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Background
X chromosome inactivation (XCI) [1, 2] is an epigenetic phenomenon which only occurs 
in female mammals. By the process of XCI, one of two X chromosomes in females will 
be transcriptionally silenced during the early development of embryos, to ensure that 
the transcriptional dosages on X chromosome are balanced between males and females 

Abstract 

Background: X chromosome inactivation (XCI) is an epigenetic phenomenon that 
one of two X chromosomes in females is transcriptionally silenced during early embry‑
onic development. Skewed XCI has been reported to be associated with some X‑linked 
diseases. There have been several methods measuring the degree of the skewness of 
XCI. However, these methods may still have several limitations.

Results: We propose a Bayesian method to obtain the point estimate and the credible 
interval of the degree of XCI skewing by incorporating its prior information of being 
between 0 and 2. We consider a normal prior and a uniform prior for it (respectively 
denoted by BN and BU). We also propose a penalized point estimate based on the 
penalized Fieller’s method and derive the corresponding confidence interval. Simu‑
lation results demonstrate that the BN and BU methods can solve the problems of 
extreme point estimates, noninformative intervals, empty sets and discontinuous 
intervals. The BN method generally outperforms other methods with the lowest mean 
squared error in the point estimation, and well controls the coverage probability with 
the smallest median and the least variation of the interval width in the interval estima‑
tion. We apply all the methods to the Graves’ disease data and the Minnesota Center for 
Twin and Family Research data, and find that SNP rs3827440 in the Graves’ disease data 
may undergo skewed XCI towards the allele C.

Conclusions: We recommend the BN method for measuring the degree of the skew‑
ness of XCI in practice. The R package BEXCIS is publicly available at https:// github. 
com/ Wen‑ YiYu/ BEXCIS.

Keywords: Skewed X chromosome inactivation, Bayesian method, Penalized Fieller’s 
method, Graves’ disease data, Minnesota Center for Twin and Family Research data
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[3]. There are three patterns of XCI [4], which are random XCI (XCI-R), skewed XCI 
(XCI-S) and escape from XCI (XCI-E). Generally, XCI-R is a random and independent 
selection process in each cell of females, i.e., 50% cells have either the paternal or mater-
nal allele silenced and the remaining 50% keep the other allele inactivated at an X-chro-
mosomal locus [4]. XCI-E means that both the paternal and maternal alleles at a locus 
will be active. In humans, 15–30% X-linked genes have been shown to undergo XCI-E 
[5, 6]. Besides, XCI-S is the observation that the same allele is inactivated in more than 
75% cells in females [7–9], and the extreme XCI-S is a phenomenon that at least 90% 
cells in females keep the same allele inactivated [10]. Due to the analytical complications 
caused by XCI, association tests for detecting disease-associated single nucleotide poly-
morphisms (SNPs) on autosomes may not be directly applied to X chromosome.

Researchers have proposed some methods to test for the association on X chromo-
some for qualitative traits [11–17] and quantitative traits [18–21]. For qualitative traits, 
Zheng et al. [11] took account of XCI-E and put forward a series of test statistics com-
bining the genetic effect in two sexes. Clayton [12] first incorporated XCI-R into the 
association analysis by regarding males as homozygous females. However, Clayton’s 
methods do not consider the XCI-E or all the XCI-S patterns. As such, Wang et al. [13] 
proposed a resampling-based maximum likelihood ratio approach for qualitative traits, 
which is robust to any XCI pattern. For XCI-E, Wang et al. [13] coded three genotypes 
in females (dd, Dd and DD) as 0, 1 and 2 and coded two genotypes in males (d and 
D) as 0 and 1, where d is the normal allele and D is the deleterious allele at the SNP 
under study. For XCI-R and XCI-S, three genotypes in females were coded as 0, γ and 
2 and two genotypes in males were coded as 0 and 2, respectively, where γ ∈ [0, 2] is 
an unknown genotypic value for heterozygous females and can be used to measure the 
degree of XCI-S [13]. The value of γ not only reveals the potential XCI pattern but also 
gives us a hint about the proportion of the cells in females expressing the normal allele 
d or the deleterious allele D at the SNP. Specifically, γ ∈ [0, 1) means XCI-S skewed 
towards D, γ = 1 represents XCI-R, and γ ∈ (1, 2] suggests XCI-S skewed towards d. 
If the estimate of γ is significantly different from 1, the SNP is statistically inferred to 
undergo XCI-S, otherwise, the SNP may undergo XCI-R or XCI-E. For example, γ = 0.4 
represents XCI-S skewed towards D, where only about 20% (0.4/2) of the cells have D 
active and the other 80% of the cells have d active. For quantitative traits, Zhang et al. 
[18] proposed an association test based on nuclear families, which requires the quantita-
tive trait being normally distributed and assumes that the variances of the trait value for 
the three genotypes in females are the same. However, Ma et al. [19] reported that XCI 
and other factors (e.g., gene-gene interactions and gene mutation) may cause higher var-
iance of the trait in heterozygous females compared to homozygous females. As a result, 
Ma et  al. [19] proposed three methods for testing the association based on unrelated 
females, which take account of the inflated variance of the quantitative trait in heterozy-
gous females. Gao et al. [20] further developed a software toolset, which can implement 
the three test statistics in Ma et al. [19].

In addition to the detection of the disease-associated SNPs on X chromosome, it is 
also important to measure the degree of XCI-S. It has been reported that the degree 
of XCI-S may increase with age [4] and is associated with many diseases such as scle-
roderma, rheumatoid arthritis, breast cancer, ovarian cancer, severe combined 
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immunodeficiency and so on [22–28]. For heterozygous females, larger proportion of 
the cells with active deleterious allele will lead to more severe expression of the related 
diseases, while smaller proportion can protect the body from negative effects, which 
suggests that XCI-S is somehow both a confounding factor in genetic association anal-
ysis and a critical tool providing valuable information about the pathogenesis at the 
X-chromosomal locus [22]. Therefore, methods for measuring the skewness of XCI are 
necessary and researchers have provided several methods for qualitative traits [29, 30] 
and quantitative traits [31]. Specifically, Xu et al. [29] proposed a statistical measure for 
γ based on family trios and derived the corresponding confidence interval (CI) with the 
likelihood ratio (LR) test. Based on case-control design, Wang et al. [30] showed that γ 
can be expressed as a ratio of two logistic regression coefficients and derived three types 
of the CIs for γ (the LR, Fieller’s and delta methods). The Fieller’s and LR methods out-
perform the delta method and the Fieller’s method is recommended because it is non-
iterative and requires much less computations than the LR method. Since the approach 
of Xu et al. [29] and those of Wang et al. [30] are only applicable to qualitative traits, Li 
et al. [31] extended the methods of Wang et al. [30] to make them accommodate quan-
titative traits. Note that both the Fieller’s and LR methods may cause unbounded CIs if 
the denominator of the ratio is not significantly deviated from 0 [30]. Fortunately, Wang 
et al. [32] proposed a penalized Fieller’s (PF) method for the ratio estimate, which can 
always obtain a bounded CI with an appropriate penalty parameter. The PF method has 
never been used to measure the degree of XCI-S, and we will apply it to such task for the 
first time. However, all the existing methods for measuring γ do not consider the con-
straint condition that the value of γ should be between 0 and 2. They simply cut off the 
point estimates and the corresponding CIs into [0, 2] to get the final results, which may 
lead to extreme point estimates (0 or 2) as well as noninformative CIs ( [0, 2] ) or invalid 
CIs (empty sets). In contrast, the Bayesian method [33, 34] can incorporate the prior 
information and has been widely used in statistical genetics in recent years [35]. To make 
an improvement, we will apply the Bayesian method to the γ measuring problem so that 
we can make full use of the prior information of γ and obtain more accurate and robust 
point estimate and credible interval for γ.

Therefore, in this article, borrowing the idea of Wang et al. [32], we first derive a penal-
ized point estimate to measure the degree of XCI-S ( γ ) and compute the corresponding 
CI by the PF method. Then, we propose a Bayesian method to obtain the samples of γ 
from its approximate posterior distribution and calculate the mode of the samples as its 
point estimate and the highest posterior density interval (HPDI) as its credible interval 
[36]. We conduct extensive simulation studies to compare the proposed Bayesian and 
penalized point estimates with the existing point estimate, as well as to compare the 
Bayesian and PF methods with the existing Fieller’s method in the interval estimation, 
respectively. Finally, we apply all the methods to the Graves’ disease data and the Min-
nesota Center for Twins and Family Research (MCTFR) data for their practice on the 
qualitative trait and the quantitative trait, respectively.



Page 4 of 28Yu et al. BMC Bioinformatics          (2022) 23:193 

Results
Simulation results

To evaluate the performances of the proposed point estimation and interval esti-
mation methods, we conduct extensive simulation studies. Assume that σ 2

0  , σ 2
1  and 

σ 2
2  are the variances of the quantitative trait for females with genotypes dd, Dd and 

DD, respectively. We consider the qualitative trait and the quantitative trait when 
(σ 2

0 , σ
2
1 , σ

2
2 ) = (1, 1.2, 1) and (σ 2

0 , σ
2
1 , σ

2
2 ) = (4, 4.8, 4) , and the sample size n is 

taken as 500 and 2,000, the minor allele frequency (MAF) is fixed at 0.3 and 0.1, and 
the inbreeding coefficient ρ is set to be 0, -0.05 and 0.05, where ρ = 0 means that the 
Hardy–Weinberg equilibrium (HWE) holds in females and ρ  = 0 denotes the departure 
from HWE in females. We simulate 500 SNPs with stochastic underlying γ ’s for each 
scenario. The penalized point estimate and the existing point estimate of γ may obtain 
the point estimate less than 0 or larger than 2 while the value of γ should be within [0, 2] , 
so we need to truncate the penalized point estimate and the existing point estimate into 
[0, 2] to get the final results. We denote the penalized point estimate and the existing 
point estimate before truncation as γ̂ ∗

origin and γ̂origin , and denote those after truncation 
as γ̂PF and γ̂F , respectively. We also use the Bayesian methods with the normal prior and 
the uniform prior for γ (represented by BN and BU) to obtain the point estimate of γ , 
which are denoted as γ̂BN and γ̂BU , respectively. To reveal the accuracy and robustness 
of γ̂BN , γ̂BU , γ̂PF and γ̂F , we calculate their mean squared errors (MSEs) and summarize 
the proportions of the extreme values (0 or 2) they get among the 500 replicates, respec-
tively. Here, MSE =

∑K
k=1(γ̂k−γk )

2

K  , where K is the number of replicates, γk is the kth true 
value of γ , and γ̂k is the estimate of γk . We also draw scatter plots to directly display the 
four point estimates against the true values of γ . To investigate the performances of the 
BN, BU, PF and Fieller’s methods, we respectively assess the coverage probability (CP) as 
well as the mean, median, standard deviation and interquartile range of the widths of the 
95% HPDIs or CIs of γ (denoted by Wmean , Wmedian , WSD and WIQR ) for them. We com-
pute the proportions of the noninformative interval ( [0, 2] ), empty set and discontinu-
ous interval they obtain among the 500 replicates (denoted by NP, EP and DP) to further 
confirm these methods’ validity. Scatter plots are drawn to show the widths of the 95% 
HPDIs or CIs of these methods against the true values of γ.

The proportions of the extreme values of γ̂PF and γ̂F among the 500 replicates for qual-
itative trait and quantitative trait with (σ 2

0 , σ
2
1 , σ

2
2 ) = (1, 1.2, 1) are presented in 

Table 1, the MSEs of γ̂BN , γ̂BU , γ̂PF and γ̂F for qualitative trait and quantitative trait with 
(σ 2

0 , σ
2
1 , σ

2
2 ) = (1, 1.2, 1) are shown in Table 2, and the scatter plots of these four point 

estimates against the true values of γ under these settings are respectively displayed in 
Figs. 1, 2 and Additional file 1: Figs. S1–S22. Note that γ̂BN and γ̂BU can solve the prob-
lem of extreme point estimates and thus are not listed in Table 1. Comparing the propor-
tions of the extreme values of γ̂PF with those of γ̂F in Table  1, γ̂PF can reduce the 
proportion of the extreme point estimates equal to 2. An explanation for this is that γ̂PF 
is obtained by shrinking the denominator of γ̂F away from 0 and accordingly adjusting 
the numerator of γ̂F , which can avoid the point estimate being positive infinity before the 
truncation (since β̂1 and β̂2 in γ̂origin = 2β̂1

β̂1+β̂2
 usually have the same sign [30]) and hence 

can cut down the proportion of the point estimates equal to 2 after the truncation. On 
the other hand, we can see from Table  1 that the proportions of the extreme point 
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estimates equal to 0 are the same for γ̂PF and γ̂F . Note that γ̂ ∗
origin and γ̂origin always have 

the same sign if they are not zero. When γ̂ ∗
origin and γ̂origin are negative ( β̂1 and β̂2 have dif-

ferent signs), γ̂PF = γ̂F = 0 , and when they are positive, γ̂PF and γ̂F will both be greater 
than 0. That is why γ̂PF and γ̂F always have the same amount of the extreme point esti-
mates equal to 0. It can also be observed from Table 1 that the total proportions of the 
extreme point estimates in γ̂PF and γ̂F both decrease when n becomes larger, MAF gets 
higher or the trait turns from qualitative into quantitative.

In addition to the advantage of avoiding the extreme point estimates, it can be seen 
from Table  2 that γ̂BN and γ̂BU always have smaller MSEs than γ̂PF and γ̂F , and the 
MSEs of γ̂BN remain the smallest across all the situations. Irrespective of other fac-
tors, we find that ρ generally has a little effect on the MSEs of the four point estimates, 
which means that the four point estimates are robust to the deviation from HWE in 
general. When other parameters remain unchanged, the MSEs of the four point esti-
mates all become smaller with larger n or higher MAF. Compared to the qualitative 
trait, all the four point estimation methods give less MSEs for the quantitative trait with 
(σ 2

0 , σ
2
1 , σ

2
2 ) = (1, 1.2, 1) , regardless of the values of n, MAF and ρ.

Table 1 Proportions (in % ) of extreme values of γ̂PF and γ̂F among 500 replicates

Proportions (in % ) are given under qualitative trait and quantitative trait with (σ 2
0 , σ

2
1 , σ

2
2 ) = (1, 1.2, 1)

Trait n MAF ρ γ̂PF γ̂F

0 2 Total 0 2 Total

Qualitative 500 0.3 0 11.8 13.0 24.8 11.8 15.2 27.0

− 0.05 12.2 15.0 27.2 12.2 18.0 30.2

0.05 9.2 16.6 25.8 9.2 18.8 28.0

0.1 0 23.4 6.8 30.2 23.4 19.2 42.6

− 0.05 25.0 4.2 29.2 25.0 20.8 45.8

0.05 24.8 9.6 34.4 24.8 17.8 42.6

2000 0.3 0 3.6 6.8 10.4 3.6 6.8 10.4

− 0.05 5.4 7.2 12.6 5.4 7.2 12.6

0.05 6.2 7.2 13.4 6.2 7.6 13.8

0.1 0 8.8 15.0 23.8 8.8 19.4 28.2

− 0.05 13.4 12.0 25.4 13.4 20.6 34.0

0.05 7.4 13.4 20.8 7.4 17.6 25.0

Quantitative 500 0.3 0 5.4 10.4 15.8 5.4 10.6 16.0

− 0.05 6.4 11.6 18.0 6.4 12.6 19.0

0.05 7.0 8.6 15.6 7.0 8.8 15.8

0.1 0 14.2 14.0 28.2 14.2 19.8 34.0

− 0.05 20.8 10.0 30.8 20.8 16.6 37.4

0.05 12.6 12.8 25.4 12.6 17.4 30.0

2000 0.3 0 2.6 4.8 7.4 2.6 4.8 7.4

− 0.05 3.0 5.6 8.6 3.0 5.6 8.6

0.05 3.0 6.0 9.0 3.0 6.0 9.0

0.1 0 3.6 13.4 17.0 3.6 14.0 17.6

− 0.05 4.0 15.6 19.6 4.0 19.8 23.8

0.05 5.6 10.2 15.8 5.6 10.6 16.2
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Figures  1 and 2 and Additional file  1: Figs. S1–S22 not only support the findings of 
Tables 1 and 2 but also provide extra information on the performances of the four point 
estimation methods under different true values of γ . Specifically, Fig. 1 presents the four 
point estimates of γ against the true values of γ with n = 500 , MAF = 0.3 and ρ = 0 for 
qualitative trait. Fig.  1a shows good agreement between γ̂BN and the true values of γ , 
while Fig. 1b presents larger discrepancies between γ̂BU and the true values of γ , which 
means that γ̂BN performs better than γ̂BU under this situation. Compared to Fig. 1a–c for 
γ̂PF and Fig. 1d for γ̂F both display worse point estimates with the existence of extreme 
values (represented by red points). Similar results can be found in all the other cases 
(Fig. 2 and Additional file 1: Figs. S1–S22), which indicates that γ̂BN and γ̂BU have better 
performances than γ̂PF and γ̂F , and γ̂BN is generally the best one among these four point 
estimates across all the simulation scenarios. Figure 2 gives the four point estimates of γ 
against the true values of γ with n = 500 , MAF = 0.3 and ρ = 0 for the quantitative trait 
when (σ 2

0 , σ
2
1 , σ

2
2 ) = (1, 1.2, 1) . In the comparison of Figs. 1 and 2, we see that the four 

point estimation methods provide better point estimates for the quantitative trait with 
(σ 2

0 , σ
2
1 , σ

2
2 ) = (1, 1.2, 1) than for the qualitative trait (can also be seen in Additional 

file 1: Figs. S1–S11 vs. S12–S22). Similarly, we have the same findings on the effects of 
n, MAF and ρ on the performances of these four point estimation methods from Figs. 1, 
2 and Additional file  1: Figs. S1–S22 as we did in Table  2. In addition, the four point 

Table 2 MSEs of γ̂BN , γ̂BU , γ̂PF and γ̂F

Mean squared errors (MSEs) are given under qualitative trait and quantitative trait with (σ 2
0 , σ

2
1 , σ

2
2 ) = (1, 1.2, 1)

Trait n MAF ρ γ̂BN γ̂BU γ̂PF γ̂F

Qualitative 500 0.3 0 0.1897 0.2192 0.2686 0.2868

− 0.05 0.1746 0.2023 0.2960 0.3234

0.05 0.1705 0.2056 0.2511 0.2608

0.1 0 0.3838 0.4456 0.5163 0.6584

− 0.05 0.4707 0.5374 0.5525 0.6978

0.05 0.3943 0.4642 0.5603 0.6660

2000 0.3 0 0.0736 0.0768 0.0848 0.0857

− 0.05 0.0703 0.0742 0.0808 0.0820

0.05 0.0689 0.0709 0.0756 0.0760

0.1 0 0.1811 0.1921 0.2725 0.3266

− 0.05 0.2213 0.2435 0.3466 0.4329

0.05 0.1698 0.1847 0.2265 0.2663

Quantitative 500 0.3 0 0.0972 0.1062 0.1235 0.1267

− 0.05 0.0890 0.1009 0.1237 0.1283

0.05 0.0894 0.0988 0.1125 0.1143

0.1 0 0.2285 0.2596 0.4325 0.5005

− 0.05 0.2319 0.2692 0.4416 0.4850

0.05 0.2179 0.2436 0.3356 0.3884

2000 0.3 0 0.0320 0.0334 0.0345 0.0345

− 0.05 0.0332 0.0340 0.0349 0.0350

0.05 0.0307 0.0316 0.0324 0.0324

0.1 0 0.1065 0.1170 0.1300 0.1379

− 0.05 0.1391 0.1521 0.2009 0.2214

0.05 0.1001 0.1049 0.1312 0.1446
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estimates are generally scattered evenly around the true values of γ except for those 
settings when n = 500 and MAF = 0.1 for qualitative trait, where γ̂BN and γ̂BU tend to 
underestimate the true value of γ (Additional file 1: Figs. S3–S5). The four point estima-
tion methods obtain their best performance at n = 2000 and MAF = 0.3 for quantitative 
trait when (σ 2

0 , σ
2
1 , σ

2
2 ) = (1, 1.2, 1) (Additional file 1: Figs. S17–S19), where γ̂PF and γ̂F 

still have a small amount of extreme point estimates (represented by red points) when 
the true values of γ are smaller than 0.5 or larger than 1.5.

The NP, EP and DP of the PF and Fieller’s methods among the 500 replicates for quali-
tative trait and quantitative trait with (σ 2

0 , σ
2
1 , σ

2
2 ) = (1, 1.2, 1) are displayed in Table 3, 

the CP, Wmean and Wmedian of the BN, BU, PF and Fieller’s methods for qualitative trait 
and quantitative trait with (σ 2

0 , σ
2
1 , σ

2
2 ) = (1, 1.2, 1) are listed in Table 4, and the widths 

of the 95% HPDIs or CIs for these four interval estimation methods against the true val-
ues of γ under these settings are respectively presented in Figs. 3, 4 and Additional file 2: 
Figs. S23–S44. Notice that the BN and BU methods are not listed in Table 3 because of 
the superiority of the BN and BU methods over the other two methods that they have 
no noninformative HPDI, empty set or discontinuous HPDI under all the situations. We 
can see from Table 3 that the DPs of the PF method are all equal to 0 because we choose 

Fig. 1 Scatter plots of point estimates of γ for qualitative trait with n = 500 , MAF = 0.3 and ρ = 0 . The results 
are against true value of γ . The red points represent the extreme values (0 or 2). a γ̂BN ; b γ̂BU ; c γ̂PF ; d γ̂F
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a sufficiently large penalty parameter � ( � = z21−α/2

4  ) for the PF method, while the Fieller’s 
method may obtain nonzero DPs especially when n = 500 and MAF = 0.1 . Moreover, 
the PF method always has less NP than the Fieller’s method. The reason for this result is 
that the PF method tends to obtain shorter CIs than the Fieller’s method before the trun-
cation [32], which benefits for the reduction of NPs since a noninformative CI is created 
by the truncation when [0, 2] is totally contained by the wide original CI. Although the 
zero DP and lower NPs show the advantages of the PF method over the Fieller’s method, 
the PF method may have greater EPs when MAF is low, which is actually caused by the 
shorter CIs of the PF methods as well. Specifically, an empty set is created by the trunca-
tion when the original CI is disjoint from [0, 2] , which can occur when the original point 
estimates locate outside [0, 2] . In these cases, the shorter the CI is, the larger the prob-
ability for the original CI to be disjoint from [0, 2] is, which causes bigger EPs of the PF 
method in some scenarios. It is also shown in Table 3 that the NP of the PF method as 
well as the NP and DP of the Fieller’s method get smaller if n is larger, MAF is higher or 
the trait changes from qualitative to quantitative. The EP of the PF method gets lower 

Fig. 2 Scatter plots of point estimates of γ for quantitative trait with n = 500 , MAF = 0.3 and ρ = 0 . The 
results are against true value of γ with (σ 2

0 , σ
2
1 , σ

2
2 ) = (1, 1.2, 1) . The red points represent the extreme values 

(0 or 2). a γ̂BN ; b γ̂BU ; c γ̂PF ; d γ̂F
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only if MAF increases while that of the Fieller’s method fluctuates irregularly throughout 
the simulation studies.

From Table 4, we find that the CPs of the BN and BU methods are controlled around 
95% in all the simulated situations, while the CPs of the PF and Fieller’s methods are 
usually underestimated or overestimated when MAF is low. Moreover, we observe from 
Table  4 that the Wmean ’s and Wmedian ’s of the BN and BU methods are smaller than 
those of the PF and Fieller’s methods under all the scenarios. Specifically, among these 
four interval estimation methods, the BN method has the smallest Wmean in most cases 
and owns the least Wmedian under all the circumstances. The Wmedian ’s of the Fieller’s 
method are all 2 when n = 500 and MAF = 0.1 for qualitative trait, which means that 
more than half of the CIs obtained by the Fieller’s method are noninformative in this 
case. Irrespective of other factors, ρ has a little effect on the Wmean ’s and Wmedian ’s of the 
four methods, which indicates that all the four methods are robust to the departure from 
HWE. The Wmean ’s and Wmedian ’s of these four methods decrease when n gets larger, 
MAF becomes higher or the trait changes from qualitative to quantitative.

In addition to the support of the findings from Table 4, Figs. 3, 4 and Additional file 2: 
Figs. S23–S44 present the distributions of the widths of the 95% HPDIs or CIs for these 
four interval estimation methods against the true values of γ . Specifically, Fig.  3 gives 

Table 3 NPs, EPs and DPs (in % ) for the PF and Fieller’s methods

Proportions (in % ) of the noninformative intervals (NP), empty sets (EP) and discontinuous intervals (DP) for the penalized 
Fieller’s (PF) and Fieller’s methods are given under qualitative trait and quantitative trait with (σ 2

0 , σ
2
1 , σ

2
2 ) = (1, 1.2, 1)

Trait n MAF ρ PF Fieller

NP EP DP NP EP DP

Qualitative 500 0.3 0 23.4 0.4 0.0 31.4 0.6 0.2

−  0.05 23.6 0.4 0.0 34.6 0.8 0.0

0.05 22.6 0.0 0.0 29.4 0.6 0.0

0.1 0 43.2 1.6 0.0 60.2 0.2 1.0

− 0.05 47.6 3.6 0.0 54.8 0.0 1.0

0.05 41.0 1.4 0.0 61.0 0.8 0.4

2000 0.3 0 0.2 0.0 0.0 0.6 0.2 0.0

− 0.05 0.4 0.0 0.0 0.6 0.0 0.0

0.05 0.0 0.0 0.0 0.4 0.2 0.0

0.1 0 15.8 0.8 0.0 23.8 0.8 0.0

− 0.05 16.8 3.2 0.0 22.2 1.2 0.6

0.05 12.8 0.6 0.0 17.0 0.4 0.2

Quantitative 500 0.3 0 3.6 0.2 0.0 5.6 0.6 0.0

− 0.05 3.6 0.0 0.0 6.2 0.2 0.0

0.05 3.0 0.0 0.0 5.2 0.2 0.0

0.1 0 23.2 5.2 0.0 26.2 3.2 0.2

− 0.05 20.8 5.0 0.0 25.8 2.6 0.6

0.05 22.0 1.8 0.0 26.8 1.2 0.2

2000 0.3 0 0.0 0.0 0.0 0.0 0.0 0.0

− 0.05 0.0 0.4 0.0 0.0 0.4 0.0

0.05 0.0 0.2 0.0 0.0 0.2 0.0

0.1 0 3.0 0.2 0.0 4.4 0.6 0.0

− 0.05 5.8 0.6 0.0 9.0 1.0 0.0

0.05 2.8 0.4 0.0 5.6 0.6 0.0
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the results with n = 500 , MAF = 0.3 and ρ = 0 for the qualitative trait. It is shown 
in Fig.  3a, b that the BN and BU methods obtain similar widths of the 95% HPDIs, 
which are both close to 1.5. The widths of the 95% CIs for the PF and Fieller’s meth-
ods shown in Fig. 3c, d are quite dispersive and a great amount of noninformative CIs 
(represented by red points) can be seen in these two subplots. Comparing Fig. 4 with 
Fig. 3, we notice that the four methods obtain shorter intervals with less variation, and 
the PF and Fieller’s methods have less noninformative CIs for the quantitative trait with 
(σ 2

0 , σ
2
1 , σ

2
2 ) = (1, 1.2, 1) than for the qualitative trait when n = 500 , MAF = 0.3 and 

ρ = 0 . This result is true for all other simulation settings (Additional file 2: Figs.  S23–S33 
vs. S34–S44). Similarly, the findings from Table 4 on the influence of n, MAF and ρ on the 
widths of the 95% HPDIs or CIs for the four methods are also supported by Figs. 3 and 4 
and Additional file 2: Figs. S23–S44. Note that although there are plenty of noninforma-
tive CIs in the PF and Fieller’s methods when n = 500 and MAF = 0.1 , the informative 
CIs of these two methods have chance to be narrower than the HPDIs of the BN and 
BU methods (Additional file 2: Figs. S25–S27 and S36–S38). The Fieller’s method may 

Fig. 3 Widths of HPDIs or CIs for qualitative trait with n = 500 , MAF = 0.3 and ρ = 0 . The results are against 
true value of γ . The red points represent the widths of the noninformative intervals or the empty sets, and the 
yellow point represents the width of the discontinuous interval. a BN method; b BU method; c PF method; d 
Fieller’s method
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obtain discontinuous CIs (represented by yellow points in Fig. 3 and Additional file 2: 
Figs. S25–S27, S32–S33 and S36–S38), especially when n = 500 or MAF = 0.1 for quali-
tative trait. All these four interval estimation methods have their best performances with 
n = 2000 and MAF = 0.3 for quantitative trait when (σ 2

0 , σ
2
1 , σ

2
2 ) = (1, 1.2, 1) , where 

the widths of the intervals of all the four methods are mostly less than 1 and tend to be 
smaller when the true values of γ are close to 0 or 2 (Additional file 2: Figs. S39–S41).

The WSD ’s and WIQR ’s of the four methods for qualitative trait and quantitative trait 
with (σ 2

0 , σ
2
1 , σ

2
2 ) = (1, 1.2, 1) are listed in Additional file  3: Table  S1 and described 

in Additional file  4: Text. Note that the BN method has the lowest WSD and WIQR 
among the four methods. When the variances of the quantitative trait become larger, 
i.e., (σ 2

0 , σ
2
1 , σ

2
2 ) = (4, 4.8, 4) , the results are given in Additional file  3: Tables S2–

S6 and Additional file  5: Figs.  S45-S68. By comparing these results with those under 
(σ 2

0 , σ
2
1 , σ

2
2 ) = (1, 1.2, 1) , the four point estimation methods and the four interval esti-

mation methods generally perform worse, and even worse than those for qualitative 

Fig. 4 Widths of HPDIs or CIs for quantitative trait with n = 500 , MAF = 0.3 and ρ = 0 . The results are against 
true value of γ with (σ 2

0 , σ
2
1 , σ

2
2 ) = (1, 1.2, 1) . The red points represent the widths of the noninformative 

intervals or the empty sets. a BN method; b BU method; c PF method; d Fieller’s method
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trait. However, the Bayesian methods still have their advantages over the PF and Fieller’s 
methods in both the point estimation and the interval estimation.

Application to the Graves’ disease data

According to Chu et  al. [37], SNP rs3827440 within the GPR174 gene on X chromo-
some was detected to be associated with the Graves’ disease. In fact, in addition to the 
Graves’ disease, SNP rs3827440 was also reported to be significantly associated with the 
autoimmune Addison’s disease [38]. There were two stages of the association analysis in 
Chu et al. [37], i.e., the genome-wide association study (GWAS) stage and the replication 
stage. The association between SNP rs3827440 and the Graves’ disease was identified in 
both of two stages and the pooled data of these two stages. There are 2941 subjects (699 
males and 2242 females) in the GWAS stage and 8074 subjects (1814 males and 6260 
females) in the replication stage. We exclude the males and get 1115 (1127) females in 
the case (control) group in the GWAS stage, and 3375 (2885) females in the case (con-
trol) group in the replication stage. Note that there are two alleles T and C at rs3827440, 
where T is the deleterious allele leading to higher expression of the GPR174 gene. In the 
GWAS stage, there are respectively 163, 508 and 444 (219, 541 and 367) females with 
genotypes CC, TC and TT in the case (control) group. In the replication stage, the sam-
ple sizes of the females with genotypes CC, TC and TT are 471, 1606 and 1298 (584, 1344 
and 957) in the case (control) group, respectively. The allele frequency of T in females is 
0.57 in the GWAS stage and 0.56 in the replication stage.

We respectively obtain γ̂BN , γ̂BU , γ̂PF and γ̂F , and derive the corresponding intervals 
with the BN, BU, PF and Fieller’s methods based on the data in the GWAS stage and rep-
lication stage without considering any covariate, and apply these methods to the pooled 
data by regarding stage as a covariate [30]. The hyperparameters in the Bayesian meth-
ods are set to be the same as those in the Methods section and we choose N (0, 102) as 
the prior distribution of the effect size of the stage. The point estimates and the corre-
sponding 95% HPDIs or CIs of γ at SNP rs3827440 are given in Table 5. From Table 5, we 
find that the results of the Fieller’s method we get are consistent with those in Wang et al. 
[30].The HPDIs or CIs obtained by these four interval estimation methods do not con-
tain 1 in the replication stage and the pooled data, which suggests XCI-S at rs3827440. 
In the replication stage, the four point estimates are all close to 1.5, which indicates 
XCI-S towards allele C, and about 75% (1.5/2) cells in a heterozygous female have allele 
T active at this locus. The four point estimates are all close to 1.37 in the pooled data, 

Table 5 Application to the Graves’ disease data at SNP rs3827440

BN, Bayesian method with normal prior; BU, Bayesian method with uniform prior; PF, penalized Fieller’s method

Stage Point estimate 95% HPDI or CI

γ̂BN γ̂BU γ̂PF γ̂F BN BU PF Fieller

GWAS 0.9835 0.9890 0.9537 0.9567 (0.2092, 
1.6248)

(0.1524, 
1.6359)

(0.0241, 
1.6441)

[0, 1.6579)

Replication 1.4804 1.5193 1.5120 1.5126 (1.1144, 
1.8855)

(1.1274, 
1.9064)

(1.1226, 
1.9270)

(1.1224, 1.9299)

Pooled 1.3693 1.3770 1.3724 1.3727 (1.0206, 
1.7134)

(1.0272, 
1.7368)

(1.0280, 
1.7184)

(1.0277, 1.7195)
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which suggests XCI-S towards allele C, with allele T active in about 68.50% (1.37/2) cells 
in a heterozygous female at rs3827440. Note that all the HPDIs or CIs in the GWAS 
stage contain 1, which indicates XCI-R or XCI-E. This difference may be caused by the 
heterogeneity of the data in these two stages. Furthermore, the BN method always has 
the shortest interval among the four methods, which highlights its advantage.

Application to the MCTFR data

The Minnesota Center for Twin and Family Research Genome-Wide Association Study 
of Behavioral Disinhibition from the database of Genotypes and Phenotypes is a large, 
ongoing and family-based epidemiological study of substance abuse and related psy-
chopathology with 2183 families, including 7377 participants (3546 males and 3831 
females). Among them, 5960 participants have both phenotypic data and genotypic 
data while the others only have phenotypic data. There are five quantitative traits: the 
nicotine composite score, the alcohol consumption composite score (CON), the alcohol 
dependence composite score (DEP), the illicit drug composite score and the behavioral 
disinhibition composite score (BD) in the dataset. To avoid family structure and popu-
lation structure, we exclude all the offspring in the dataset. Because we only need the 
information of females, we also exclude males in the dataset. Eventually, we get 1998 
female individuals. There are 12,354 SNPs genotyped on X chromosome in the dataset. 
We use the standard quality control procedures [39] as follows. Firstly, we exclude those 
female individuals with missing genotype rate over 10% . Secondly, we delete those SNPs 
with missing rate over 10% . Thirdly, we exclude those SNPs whose MAF is less than 5% . 
Finally, we conduct the HWE tests for the remaining SNPs with the PLINK software 
(version 1.90) [39] and set the significance level to be 1× 10−4 [40], and those SNPs out 
of HWE are also excluded. After the quality control procedures, we include 1996 female 
individuals with 11,344 SNPs on X chromosome in this application.

Note that all the point estimation methods ( ̂γBN , γ̂BU , γ̂PF and γ̂F ) and the interval esti-
mation methods (BN, BU, PF and Fieller) mentioned above require the presence of asso-
ciation between the X-chromosomal SNP and the trait under study. So, the association 
analysis for each SNP and each trait in the MCTFR dataset is required before we apply 
these methods to measure the degree of XCI-S. We use linear regression to test for the 
association by including the age as a covariate. However, we notice that all the residuals 
derived from the regressions of the five quantitative traits do not satisfy the normality 
assumption. So, we use the association tests based on the direct inverse normal trans-
formation (D-INT), the indirect inverse normal transformation (I-INT) and the adap-
tive omnibus test (O-INT) proposed by McCaw et al. [41]. The significance level of the 
association tests is set to be 4.408× 10−6 (0.05/11344) after the Bonferroni correction. 
We then select the SNPs with at least one of the three P values of D-INT, I-INT and 
O-INT is less than 4.408× 10−6 . After obtaining the associated SNPs, we calculate the 
point estimates ( ̂γBN , γ̂BU , γ̂PF and γ̂F ) of γ , and use the BN, BU, PF and Fieller’s methods 
to derive the corresponding intervals of γ for these SNPs, respectively. Since the meth-
ods proposed in this article require the normality of the trait, each trait is first regressed 
on the age to obtain the residuals, and the inverse normal transformation is respec-
tively applied to the residuals of the five quantitative traits which can be treated as new 
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outcomes to measure the degree of XCI-S [41]. The hyperparameters in the Bayesian 
methods are set to be the same as those in the Methods section.

There are four SNPs (rs331318, rs5928558, rs10522027 and rs12849233) associated 
with the DEP trait, six SNPs (rs12557060, rs3008896, rs5961051, rs4489437, rs2097322 
and rs463233) associated with the BD trait and one SNP (rs4240042) associated with 
the CON trait. The positions, the alleles, the MAFs, the P values of the HWE tests and 
three association tests (D-INT, I-INT and O-INT) together with the related traits and 
the genes of these associated SNPs are presented in Table 6.

Among these SNPs, rs12557060 is within the gene interleukin-1 receptor accessory 
protein-like 1 (IL1RAPL1) [42] and SNP rs331318 is located in the gene Duchenne mus-
cular dystrophy (DMD) [43]. It was reported that IL1RAPL1 and DMD are two large 
genes located immediately adjacent to each other within the common fragile site region 
of instability, which are active in normal brain tissue but are under-expressed in every 
brain tumor cell line and xenograft [46]. The disruption or deletion of the IL1RAPL1 
gene is found to be associated with the BD trait in our association analysis whose dis-
ruption or deletion was previously detected in individuals with mental retardation and/
or autism spectrum disorder [42]. According to Miyagoe-Suzuki et  al. [43], the DMD 
gene encodes the dystrophin protein required for the stability of the sarcolemma and 
the mutations of DMD may cause X-linked Duchenne muscular dystrophy. Miyagoe-
Suzuki et al. [43] also found that many induce pluripotent stem clones derived from a 
manifesting female carrier of DMD had two active X chromosomes or mixed XCI pat-
terns, which means that the DMD gene may escape from XCI or undergo different XCI 
patterns within different female subgroups. SNP rs10522027 is within the gene trans-
membrane protein 47 (TMEM47), which may be a useful biomarker for predicting the 
response to chemotherapy and a potential therapeutic target for overcoming hepatocel-
lular carcinoma cell chemoresistance [44]. SNP rs12849233 is in PAS domain containing 
repressor 1 (PASD1), which might possibly serve as a new target for the prognosis and 
the future treatment of glioma [45].

The point estimates and the corresponding 95% HPDIs or CIs of γ for these SNPs are 
given in Table 7. Note that the CIs of the PF and Fieller’s methods are obtained by trun-
cating the original CI into [0, 2] . As a result, some CIs of these two methods have the 
left endpoints equal to 0 or the right endpoints equal to 2, while the HPDIs of the BN 
and BU methods will generally be an open interval, and the left (right) endpoints of the 
HPDIs are generally larger (less) than 0 (2). Although the 95% HPDIs or CIs of the SNPs 
all contain 1, which is indicative of the XCI-R or XCI-E pattern, we can still observe the 
advantage of the BN and BU methods that they generally get shorter intervals than the 
PF and Fieller’s methods. On the other hand, notice that the HPDIs and CIs for SNPs 
rs4489437, rs2097322 and rs463233 are strongly asymmetrical and the corresponding 
point estimates (1.5543, 1.6712, 1.7697 and 1.7802 for SNP rs4489437; 1.6407, 1.7820, 
1.9987 and 2.0000 for SNP rs2097322, and 0.3859, 0.1586, 0.1715 and 0.1728 for SNP 
rs463233) are either all greater than 1.5 or all smaller than 0.5. So, this may give a clue 
that these three SNPs are possible to undergo XCI-S, which needs to be further con-
firmed by, for example, larger sample sizes or molecular genetics.
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Discussion
In this article, we proposed a Bayesian method to obtain the point estimate and the cred-
ible interval of the degree of XCI-S ( γ ) by incorporating its prior information. We calcu-
lated the mode and the HPDI of the samples of γ as the point estimate and the credible 
interval for γ , respectively. In fact, we also used the median and the percentile interval 
(the 2.5th and 97.5th percentiles of the width of interval) of the samples as the point 
estimate and the credible interval of γ . However, their performances are worse than the 
mode and the HPDI (data not shown) and hence we chose the latter instead. We consid-
ered a normal prior and a uniform prior for the degree of XCI-S in the Bayesian method, 
which are respectively denoted as the BN and BU methods. We also derived a penalized 
point estimate γ̂PF based on the idea of the PF method and obtained its corresponding 
CI [32]. We compared the proposed γ̂BN , γ̂BU and γ̂PF with the existing point estimate γ̂F , 
and investigated the performances of the BN, BU, PF and Fieller’s methods in the inter-
val estimation for both the qualitative and quantitative traits via extensive simulation 
studies. The framework of these four estimation methods is illustrated in Fig. 5. As sum-
marized in Fig. 5, there is no extreme value (0 or 2) to occur for γ̂BN and γ̂BU while the 
extreme point estimates can be found in both γ̂PF and γ̂F under all the scenarios. Besides, 
the BN and BU methods can solve the problems of noninformative intervals, empty sets 
and discontinuous intervals which can be found in the Fieller’s method, while the PF 
method can only avoid the discontinuous CIs to occur. Note that the extreme point esti-
mate 0 (2) means that 100% of the cells have the deleterious (normal) allele inactivated 
at a SNP, which is not a common case in reality. On the other hand, it is hard for us to 
identify the XCI pattern with the noninformative CIs and the discontinuous CIs, and 
the empty sets even provide no information on the XCI pattern. These facts highlight 

Table 7 Application of BN, BU, PF and Fieller’s methods for SNPs detected in association analysis

BN, Bayesian method with normal prior; BU, Bayesian method with uniform prior; PF, penalized Fieller’s method

SNP Point estimate 95% HPDI or CI

γ̂BN γ̂BU γ̂PF γ̂F BN BU PF Fieller

rs12557060 0.9234 0.9227 0.9303 0.9386 (0.1500, 
1.8080)

(0.0872, 
1.8216)

[0, 2] [0, 2]

rs331318 1.2233 1.2198 1.2586 1.2651 (0.5205, 
1.9704)

(0.5313, 
1.9988)

(0.4235, 2] (0.4088, 2]

rs5928558 0.9251 0.9119 0.9744 0.9837 (0.3847, 
1.8414)

(0.4016, 
1.9173)

(0.3452, 2] (0.3629, 2]

rs10522027 0.7243 0.6869 0.7595 0.7651 (0.2828, 
1.6562)

(0.2689, 
1.7268)

(0.2937, 
1.8982)

(0.3067, 2]

rs3008896 0.5524 0.4300 0.3920 0.3950 (0.0006, 
1.3040)

(0, 1.3026) [0, 1.3264) [0, 1.3655)

rs4240042 1.0378 1.0244 1.0648 1.0698 (0.3815, 
1.8557)

(0.3893, 
1.9351)

(0.3326, 2] (0.3277, 2]

rs5961051 1.1732 1.2490 1.2863 1.3050 (0.4478, 
1.9992)

(0.4118, 2) (0.2700, 2] (0.2401, 2]

rs4489437 1.5543 1.6712 1.7697 1.7802 (0.9453, 
1.9999)

(0.9708, 2) (0.9175, 2] (0.9296, 2]

rs2097322 1.6407 1.7820 1.9987 2.0000 (0.8910, 2) (0.9109, 2) (0.8958, 2] (0.9353, 2]

rs463233 0.3859 0.1586 0.1715 0.1728 (0, 1.1054) (0, 1.0898) [0, 1.0713) [0, 1.0847)

rs12849233 0.6330 0.6580 0.6500 0.6525 (0.0551, 
1.4351)

(0.0187, 
1.4338)

(0.0201, 
1.4681)

(0.0099, 1.5358)
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the advantages of the BN and BU methods that they can avoid the occurrence of the 
extreme point estimates and guarantee continuous HPDIs to provide useful information 
on the XCI pattern all the time. Further, among these four point estimation methods, 
γ̂BN has the smallest MSE under all the simulated situations. In interval estimation, the 
CPs of the BN and BU methods are generally controlled around 95% while the CPs of 
the PF and Fieller’s methods are usually underestimated or overestimated when MAF is 
low. The BN method has the smallest Wmean in most of the cases and the lowest Wmedian 
and the least WSD and WIQR under all the circumstances. Hence, we recommend the BN 
method in practice for its robustness and accuracy in both point estimation and interval 
estimation.

We applied the four point estimation methods and the four interval estimation meth-
ods to the Graves’ disease data and the MCTFR data for their practical use on the quali-
tative trait and the quantitative trait, respectively. In the Graves’ disease data application, 
we found that SNP rs3827440 may undergo the XCI-S pattern towards the allele C in 
the replication stage and the pooled data. Although we did not detect the XCI-S pat-
tern in the GWAS stage, the BN and BU methods still show their superiority by pro-
viding shorter HPDIs, compared to the PF and Fieller’s methods. In the MCTFR data 
application, the 95% HPDIs and CIs of the SNPs all contain 1, which indicates the 
XCI-R or XCI-E pattern. However, we also found three suspectable SNPs rs4489437, 
rs2097322 and rs463233 which may undergo the XCI-S pattern based on their extremely 

Fig. 5 Framework of the estimation methods for the degree of XCI‑S. (1) Task: the four methods aim at 
measuring the degree of XCI‑S; (2) prior information: the constraint condition of the degree of XCI‑S; (3) 
estimation method and estimator: the four estimation methods and the notations of their corresponding 
point estimates; (4) issue: the main issue of the method; (5) performance: the performances of the four 
estimation methods in point estimation and interval estimation; (6) estimation and inference: the estimation 
results and inferences obtained by the methods
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asymmetrical HPDIs and CIs. Since the inverse normal transformation applied to the 
original traits may lead to the loss of the information in the four interval estimation 
methods, we expect shorter intervals of these three SNPs that do not contain 1 if we 
have larger samples or a normally distributed trait. However, these conclusions need to 
be further confirmed by molecular genetics.

On the other hand, in our simulation study, we did not incorporate any covariate. To 
further investigate the performances of the four point estimates and the four interval 
estimation methods with a covariate, here we conducted additional simulation stud-
ies by considering a covariate under HWE (i.e., ρ = 0 ). The simulation settings can be 
found in Additional file 4: Text, and the simulation results are listed in Additional file 3: 
Tables S7–S11 and Additional file  5: Figs.  S69–S84 and described in Additional file  4: 
Text, respectively. From these results, we observed that although the performances of all 
the proposed methods under the scenarios with a covariate are worse than those with-
out any covariate, the trends are similar to those in the Results section, and the Bayesian 
methods also show their own advantages over the PF and Fieller’s methods.

The last but not least, the proposed methods have the following issues to discuss. 
Firstly, the prior distributions of the unknown parameters are required in the Bayesian 
methods and the choice of them may have influence on the results. We considered two 
prior distributions for γ , U(0, 2) is a noninformative prior that should have little impact 
on the posterior distribution, and N (1, 1) ∈ [0, 2] is chosen based on its own genetic 
background. We also considered weakly informative priors for each of the unknown 
parameters other than γ , which should be robust to different kinds of parameters. The 
researchers can choose the priors based on their own study background or refer to 
the priors used in this article if they have limited knowledge of the distributions of the 
parameters. Secondly, although we assume that all the unknown parameters are inde-
pendent of each other in the Bayesian method because the Hamiltonian Monte Carlo 
(HMC) algorithm used for sampling in the Bayesian method does not greatly suffer 
from the correlated parameters, we expect better performance of the Bayesian method 
by considering the correlations between the unknown parameters and regard it as our 
future work. Thirdly, the HPDI or CI containing 1 indicates the XCI-R or XCI-E pat-
tern at the SNP. How to further distinguish between the XCI-R and XCI-E patterns is 
our future work. On the other hand, note that there is an assumption that the under-
lying genetic model is additive to guarantee that the estimated γ value departing from 
1 indicates the XCI-S rather than the non-additive models, such as the genotypic val-
ues Xi = {0, 2, 2} for the dominant model and Xi = {0, 0, 2} for the recessive model. It 
is also true that γ can be greater than 2 or less than 0 in the situations of the overdomi-
nance and the underdominance, respectively. It may not be possible to distinguish a 
non-additive model from the XCI-S by considering the estimation of γ simply based on 
the mean effects of a generalized linear regression model. However, the variance-based 
tests may be alternative [19, 21], which is our future work. However, it should be noted 
that Dobyns et al. recommended discontinuing the use of the terms “X-linked dominant 
inheritance” and “X-linked recessive inheritance” because both are incomplete and fail 
to explain some aspects of the X-linked inheritance due to some biological mechanisms 
including cell autonomy or non-autonomy of the gene product, XCI status and mosai-
cism [47, 48]. Fourthly, the normality assumption of quantitative traits is required for 
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all the methods we discussed in this article. In future, we will extend the methods to 
accommodate the traits which do not follow a normal distribution. Finally, all the meth-
ods are only applicable to unrelated female subjects. Thus, we will extend the methods 
and make them suitable for data with family structure in future studies.

Conclusion
In summary, the existing point estimate and the existing Fieller’s method cannot con-
sider the prior information of the degree of XCI-S, and respectively have the problems 
of the extreme point estimates (0 or 2) and the noninformative CIs, empty sets as well as 
discontinuous CIs. To solve these problems, we proposed a penalized point estimate and 
obtained its CI with the PF method to make an improvement, and proposed two Bayes-
ian methods (BN and BU) to incorporate the prior information of the degree of XCI-S by 
using a normal prior or a uniform prior for the degree of XCI-S in the model. We recom-
mend the Bayesian methods in practice because it can avoid obtaining the extreme point 
estimates and guarantee continuous HPDIs to provide useful information on the XCI 
pattern all the time. The BN method can also provide point estimates with the small-
est MSE and HPDIs with well controlled CP, the shortest width and the lowest varia-
tion across all the simulation settings. In the real data application, we found that SNP 
rs3827440 in the Graves’ disease data may undergo XCI-S towards the allele C, which 
need to be confirmed by molecular genetics.

Methods
Notations

To detect the SNPs undergoing XCI-S and measure their degree of XCI-S, we focus 
on females because only females can provide the information on XCI-S. Assume that 
n females are sequenced at a candidate diallelic SNP on X chromosome, where d (D) 
is the normal (deleterious) allele. Then, for female i, the genotypes Gi =

{

dd, Dd, DD
}

 
and the corresponding genotypic values Xi = {0, γ , 2} , i = 1, 2, · · · , n , where γ ∈ [0, 2] 
represents the degree of XCI-S. Let Zi be a M × 1 covariates vector and Yi be the trait, 
which can be either qualitative or quantitative. As such, the following generalized linear 
regression model is used to describe the association between Gi and Yi,

where β0 is the intercept and β is the regression coefficient for Xi . b is a M × 1 vector 
of the regression coefficients for Zi . E(Yi|Xi,Zi) is the conditional expected value of Yi 
given Xi and Zi , and h(•) is a link function. When Yi is a qualitative trait, h(•) is the logit 
function. Then, Eq. (1) can be written as

where Yi is the disease status of female i, and Yi = 1 (0) denotes that female i is affected 
(unaffected). When Yi is a quantitative trait, h(•) is the identity function, and Yi has a 
random error εi . In this case, Equation (1) becomes

(1)h(E(Yi|Xi,Zi)) = β0 + βXi + b
T
Zi

Logit(P(Yi = 1)) = β0 + βXi + b
T
Zi

(2)Yi = β0 + βXi + b
T
Zi + εi
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where εi ∼ N (0, σ 2
0 I{Gi=dd} + σ 2

1 I{Gi=Dd} + σ 2
2 I{Gi=DD}) and I(•) is the indicator func-

tion. According to Ma et al. [19], the variance of the quantitative trait for heterozygous 
females may be higher than those for homozygous females, i.e., σ 2

1
 may be greater than 

σ 2
0

 and σ 2
2 .

The genotypic value Xi can be decomposed into X1i and X2i according to Wang 
et  al. [30], i.e., Xi = γX1i + (2− γ )X2i , where X1i and X2i are two indicator varia-
bles. X1i = I{Gi=Dd or DD} indicates if female i has at least one deleterious allele D and 
X2i = I{Gi=DD} denotes if female i has two deleterious alleles D. So, Eq. (1) can be re-
expressed as

Let β1 = βγ and β2 = β(2− γ ) . So, γ = β1
β

 and β = β1+β2
2  . Equation (3) turns to be

After respectively obtaining the maximum likelihood estimates β̂0, β̂1, β̂2 and b̂ of 
β0,β1,β2 and b , we have β̂ = β̂1+β̂2

2  . Assume that v1 , v2 and v12 are respectively the vari-
ance of β̂1 , the variance of β̂ and the covariance of β̂1 and β̂ . To derive v̂1 , v̂2 and v̂12 , the 
empirical Fisher information matrix is used for qualitative traits [30] and the glm func-
tion in R software is applied for quantitative traits [31].

Existing point estimate and CI of γ by Fieller’s method

Here, we recall the existing point estimate and the corresponding CI obtained by the 
Fieller’s method [30, 31]. The existing point estimate of γ can be given as a ratio of two 
regression coefficients

Since γ represents the degree of XCI-S, which should be within [0, 2] , the final point 
estimate can be derived by cutting the γ̂origin in Eq. (4) into [0, 2] . So, we have 
γ̂F = 2β̂1

β̂1+β̂2
∩ [0, 2].

To obtain the corresponding CI of γ by the Fieller’s method, a Wald test can be built to 
test for H0 : γ = γ0 . Since γ can be expressed as γ = β1

β
 , we have

where z1−α/2 is the (1− α/2) upper quantile of a standard normal distribution when the 
sample size is large enough. Rearranging Equation (5), we get a quadratic equation with 
respect to γ0 as follows

where A = β̂2 − z21−α/2v̂2 , B = 2(z21−α/2v̂12 − β̂1β̂) and C = β̂2
1 − z21−α/2v̂1 . From Eq. (6), 

we have � = B2 − 4AC , and A > 0 implies � > 0 . If � > 0 , we can obtain two roots 
γ L
F = −B−

√
�

2A  and γU
F = −B+

√
�

2A  of Equation (6) as the confidence limits with γ L
F < γU

F  . 

(3)h(E(Yi|Xi,Zi)) = β0 + βγX1i + β(2− γ )X2i + b
T
Zi

h(E(Yi|Xi,Zi)) = β0 + β1X1i + β2X2i + b
T
Zi

(4)γ̂origin = β̂1

β̂
= 2β̂1

β̂1 + β̂2

(5)
β̂1 − γ0β̂

√

v̂1 + γ 2
0 v̂2 − 2γ0v̂12

= z1−α/2

(6)Aγ 2
0 + Bγ0 + C = 0
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As mentioned above, the original CI should be truncated into [0, 2] because γ ∈ [0, 2] . 
Then, the CI of the Fieller’s method can be summarized as follows

where Ø is the empty set. We call [0, 2] the noninformative interval and 
(

(−∞, γ L
F ) ∪ (γU

F ,∞)
)

∩ [0, 2] may be discontinuous.

Penalized point estimate and CI of γ by PF method

Here, we propose a penalized point estimate and obtain its corresponding CI by the PF 
method [32]. Notice that if the denominator β̂ = β̂1+β̂2

2  of γ̂origin is not statistically sig-
nificantly different from 0, then γ̂origin will tend to be infinite (mainly positive infinite 
because β̂1 and β̂2 usually have the same sign according to Wang et al. [30]) and the cor-
responding CI of the Fieller’s method before the truncation will tend to be unbounded, 
which is the common case if the denominator β̂ has a large variance. To solve this prob-
lem, Wang et al. [32] proposed the PF method to reduce the variance of the denominator 
of a ratio estimate by imposing a penalty on it and adjusting the numerator accordingly. 
Borrowing this idea, we define a penalized log-likelihood function of β as

where � > 0 is the penalty parameter. Maximizing the log-likelihood function (7), we 
obtain the penalized denominator β∗ = β̂/2+ sign(β̂)

√

β̂2/4 + �v̂2 , where sign(•) is 
the signum function [32]. Making a Taylor expansion for β∗ around β̂ and v̂2 , we get 
Var(β∗) = v∗2 = ω2v̂2 + O(n−3) and Cov(β̂1,β∗) = ωv̂12 + O(n−3) , where ω = β∗

2β∗−β̂
.

According to Wang et al. [32], if we simply replace β̂ by β∗ in γ̂origin = β̂1

β̂
 , we will get a 

biased estimate of γ . To reduce the bias caused by the penalized denominator, we need 
to further adjust the numerator β̂1 by β∗

1 = β̂1 + γ̃ (β∗ − β̂) , where γ̃ = β̂1
β∗ . Making a 

Taylor expansion for β∗
1 around β̂1 and β̂ , we have 

Var(β∗
1 ) = v∗1 = ω−2v̂1 − 4(ω−1 − 1)γ̃ v̂12 + 4(1− ω)2γ̃ 2v̂2 and 

Cov(β∗
1 ,β

∗) = v∗12 = v̂12 − 2ω(1− ω)γ̃ v̂2 . As such, the original penalized point estimate 
is γ̂ ∗

origin = β̂∗
1

β̂∗ . Although we may avoid the situation of the denominator approaching 0, 

γ̂ ∗
origin may still be out of [0, 2] . Therefore, we need to cut γ̂ ∗

origin into [0, 2] and get the 
final penalized point estimate as follows,

For the construction of the corresponding CI of γ̂PF , the PF method uses the same the-
ory as the Fieller’s method. So, we only need to respectively replace β̂ , β̂1, v̂1, v̂2 and v̂12 
by β∗,β∗

1 , v
∗
1 , v

∗
2 and v∗12 in Eqs. (5) and (6) and choose an appropriate penalty param-

eter � for the PF method to get the penalized CI. From Wang et al. [32], we know that 
when � ≥ z21−α/2

4  , the PF method can always produce a bounded CI. But when � → ∞ , 















(γ L
F , γ

U
F ) ∩ [0, 2], A > 0

�

(−∞, γ L
F ) ∪ (γU

F ,∞)
�

∩ [0, 2], A < 0 and� > 0
[0, 2], A < 0 and� < 0
∅, A = 0 or� = 0

(7)pl = − (β̂ − β)2

2v̂2
+ � log |β|

γ̂PF = β̂∗
1

β̂∗ ∩ [0, 2]
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the width of the CI will tend to be 0 and the CP will also tend to be 0. So, we select 
� = z21−α/2

4  , which enables the PF method to produce a bounded CI and control the CP 
at the same time. However, although the PF method can always get a bounded CI when 
� = z21−α/2

4  , the CI may still be out of [0, 2] and needs to be cut off in [0, 2].
The point estimates and CIs of the Fieller’s and PF methods we discussed above are not 

able to include the prior information that γ ∈ [0, 2] in the model. By contrast, the Bayes-
ian approach can flexibly incorporate this prior information into the analysis.

Point estimate and credible interval of γ by Bayesian method

Bayesian method has been widely used in genetic analysis in recent years [35] and vari-
ous algorithms such as HMC [36] make sampling from the parameters’ approximate 
posterior distributions possible even if the analytical solutions of those posterior dis-
tributions are not available. Assume that θ· represents θd (the unknown parameters for 
qualitative trait) or θc (the unknown parameters for quantitative trait). For the qualitative 
trait, we suppose that Yi follows a Bernoulli distribution, i.e.,

where pi = 1

1+exp
(

−(β0+βγX1i+β(2−γ )X2i+b
T
Zi)

) . In this case, the unknown parameters 

θd = (β0,β , γ , b
T )T . For the quantitative trait, we assume that Yi is normally distributed, 

i.e.,

where µi = β0 + βγX1i + β(2− γ )X2i + b
T
Zi . In this case, the unknown parameters 

θc=(β0,β , γ , bT , σ0, σ1, σ2)T . Let Y = (Y1,Y2, · · · ,Yn)T and D = (X1,X2,Z) , where 
X1 = (X11,X12, · · · ,X1n)

T , X2 = (X21,X22 , · · · ,X2n)
T and Z = (Z1,Z2 , · · · ,Zn)

T . 
Then, the posterior distribution of θd or θc is

where f (θ·) is the joint prior distribution of θ· . f (Y |D, θ·) is the likelihood func-
tion of Y  . f (Y |D) is the conditional probability density function of Y  given D , i.e., 
f (Y |D) =

∫

f (Y |D, θ·)f (θ·)dθ· . We find that f (θ·|Y ,D) is hard to calculate, which 
means that the closed form of the posterior distribution of θ· is difficult for us to obtain. 
So, instead of directly computing their posterior distributions of θ· , we use the HMC 
algorithm (e.g., the rstan package in R) to sample the parameters from the approximate 
posterior distribution. We choose the HMC algorithm because it can improve the inde-
pendence of the samples and has higher efficiency than the other Markov-Chain Monte 
Carlo methods.

The HMC algorithm requires the prior distributions of γ and the other parameters in 
θ· . Since HMC does not dramatically suffer from the correlated parameters in model, we 
assume that the unknown parameters are independent of each other for simplicity [36]. 
Then, f (θ·) can be given as f (θ·) =

∏θ#·
g=1

f (θ·g ) , where θ#·  is the number of the param-
eters in θ· , and f (θ·g ) is the prior distribution of the gth parameter in θ·.

Yi ∼ B(pi)

Yi ∼ N (µi, σ
2
0 I{Gi=dd} + σ 2

1 I{Gi=Dd} + σ 2
2 I{Gi=DD})

f (θ·|Y ,D) = f (θ·)f (Y |D, θ·)

f (Y |D)
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Since the value of γ should be between 0 and 2, we consider a uniform distribution on 
[0, 2] as the prior distribution for γ , i.e., γ ∼ U(0, 2) , which is a noninformative prior. 
In addition, we also consider a normal prior distribution for γ which is truncated into 
[0, 2] , i.e., γ ∼ N (1, 1) ∈ [0, 2] . As such, not only γ satisfies the constraint condition of 
γ ∈ [0, 2] , but also the probability of γ being close to 1 is the highest, which is consist-
ent with the literature [4], i.e., most of the SNPs on X chromosome undergo the XCI-
R. Besides, the truncated normal distribution of γ keep the probability of γ taking the 
extreme value (0 or 2) not too low, which may be more suitable for practical applica-
tions. Further, the 1-sigma criterion of N (1, 1) is (1− 1, 1+ 1) , i.e., (0, 2) . As for β0 , 
β and b in both θd and θc , we consider weak priors that enable us to obtain negative 
and positive effects as well as strong and weak effects [49]. Specifically, β0 ∼ N (µβ0 , σ

2
β0
) , 

β ∼ N (µβ , σ
2
β ) and b ∼ MVN

(

µb,
∑

)

 , where µb = (µb1 ,µb2 , · · · ,µbM )
T is a M × 1 

mean vector and 
∑

 is a M ×M variance-covariance matrix of b . In this article, we set 
µβ0 = 0 , µβ = 0 , µb = (0, 0, ..., 0)TM×1

 , σ 2
β0

= 102 and σ 2
β = 102 , and let 

∑

 be a symmet-
ric matrix with diagonal elements being 102 and non-diagonal elements being 0.

When it comes to quantitative traits, we need to provide the prior distributions for σ0 , 
σ1 and σ2 additionally and sample them respectively because the variances of the quanti-
tative trait may be different across different genotypes in females according to Ma et al. 
[19]. We also choose a weakly informative prior for σj (j=0, 1, 2), which is an exponential 
distribution with the mean being 1 [36], i.e., σj ∼ exp(aj) (j=0, 1, 2), where a0 , a1 and a2 
are the hyperparameters needed to be pre-defined and are all set to be 1 in this article. 
The hyperparameters µβ0 , µβ , µb , σ 2

β0
 , σ 2

β , 
∑

 , a0 , a1 and a2 can also be selected based on 
the research background or experience.

Once the likelihood function of Y  and the prior distributions of the parameters in θ· 
are provided, we can obtain as many samples of θ· as we want by the HMC algorithm. 
After getting enough samples of θ· , we calculate the mode and the HPDI of the samples 
of γ as the point estimate and the credible interval for γ , respectively.

Simulation settings

Since males provide no information on XCI-S, we only include females in simulation 
studies. We consider the qualitative trait and the quantitative trait, respectively. For sim-
plicity, we do not include any covariate in the simulation.

For the qualitative trait, according to Wang et al. [30], we set the frequencies of geno-
types dd, Dd and DD in the control (case) group to be g0 , g1 and g2 ( c0 , c1 and c2 ), respec-
tively. Assume that the frequency of the deleterious allele D is p in the control group, 
which is usually the MAF at the SNP considered. Assume that the frequency of the nor-
mal allele d in the control group is q (p+ q = 1) . As such, we have 
(g0, g1, g2) = (q2 + ρpq, 2(1− ρ)pq, p2 + ρpq) , where ρ is the inbreeding coefficient. In 
our simulation, MAF is fixed at 0.3 and 0.1, and ρ is set to be 0, -0.05 and 0.05. We define 
�1 and �2 as the odds ratios for genotypes Dd and DD compared to genotype dd in 
females, respectively. Then, we have �1 = exp(βγ ) and �2 = exp(2β) . Notice that 
�1 = �

γ /2
2  and γ = 2ln(�1)/ln(�2) . Fixing �2 = 2 and randomly sampling γ from U(0, 2), 

we can calculate β and �1 . So, we have c0g0 = exp(β0),
c1
g1

= �1exp(β0), and c2g2 = �2exp(β0). 
With c0 + c1 + c2 = 1 , we can calculate ( c0 , c1 , c2 ) and β0 from the values of ( g0 , g1 , g2 ), �1 
and �2 . Then, we generate the samples of three genotypes for the control group and the 
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case group by the trinomial distributions with probabilities ( g0 , g1 , g2 ) and ( c0 , c1 , c2 ), 
respectively. Finally, we can accordingly get X1i and X2i for all the females. Further, we 
assume that the case-control ratio is 1 : 1, with the sample size n = 500 and 2000.

For the quantitative trait, let g0 , g1 and g2 respectively represent the frequencies of geno-
types dd, Dd and DD. Then, we simulate the sample size n0 , n1 and n2 ( n0 + n1 + n2 = n ) 
for genotypes dd, Dd and DD from a trinomial distribution with probabilities ( g0 , g1 , g2 ) 
by fixing n at 500 and 2,000. As such, we can get X1i and X2i accordingly for female i, 
i = 1, 2, · · · , n . Yi is generated by Yi ∼ N (µi, σ

2
0 I{Gi=dd} + σ 2

1 I{Gi=Dd} + σ 2
2 I{Gi=DD}) with 

µi = β0 + βγX1i + β(2− γ )X2i , where β0 is set to be 0, β is set to be 0.3 and the underlying 
γ value is randomly sampled from U(0, 2) . As mentioned above, the variance of the quanti-
tative trait for heterozygous females (σ 2

1 ) may be generally larger than those for homozygous 
females ( σ 2

0  and σ 2
2  ) [19]. So, we consider two scenarios and set (σ 2

0 , σ
2
1 , σ

2
2 ) = (1, 1.2, 1) 

and (σ 2
0 , σ

2
1 , σ

2
2 ) = (4, 4.8, 4) . For each simulation setting, we conduct 500 replicates (i.e., 

500 SNPs) and the confidence level (1− α) is fixed at 95% for the frequentist methods. To 
make the HPDIs comparable to the CIs, we calculate 95% HPDIs for the Bayesian methods.

In the Bayesian methods, the prior distributions of γ , β0 , β and σj (j=0, 1, 2) are set 
as we mentioned in the Methods section, i.e., γ ∼ U(0, 2) and γ ∼ N (1, 1) ∈ [0, 2] , 
β0 ∼ N (0, 102) , β ∼ N (0, 102) and σj ∼ exp(1) . We set 8 chains to extract the samples 
parallelly and simultaneously. We extract 20,000 samples in each chain, among which 
the first 10,000 samples are only used for warming up and are discarded when the sam-
pling is finished. So eventually, we get 80,000 samples in total. The target acceptance rate 
is set to be 0.99 to ensure the convergence. The convergence diagnostic R̂ for Markov 
chains in the Bayesian method is done, which compares the between-chain and within-
chain estimates for the model parameters. If the chains have not mixed well (i.e., the 
between-chain and within-chain estimates do not agree with each other), the R̂ of the 
convergence diagnostic will be larger than 1. Note that the calculated R̂ ’s in our Bayesian 
models are all less than 1.05 which indicates good convergence (data not shown). The 
simulation study is implemented by the R software (version 4.0.0).
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