atherosclerosis is 
recognized as an inflammatory disease characterized by the 
activation and migration of inflammatory cells into the suben-
dothelial layer of the arteries. Coronary heart disease (CHD), 
which is caused by atherosclerotic lesions in the coronary 
arteries, has become the most important public health problem 
in developed as well as developing countries, and the incidence 
is continuously rising worldwide with the acceleration of 
population aging (2,3). In addition to conventional risk factors 
that have been associated with atherosclerosis and CHD, 
overweight and obesity have been linked to the pathogenesis 
of the above diseases (4,5). With the increasing prevalence of 
obesity in the global population (6), atherosclerosis-associated 
diseases are expected to be even more prevalent in the 
future (7). Therefore, the development of effective therapies 
against atherosclerosis is of great clinical significance.

Indeed, marked improvements have been made regarding 
treatment options for atherosclerosis and associated 
diseases (8,9), and stem cell-based therapies are promising 
for patients with atherosclerosis, particularly CHD. With their 
characteristics of extensive proliferation and multipotency, 
stem cells have been suggested to be effective for repairing 
of vascular atherosclerotic lesions (7,10-12). Mesenchymal 
stromal cells (MSCs), which include bone marrow stromal 
cells (BMSCs) and adipose-tissue derived mesenchymal stem 
cell (ADSC), are multipotent adult stem cells that are most 
commonly applied in studies on stem-cell based therapies for 
atherosclerotic diseases (13,14). In addition to the use of MSCs 
themselves, bioengineering approaches based on gene therapy 
using MSCs have also been explored in several preclinical 
studies (15-17). The benefits of MSC-based therapies in athero-
sclerosis have been suggested to involve numerous potential 
mechanisms, including homing of MSCs to atherosclerotic 
lesions, production of active cytokines, modulation of the 
immune response, improved endothelial repair and attenuation 
of thrombosis formation (18-20).

Although BMSCs are the most commonly used type of 
stem cells in preclinical studies on cell-based therapies for 
atherosclerosis, the relative rarity of these cells and the inva-
sive procedures required for their harvesting have limited their 
use. As ADSCs are more readily accessible than BMSCs (21), 
they are also considered to be a potential cell source for the 
treatment of atherosclerotic diseases. However, the differ-
ences in the biological characteristics of ADSCs and BMSCs 
remain to be fully elucidated. No significant differences in 
the morphology and immune phenotype have been identified 
between BMSCs and ADSCs (22). However, the proliferative 
activity and apoptotic tolerance of ADSCs were reported to 
be higher than those of BMSCs (23-25). In addition, the cell 
population, maximum lifespan and multipotency of BMSCs 
were found to decrease more rapidly with increasing donor age 
compared with ADSCs (26,27). MSCs have been demonstrated 
to be capable of enhancing angiogenesis and improving cardiac 
function in vivo. Kim et al  (28) compared the therapeutic 
potential of ADSCs and BMSCs by transplanting the same 
number of cells in a nude mouse model of hind limb ischemia. 
The results indicated that ADSCs are associated with better 
blood flow recovery than BMSCs. In a rodent model injected 
with ADSCs to reconstruct abdominal wall muscle defects, 
angiogenesis and muscle healing were significantly improved 

compared with those in animals administered BMSCs (29). 
In addition, an experimental study demonstrated that ADSCs 
may induce a greater improvement in infarct area and left 
ventricle infarct wall thickness than BMSCs (30). The above 
studies also indicated that application of ADSCs in vivo in 
ischemic disease was associated with enhanced angiogenesis 
and a greater improvement in heart function in terms of effi-
cacy and accessibility. The potential mechanisms underlying 
these differences have not been comprehensively described, 
and differences in the metabolic characteristics of the two 
stem cell types may be involved. Therefore, the present study 
applied liquid chromatography quadrupole time-of-flight mass 
spectrometry (LC-QTOF-MS) to explore the differences in 
the metabolites of BMSCs and ADSCs derived from elderly 
patients with CHD.

Materials and methods

Patients. A total of 30 elderly patients (age, ≥60 years) with 
CHD and without hyperlipidemia and/or other metabolic 
abnormalities who were hospitalized at The Second Affiliated 
Hospital of Harbin Medical University (Harbin, China) 
from January, 2015 to October, 2016 were enrolled in the 
present study. The study protocol was approved by the Ethics 
Committee of The Second Affiliated Hospital of Harbin 
Medical University, and informed consent was obtained from 
all patients.

Cell culture. Bone marrow was collected from 15  CHD 
patients. The bone marrow was aspirated under local anaes-
thesia from the sternum and collected in heparinized tubes. 
Dulbecco's modified Eagle's medium (Gibco; Thermo Fisher 
Scientific, Inc., Waltham, MA, USA) with 3.7 g/l sodium 
bicarbonate, 1% penicillin and streptomycin, and 10% fetal 
bovine serum (Biological Industries Israel Beit-Haemek, 
Ltd., Kibbutz Beit-Haemek, Israel) was used for culturing 
the isolated cells. After 72 h, unattached cells and residual 
non-adherent red blood cells were removed by washing with 
phosphate-buffered saline (PBS). ADSCs were derived from 
adipose tissue of abdominal subcutaneous fat collected under 
anaesthesia from the other 15 CHD patients as previously 
described (31). The adipose tissues were washed with PBS 
containing 1% penicillin and streptomycin and subsequently 
digested with collagenase type I (1 mg/ml; Sigma-Aldrich; 
Merck KGaA, Darmstadt, Germany) at 37˚C for 45-60 min 
according to the manufacturer's instructions for the collage-
nase with intermittent shaking. Subsequently, the suspension 
was filtered using a 200-µm nylon mesh and the suspension 
was then centrifuged at 600 x g/min at 4˚C for 10 min, to 
separate the floating adipocytes. The cells were then cultured 
in a humidified atmosphere containing 5% CO2 at 37˚C with 
the medium replaced every 3 days. At passage 3, 105 cells in 
2 ml cell culture medium were seeded in 6-well plates. After 
3 days, the supernatants were collected and preserved at -80˚C 
for subsequent analyses.

Sample preparation. Supernatant preparation for the analysis 
of BMSCs and ADSCs was based on the following procedure: 
In brief, frozen supernatant samples were thawed at 4˚C 
for 50 min. After vortexing for 10 sec, the solutions were 
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centrifuged at 4,000 x g for 10 min at 4˚C. The upper aliquot 
solution (200 µl) was transferred to a clean 2-ml centrifuge 
tube and then acetonitrile (1,000 µl) was added. After vortexing 
for 2 min, the samples were centrifuged at 12,000 x g for 
15 min at 4˚C. The upper solution (1,000 µl) was transferred 
to a clean 2-ml centrifuge tube and then evaporated to dryness 
over a heat block at 35˚C under nitrogen gas. The residue was 
dissolved in 200 µl acetonitrile/water (1:3, v/v) via vortexing 
for 1 min and centrifugation at 12,000 x g for 15 min at 4˚C. 
The supernatant (200 µl) was transferred to an autosampler 
vial and injected into the LC-QTOF-MS (6530 series; Agilent 
Technologies, Inc., Santa Clara, CA, USA) apparatus for anal-
ysis. Equal amounts of supernatant samples from 15 ADSC 
cultures and 15 BMSC cultures as the samples were mixed for 
quality control (QC).

Chromatography. Each 10-µl aliquot of sample was injected 
into a 2.1x100  mm (1.8  mm) ZORBAX SB-C18 column 
for subsequent rapid resolution liquid chromatography 
(6530  series) (both from Agilent Technologies, Inc.). A 
mixture of acetonitrile containing 0.1% formic acid (phase A) 
and water containing 0.1% formic acid (phase B) were used 
as the mobile phase for electron spray ionisation in positive 
mode (ESI+), while a mixture of acetonitrile (phase A) and 
water (phase B) was used as the mobile phase for ESI in nega-
tive mode (ESI-). The protocols for the linear mobile phase 
gradient were as follows: 95% A held for 1 min; decreased 
to 2% A by 10 min; held at 2% A until 13 min; increased to 
95% A by 13.1 min; and held at 95% A until 20 min. The flow 
rate of the mobile phase was 0.3 ml/min at 40˚C.

MS. MS was performed using an Agilent 6530-QTOF MS 
apparatus (6530 series; Agilent Technologies, Inc.) operating 
in ESI+ or ESI- mode. The capillary voltage was set as 4.0 kV 
for ESI+ and 3.5 kV for ESI-. Nitrogen was applied as the 
desolvation gas at a flow rate of 10 l/min. The desolvation 
temperature was 350˚C. The centroid data were obtained with 
the full scan mode [mass-to-charge ratio (m/z) = 50-1,000].

Data pre-processing and annotation. The raw data were 
converted into mzData-format files using MassHunter 
Qualitative Analysis Software (v. B.04.00; Agilent Technologies, 
Inc.) and these files were further imported to the XCMS 
package in R (v. 3.0.2) (r-project.org/) for pre-processing. The 
analyses followed the default XCMS parameter settings, with the 

following exceptions: xcms Set (fwhm, 10), group (minfrac, 0.5; 
bw, 30) and rector (method, ‘obiwarp’). The definitions are as 
follows: fwhm, specifying the full width at half maximum of 
matched filtration Gaussian model peak; minfrac, defining the 
minimum fraction of samples in at least one sample group in 
which the peaks have to be present to be considered as a peak 
group; and bw, defining the bandwidth (standard deviation of 
the smoothing kernel) to be used.

Subsequently, a data matrix was generated, including 
results of retention time, m/z  values and peak intensity. 
CAMERA in R (v. 3.0.2) was used to annotate isotope peaks 
and generate adducts and fragments in the peak lists (32). A 
total of 1,668 ions in ESI+ mode and 829 ions in ESI- mode 
were included for subsequent statistical analysis.

Statistical analysis. First, principal component analysis (PCA) 
was used to detect the grouping trends and outliers (33). The 
Wilcoxon rank sum test was then applied to determine the 
significance of each metabolite at P<0.05. To identify the 
differences in metabolites between BMSCs and ADSCs, a 
partial least squares discriminant analysis (PLS-DA) was 
used (33). Permutation tests with 100 iterations were included 
to validate the supervised model and avoid overfitting (34). 
Based on the PLS-DA model, parameters that described the 
variable importance in the projection (VIP) for each metabo-
lite were calculated. With thresholds of P-values and VIP 
values of 0.05 and 1, respectively, the metabolic biomarkers 
were detected. The Wilcoxon rank sum test was used on the 
R platform (v. 3.0.2). The PCA and PLS-DA were performed 
using SIMCA-P (v. 11.5; Umetrics, Malmö, Sweden).

Results

PCA score plots for discriminating BMSCs and ADSCs. The 
baseline characteristics of the donors are presented in Table I. 
There were no significant differences between the groups 
of donors (BMSC donors: 8 males and 7  females; median 
age, 64 years; age range, 61-73 years; median weight, 67 kg; 
weight range, 55-83 kg; mean fasting glucose, 5.4 mmol/l; 
and fasting glucose range, 4.2-6.1 mmol/l. ADSC donors: 
6  males and 9  females; median age, 65  years; age range, 
61-75 years; median weight, 65 kg; weight range, 50-85 kg; 
mean fasting  glucose, 5.2  mmol/l; fasting glucose range, 
4.5-6.1 mmol/l). Metabolic analysis revealed numerous meta-
bolic differences between BMSCs and ADSCs. The results 

Table I. Clinical characteristics of BMSC and ADSC donors (n=15 per group).

Characteristic	 BMSC donors	 ADSC donors	 P-value

No. of subjects	 15	 15	 -
Age, years (median, range) 	 64, 61-73	 65, 61-75	 0.36
Weight, kg (median, range)	 67, 55-83	 65, 50-85	 0.48
Sex	 8 M, 7 F	 6 M, 9 F	 -
History of coronary heart disease, years (median, range)	 18, 12-25	 19, 13-26	 0.44
Fasting glucose, mmol/l (median, range) 	 5.4, 4.2-6.1	 5.2, 4.5-6.1	 0.47

BMSC, bone marrow-derived mesenchymal stem cell; ADSC, adipose tissue-derived mesenchymal stem cell; M, male; F, female.
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of the overall PCA based on all the samples suggested that 
the QC samples were closely clustered in plots of PCA scores, 
which demonstrated that the results of the metabolic profiling 
platform were robust. In addition, no outliers were present 
on the whole, and separation trends were observed between 
BMSCs and ADSCs (Fig. 1).

PLS-DA plots and validation plots for discriminating BMSCs 
and ADSCs. Via the application of the ESI+ and ESI- modes, 
all of the statistically significant ions were analysed (P<0.05 

and VIP>1) (Fig.  2). Subsequently, a supervised PLS-DA 
model was used to identify differences between BMSCs and 
ADSCs. As presented in the PLS-DA score plot, an obvious 
separation between BMSCs and ADSCs was present in the 
ESI+ mode (Fig. 2A) and ESI- mode (Fig. 2C). The PLS-DA 
models contained two predictive components in ESI+ mode 
[R2X=0.409; R2Ycum=0.759; cumulative second quartile 
(Q2cum)=0.429] and two components in ESI- mode (R2X=0.55; 
R2Ycum=0.647; Q2cum=0.398). Permutation tests including 
100 iterations and containing two predictive components were 

Figure 1. Principal component analysis score plots for discriminating BMSCs and ADSCs in ESI+ and ESI- modes. BMSCs, bone marrow-derived mesen-
chymal stem cells; ADSCs, adipose tissue-derived mesenchymal stem cells; ESI, electron spray ionization; QC, quality control.

Figure 2. PLS-DA plots and validation plots for discriminating ADSCs and BMSCs in ESI+ and ESI- modes. (A) PLS-DA plot in ESI+ mode; (B) validation 
plot in ESI+ mode; (C) PLS-DA plot in ESI- mode; (D) validation plot in ESI- mode. BMSCs, bone marrow-derived mesenchymal stem cells; PLS-DA, partial 
least squares discriminant analysis score; ESI+, electron spray ionisation in positive; ESI-, electron spray ionisation in negative; ADSCs, adipose tissue-derived 
mesenchymal stem cells; ESI, electron spray ionization; Q2, second quartile; R2, coefficient of determination; PLS-DA, partial least squares discriminant 
analysis score; horizontal axis t, principal component one; vertical axis t, principal component two.
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also performed (35). The results indicated that the permuted 
Q2cum values were lower than the original values in almost 
all cases (Fig. 2B and D), which further confirmed the validity 
of the supervised models. R2 identified the outfit of the PLS 
model. Q2cum refers to the predicting ability of the PLS model.

Metabolite profiles of potential biomarkers differing between 
BMSCs and ADSCs. Analysis of VIP values revealed 
discriminatory metabolites that contributed to the differences 

between BMSCs and ADSCs. Based on false discovery rate 
and VIP thresholds of 0.05 and 1, respectively, differential 
ions were selected as biomarker candidates for subsequent 
metabolite identification. The identification procedures 
were similar to strategies previously published by our 
group  (36,37). In total, 8 metabolites in ESI+ mode and 8 
metabolites in ESI- mode were identified (Table II). D-lactic 
acid, hydroxyindoleacetaldehyde, α-D-glucose, bovinic acid, 
9,10-epoxyoctadecenoic acid, glyceraldehyde, phenylpyruvic 

Table II. Detailed information on 16 supernatant metabolites.

A, ESI+ mode

ID	 Metabolite	 m/z	 RT (min)	 ppm	 FCa	 P-value	 VIP	 Pathway

P1	 Glyceraldehyde	 113.0197	 56.58	 10	 0.79	 0.036203	 1.299	 Glycerolipid metabolism
P2	 Pyrroline	 130.0505	 56.52	 5	 1.21	 0.012093	 1.8038	 Arginine and proline
	 hydroxycarboxylic acid							       metabolism
P3	 Phenylpyruvic acid	 165.0547	 56.58	 0	 0.95	 0.044253	 1.0174	 Phenylalanine and tyrosine 
								        metabolism
P4	 Imidazoleacetic	 281.0754	 56.1	 3	 1.40	 0.019103	 1.4403	 Histidine metabolism
	 acid riboside
P5	 L-octanoylcarnitine	 288.217	 505.38	 0	 0.68	 0.023787	 1.4542	 Mitochondrial β-oxidation
								        of short chain saturated
								        fatty acids
P6	 Sphingosine	 322.2682	 840.22	 10	 1.39	 0.019103	 1.6411	 Sphingolipid metabolism
P7	 Pseudouridine	 325.0374	 56.3	 17	 1.47	 0.048815	 1.4483	 Pyrimidine metabolism
	 5'-phosphate
P8	 Retinyl ester	 325.2118	 870.735	 5	 0.74	 0.040057	 1.7041	 Retinol metabolism

B, ESI- mode

N1	 D-Lactic acid	 89.02636	 54.65	 21	 0.77	 0.009531	 1.4873	 Pyruvate metabolism
N2	 α-ketoisovaleric acid	 115.0404	 59.73	 2	 1.37	 0.015247	 1.4307	 Pantothenate and 
								        CoA biosynthesis
N3	 Guanidoacetic acid	 116.044	 59.7	 9	 1.36	 0.015247	 1.4643	 Glycine and serine
								        metabolism
N4	 Hydroxyindoleacetaldehyde	 174.0551	 465.62	 5	 0.76	 0.040057	 1.0804	 Tryptophan metabolism
N5	 α-D-glucose	 179.0563	 51.34	 0	 0.86	 0.026482	 1.3418	 Galactose metabolism
N6	 Bovinic acid	 279.2292	 887.24	 13	 0.72	 0.004494	 1.641	 Linoleic acid metabolic 
								        pathway
N7	 9,10-Epoxyoctadecenoic acid	 295.2244	 722.755	 11	 0.76	 0.002637	 1.349	 Linoleic acid metabolic 
								        pathway
N8	 N-acetylneuraminic acid	 308.0994	 51.19	 2	 1.55	 0.044253	 1.1037	 Amino sugar metabolism
N9	 11,13-EpOME	 295.2244	 722.755	 11	 0.76	 0.002637	 1.349	 Linoleic acid metabolic
								        pathway

aFC was calculated based on means of BMSCs and ADSCs. FC >1 means that the biomarker increased in BMSCs compared with that in 
ADSCs. FC, fold change; RT, retention time; ppm, parts per million; m/z, mass to charge ratio; VIP, variable importance in the projection; 
ESI, electron spray ionization; P, positive; N, negative; BMSCs, bone marrow-derived mesenchymal stem cells; ADSCs, adipose tissue-derived 
mesenchymal stem cells.
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acid, L-octanoylcarnitine and retinyl ester were observed to be 
elevated in the supernatant of ADSCs compared with that of 
BMSCs (Figs. 3-5). By contrast, α-ketoisovaleric acid, guani-
doacetic acid, N-acetylneuraminic acid, imidazoleacetic acid 
riboside, sphingosine and pseudouridine 5'-phosphate levels 
were lower in the supernatant of ADSCs compared with that 
of BMSCs (Figs. 3-5). The involved biochemical pathways 

mapped in the Human Metabolome Database (HMDB) (38) 
and the Kyoto Encyclopaedia of Genes and Genomes 
(KEGG) (39) included the linoleic acid metabolic pathway, 
glycerolipid metabolism, arginine and proline metabolism, 
mitochondrial β-oxidation of short chain saturated fatty acids, 
pyrimidine metabolism, glycine and serine metabolism, galac-
tose metabolism and amino sugar metabolism.

Figure 3. Metabolite profiles of potential biomarkers differing between epithelial BMSCs and ADSCs in positive electron spray ionization mode. Values 
are expressed as the mean ± standard error of the mean. *P<0.05 vs. ADSCs. BMSCs, bone marrow-derived mesenchymal stem cells; ADSCs, adipose 
tissue‑derived mesenchymal stem cells.
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Discussion

The results of the Scandinavian Simvastatin Survival Study were 
published in The Lancet 20 years ago (40). At present, dyslipid-
emia is major cause of atherosclerotic vascular disease. Recent 
studies further underlined the significance of dyslipidemia in 
cardiovascular disease through performing research on lipids 
[high-density lipoprotein cholesterol (HDL‑C), low‑density 
lipoprotein cholesterol (LDL‑C) and triglycerides] and cardio-
vascular disease (41-43). Autologous MSC transplantation has 

emerged as a novel treatment for atherosclerosis-associated 
diseases, and pilot studies have demonstrated a promising 
clinical effect for this treatment strategy. However, the rela-
tive efficacies of BMSC- and ADSC-based cellular therapies 
for atherosclerosis-associated diseases have remained largely 
elusive. Establishing the metabolic signatures of these cell types 
will be helpful for understanding differences between them 
and be of significance for the development of clinical treat-
ments. The present results regarding unknown and annotated 
analytes indicated that the supernatant of ADSCs contained 

Figure 4. Metabolite profiles of potential biomarkers differing between epithelial BMSCs and ADSCs in negative electron spray ionization mode. Values are 
expressed as the mean ± standard error of the mean. *P<0.05 and **P<0.01 vs. ADSCs. BMSCs, bone marrow-derived mesenchymal stem cells; ADSCs, adipose 
tissue-derived mesenchymal stem cells.
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significantly different levels of metabolites compared with 
BMSCs. Of note, the metabolites accounting for the differences 
between the supernatants of ADSCs and BMSCs were matched 
with known human metabolites in the HMDB (hmdb.ca/) or 
KEGG (kegg.jp/kegg/pathway.html), and these results were 
further confirmed by a manual search for similarities between 
the annotated and the library spectra for each metabolite.

Overall, the results of the present metabolite pathway 
enrichment analysis retrieved 15  potential pathways that 
were considered to be different between ADSCs and 
BMSCs. Two annotated metabolites included bovinic acid 
and 9,10-epoxyoctadecenoic acid, which are components of 
the linoleic acid pathway. The linoleic acid pathway contains 
15 metabolites and participates in protecting the body against 
disease states such as atherosclerosis, thrombosis, diabetes, 
high blood pressure, skin inflammation, aging and cancer. 
Bovinic acid is a predominant conjugated linoleic acid (CLA) 
in human adipose tissue, comprising a group of fatty acids 
with 18 carbon atoms, and has anti-atherogenic and anticar-
cinogenic activities (44,45). As the pathophysiological process 
of atherosclerosis is complex and involves numerous cellular 
pathways, reversal of particular pathways may not be sufficient 
for the prevention of the disease. However, studies suggested 
that administration of CLA may be associated with the 
regression of atherosclerosis in rabbits (46) and other animal 

models (47). Evidence from a patient study has demonstrated 
that CLA has anti-inflammatory effects via the reduction of 
oxidative stress (48).

Several studies have also demonstrated that consumption 
of CLA reduced the fat mass or the percentage of body fat in 
healthy and in obese/overweight adults (49-51). As such, the 
conclusions from meta-analyses of previous patient studies 
were that intake of CLA reduced body weight and body-fat 
mass (52). The potential mechanisms of action of CLA may 
involve metabolic effects of inhibiting lipogenesis and accel-
erating lipolysis (53). Via interactions with the peroxisome 
proliferator-activated receptors  (PPARs), CLA has been 
proven to initiate the transcription of genes associated with 
the differentiation of adipocytes, which involve lipolysis 
(β-oxidation) and mitochondrial biogenesis (54). Of note, the 
activation of PPARγ was associated with delayed progression 
of atherosclerosis and dyslipidemia. In addition, a recent study 
confirmed that the effects of CLA against inflammation were 
mainly mediated via the inhibition of nuclear factor-κB and 
mitogen-activated protein kinase signalling pathways (55).

Furthermore, clinical studies have reported that CLA 
may provide a great benefit for human health. An inverse 
association between cis-9, trans-11 CLA and the risk of 
myocardial infarction has been detected among Costa Rican 
subjects (56). Another human study drew a similar conclusion, 

Figure 5. Heat map demonstrating dynamic changes in BMSC and ADSC biomarkers. P1/N1, metabolites detected in positive/negative electron spray ioniza-
tion mode according to Table II; BMSCs, bone marrow-derived mesenchymal stem cells; ADSCs, adipose tissue-derived mesenchymal stem cells.
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namely that intake of CLA increased HDL-C and reduced the 
LDL-C/HDL-C ratio in type 2 diabetic patients (57). In addi-
tion, CLA was also reported to improve insulin sensitivity in 
young patients, which was correlated with decreased fasting 
insulin levels (58). A clinical trial indicated an effect of CLA 
on Crohn's disease, where intake of 6 g CLA/day for 12 weeks 
improved inflammatory bowel disease questionnaire responses 
and decreased the Crohn's disease activity index (59). In the 
Swedish Mammography Cohort study, intake of CLA was 
demonstrated to reduce the risk of colorectal cancer by 13% and 
the risk of distal colon cancer by 34% (60). In a study on breast 
cancer patients, CLA inhibited tumour metastasis in premeno-
pausal women (61,62). In South African children, the potential 
preventive effects of CLA on laryngeal papillomatosis have 
been reported, which may cause airway obstruction in young 
children (63). The abovementioned patient studies indicated the 
potential application of CLA in cardiovascular diseases, meta-
bolic syndrome, immune system diseases and cancer, either 
alone or complementary to present treatments.

BMSCs have been proposed as a cell source for athero-
sclerosis therapy. However, ADSCs have emerged as a novel 
cell source with easy accessibility, and they may be collected 
from elderly patients with less injury than bone marrow. In 
addition, in elderly patients, BMSCs reside in the bone marrow 
stroma in smaller quantities compared with those in young 
patients, whereas the amount of ADSCs is often greater due 
to the dramatic increase in the incidence of obesity worldwide. 
Both cell types are well tolerated by humans. However, the 
relative efficacies of BMSC- and ADSC-based stem cell thera-
pies for patients with atherosclerosis-associated diseases, such 
as CHD, remain to be determined. A recent study suggested 
that ADSC transfusion was associated with a repressed 
increase in body weight and improved dyslipidemia in obese 
mice  (64). In addition, CLA has been proven to stimulate 
lipolysis in human adipocytes and diminish the synthesis of 
fatty acids, although the specific mechanisms remain to be 
determined (65). Furthermore, ADSCs have been suggested 
to be more immunosuppressive than BMSCs, as ADSCs are 
associated with a more marked inhibition of the expression 
of functionally important co-stimulatory molecules on the 
surface of monocyte-derived dendritic cells (66). The results 
of the present study suggested that ADSCs may possibly act 
upon adipose tissue via the production of CLA and participate 
in the linoleic acid pathway, which may provide additional 
treatment effects as compared with BMSCs.

Nevertheless, there are some limitations of the present 
study. The study enrolled 30 patients, all of which were elderly, 
and used the BMSCs from 15 of them and the ADSCs from 
the other 15 patients. However, it may have been appropriate to 
assess the ADSCs and BMSCs from the same patient and then 
determine the differences in metabolites. Therefore, based on 
the study design, it cannot be excluded that the differences in 
metabolites between ADSCs and BMSCs may have been due 
to them being taken from two different populations/groups. 
Furthermore, no control group was used, such as a group of 
younger patients for comparison.

In conclusion, the results of the present study revealed a 
marked difference regarding the metabolic characteristics of 
ADSCs and BMSCs. ADSCs exhibited differences regarding 
components of the linoleic acid pathway, including bovinic 

acid, 12,13-EpOME, 13-hydroxyoctadecadienoic acid and 
9,10-epoxyoctadecenoic acid as compared with BMSCs. These 
results enhanced the current understanding of the metabolic 
differences between ADSCs and BMSCs and may represent 
the underlying mechanisms responsible for the different 
efficacies of ADSC- and BMSC-based stem cell therapies for 
atherosclerosis-associated diseases.
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