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Traditional Chinese medicine (TCM) usually acts in the form of compound

prescriptions in the treatment of complex diseases. The herbs contained in each

prescription have the dual nature of efficiency and toxicity due to their complex

chemical component, and the principle of prescription is usually to increase

efficiency and reduce toxicity. At present, the studies on prescriptions have

mainly focused on the consideration of the material basis and possible

mechanism of the action mode, but the quantitative research on the

compatibility rule of increasing efficiency and reducing toxicity is still the tip

of the iceberg. With the extensive application of computational pharmacology

technology in the research of TCM prescriptions, it is possible to quantify the

mechanism of synergism and toxicity reduction of the TCM formula. Currently,

there are some classic drug pairs commonly used to treat complex diseases,

such as TripterygiumwilfordiiHook. f. with Lysimachia christinaeHance for lung

cancer, Aconitum carmichaelii Debeaux with Glycyrrhiza uralensis Fisch. in the
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treatment of coronary heart disease, but there is a lack of systematic

quantitative analysis model and strategy to quantitatively study the

compatibility rule and potential mechanism of synergism and toxicity

reduction. To address this issue, we designed an integrated model which

integrates matrix decomposition and shortest path propagation, taking into

account both the crosstalk of the effective network and the propagation

characteristics. With the integrated model strategy, we can quantitatively

detect the possible mechanisms of synergism and attenuation of

Tripterygium wilfordii Hook. f. and Lysimachia christinae Hance in the

treatment of lung cancer. The results showed the compatibility of

Tripterygium wilfordii Hook. f. and Lysimachia christinae Hance could

increase the efficacy and decrease the toxicity of lung cancer treatment

through MAPK pathway and PD-1 checkpoint pathway in lung cancer.

KEYWORDS

Tripterygium wilfordii Hook. f., Lysimachia christinae Hance, lung cancer, network
pharmacology, efficacy toxicity network, gene transmission chains

1 Introduction

1.1 Background

Lung cancer is a malignant tumor originating from the

bronchial mucosa or glands in the lung, with the fastest growth

in morbidity and mortality. In recent years, the incidence rate

and mortality of lung cancer have increased significantly.

Specifically, the incidence rate ranks first in male malignant

tumors and second in female malignant tumors (Wu et al.,

2021). Lung cancer involves a complicated cascade change

process, which is mediated by smoking, genetics, air

pollution, and other factors. The treatments for lung cancer

mainly include surgery, radiation therapy, immunotherapy, and

chemical therapy. The selection of a specific treatment strategy

needs to be determined by combining the systemic, and

cardiopulmonary conditions of the patient and the stage of

cancer development. However, there are still some unsolved

issues in the existing schemes for the clinical treatment of lung

cancer. Surgical treatment has the best effect, but only 20%–30%

of patients are suitable for surgical treatment. Chemotherapy is

the most widely used and mature treatment at present.

However, it has severe clinical side effects and poor

prognosis. As a local treatment, radiotherapy has little effect

on metastatic tumors with obvious side effects. Therefore, in

recent years, TCM has been widely used in the treatment of lung

cancer because of its minor side effects and immunomodulatory

advantages. Previous reports have confirmed that TCM could

effectively inhibit angiogenesis, invasion and migration in lung

cancer to reduce the adverse reactions, improve the curative

effect, and the life quality of patients. Previous studies have

shown that Yiqi Tongluo Jiedu Decoction combined with

gefitinib may inhibit the growth of BALB/c nude mice

xenografts by up-regulating and down-regulating the

expression of Caspase-3 and VEGF, respectively, and also

can inhibit the tumor angiogenesis (Yan, 2017). Jiajian

Shashen Maidong decoction integrated with paclitaxel and

cisplatin can significantly improve the immune function of

patients with lung cancer undergoing chemotherapy and

improve the quality of life of patients with lung cancer

(Xiao-su, 2011). Apart from assisting western medicine in

treattumorsumor, TCM formula can also independently play

an anti-cancer role. Berberine could diminish the expression of

PD-L1 in lung cancer cells and facilitates antitumor immunity

via inhibiting the deubiquitination activity of CSN5 (Liu et al.,

2020). Maimendong and Qianjinweijing Tang (Jin formula)

inhibit the proliferation, migration and invasion of A549 and

H1299 cells by up-regulating miR-149–3p and down-regulating

the Wnt/β-catenin signaling pathway, achieving the effect on

cancer inhibition (Jiang et al., 2020). In addition, in clinical

trials, Yiqi Yangyin Jiedu Decoction has been proved to be

ameliorate the qi-yin deficiency syndrome evidently in advance

lung cancer patients, and the Karnofsky score is significantly

higher than that of chemotherapy group, improving the quality

of life of lung cancer patients. At the same time, it shows a good

clinical effect when combined with chemotherapy (Liu

Lingshuang et al., 2008). Compared with chemotherapy

group, Fei Fufang for treating senile non-small cell lung

cancer, especially for the patients with mid-stage or late-

stage lung cancer, can relieve clinical symptoms, improve

quality of life, increase weight, stabilize tumor, delay disease

progression and prolong survival time (Wei, 2012). It is

suggested that TCM is one of the safe and effective

treatments for lung cancer. Some TCM with anticancer

properties also has the function of treating lung cancer. For

example celastrol could suppress the proliferation and induce

the apoptosis of A549 cells through the mitochondrial pathways

(Zhiyang3, 2018). Therefore, TCM combined with western

medicine has a wide application prospect in the treatment of

lung cancer.
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Herb pairs is the simplest and most widely used prescription

form in the process of treating complex diseases in TCM. The

main compatibility purpose of TCM pairs is to increase

effectiveness and reduce toxicity. At present, some TCM pairs

are widely used in the treatment of diseases such as Prunus

armeniaca L. with Glycyrrhiza uralensis Fisch.; Astragalus

aaronii (Eig) Zohary with Atractylodes amurensis (Freyn ex

Kom.) H.S.Pak; Notopterygium forrestii H. Wolff with

Heracleum hemsleyanum Diels; Lysimachia christinae Hance

with Forsythia suspensa (Thunb.) Vahl; and Coptis chinensis

Franch. With Isatis afghanica Hadač and Chrtek. Among

these anti-tumor drug pairs, there are also some frequently

used herb pairs such as Tripterygium wilfordii Hook. f. with

Glycyrrhiza uralensis Fisch., Pteris multifida Poir., and

Lysimachia christinae Hance; Paeonia lactiflora Pall. With

Tripterygium wilfordii Hook. f.; Aconitum carmichaelii

Debeaux is mixed with Glycyrrhiza uralensis Fisch., Rheum

officinale Baill., and Panax notoginseng (Burkill) F.H.Chen.

Among them, Tripterygium wilfordii Hook. f. (LGT) and

Lysimachia christinae Hance (JQC) are one of the commonly

used compatibility pairs for tumor treatment. The diterpenoids

and triterpenoids of LGT and the flavonoids and

polysaccharides in JQC have anti-tumor effects. Previous

pharmacological studies found that the alcohol extracts of

LGT and JQC had a synergistic effect on the inhibition of

cell proliferation of non-small cell lung cancer. JQC combined

with LGT could exert a synergistic effect and reduce the toxicity

of LGT on lung cancer with the best effect at the concentration

ratio of 2/1 (Jun-Ming et al., 2016). In S180 mice, the

combination of LGT and JQC could significantly reduce the

hepatotoxicity and nephrotoxicity caused by LGT promote the

expression of Nrf2 pathway and improve the tumor inhibition

rate (Wang et al., 2018). In addition, some pharmacological

experiments showed that the increased serum alanine/aspartate

aminotransferase (ALT/AST) level of LGT could be

significantly reversed by the compatibility with JQC to

achieve the detoxification effect (Wang et al., 2018). LGT

compatibility with JQC could significantly decrease the levels

of pro-inflammatory cytokine tumor necrosis factor-alpha and

malondialdehyde, while anti-inflammatory cytokine

interleukin (IL)-10 and glutathione levels all increased in

livers and kidneys of mice. It indicates that the toxicity-

reduced mechanism of LGT compatibility with involves

inhibiting hepatic and kidney oxidative stress and

inflammation (Wang et al., 2019a). In addition, the

compatibility of LGT and JQC can reverse the high toxicity

of LGT by affecting the liver and kidney metabolism of LGT.

The levels of glutathione and glutathione s-transferase,

glutathione peroxidase, superoxide dismutase and catalase in

the liver and kidney of S180 tumor-bearing mice were

significantly decreased, and LGT alone significantly reduced

the above indexes, while JQC combined with LGT could

significantly reverse the excessively low levels of the above

indexes, which indicated that LGT combined with JQC could

reverse the anti-oxidation level of LGT-reduced liver and

kidney. At the same time, the combination of LGT and JQC

can also significantly reduce the levels of alanine/aspartate

transaminase, creatinine and urea nitrate in the serum of

S180 tumor-bearing mice (Wang et al., 2019b). In addition,

the combination of LGT and JQC can significantly reduce AUC

and Cmax of triptolide, and significantly increase the clearance

rate, which indicates that the attenuation mechanism of the

compatibility may reduce the tissue damage by accelerating the

metabolism and excretion of triptolide, and reducing the tissue

distribution concentration (al, 2015).

Although LGT and JQC play a therapeutic role in diseases by

increasing efficiency and reducing toxicity, the specific

mechanism of promoting efficiency and reducing toxicity of

LGT and JQC is still no specific clarification in a quantitative

way due to active components of LGT and JQC are act as multiple

targets and multiple pathways on complex diseases. Therefore, it

is necessary to find a suitable method to quantify these modes of

increasing efficiency and reducing toxicity. Network analysis of

multimodal data is one of the commonly used research strategies

to analyze the treatment of complex diseases with TCM, such as

the multi-component and multi-target mechanism of TCM

prescriptions, the mechanism of “different treatments for the

same disease” and “different diseases with the same treatment,”

etc. However, there are few related research reports on the

synergistic and attenuated mechanism of TCM compatibility

rule based on network analysis.

At present, some studies have also reported the potential

mechanism of increasing efficacy and reducing toxicity of herb

pairs, such as the compatibility of Glycyrrhiza uralensis Fisch.

and Aconitum carmichaelii Debeaux can not only exert the effect

of strengthening heart and promoting blood pressure, but also

antagonize the arrhythmia caused by Aconitum carmichaelii

Debeaux by inhibiting the Na+ channel of myocardial cells

(YAN G Ming and HU, 2003); Aconitum carmichaelii

Debeaux and Zingiber acuminatum Valeton mainly focuses on

strengthening the heart and reducing cardiac toxicity (Weiping,

2008). Most of these reports are experiment-driven, or the effect

network and toxicity network are analyzed separately. The

crosstalk and propagation influence characteristics of the

effective-toxicity network are not considered comprehensively.

In the process of herb pair’s therapeutic effect, the related

monomers will have certain toxic and side effects and even

interfere with the transmission of the effect. Therefore, how to

integrate and analyze the efficacy and toxicity network is one of

the key ways to accurately understand the compatibility of TCM

prescriptions.

In this research, in order to quantitatively determine the

synergy and attenuation mechanism of LGT and JQC, we design

a new model, which integrates matrix decomposition and

shortest path propagation, taking into account both the

crosstalk of the effective network and the propagation
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characteristics. With the integrated model strategy, we can

quantitatively detect that the possible mechanism of

promoting efficiency and reducing toxicity of herb pairs in the

compatibility process of TCM prescriptions.

2 Materials and methods

2.1 Flowchart

TCM compatibility therapy is widely used in clinical

application, but the mechanism of promoting efficiency and

reducing toxicity of herb pair has not been analyzed by system

biology. In this study, we designed an integrated analysis model

of efficacy-toxicity network model to explore the possible

mechanism of the combination of LGT and JQC in the

treatment of lung cancer, so as to provide reference for the

clinical use of LGT and JQC in the treatment of lung cancer.

The work flow is shown in Figure 1 and described as follows: 1)

Collecting and sorting out the components of LGT and JQC

from TCMSP, TCMID and TCM@Taiwan; 2) Sorting out the

main active components of LGT and JQC based on published

ADMET screening method; 3) Predicting the targets of active

components in LGT and JQC; 4) Calculating the initial

influence of active components on their targets. 5)

Integrating the active ingredients in LGT and JQC, their

targets and the pathogenic genes of lung cancer to construct

the quantitative efficacy-toxicity network of LGT and JQC; 6)

Using the common pathway among JQC, LGT and lung cancer

to decipher the potential mechanism of promoting efficiency

and reducing toxicity of LGT combined with JQC in treating

lung cancer; 7) Experimental verification.

2.2 Collection and arrangement of LGT
and JQC components

All chemical components of LGT and JQC were obtained

from the TCM System Pharmacology Database and Analysis

Platform database (TCMSP) (Ru et al., 2014) (http://lsp.nwsuaf.

edu.cn/tcmsp.php), Traditional Chinese Medicine integrated

database (Xue et al., 2013) (TCMID, http://www.megabionet.

org/TCMID/) and TCM@Taiwan (Tsai et al., 2011) (http://tcm.

cmu.edu.tw/zh-tw). The chemical identification and

concentrations of LGT and JQC was collected from previous

literature reports. All chemical structures were prepared and

FIGURE 1
The flowchart scheme of our proposed quantitative integrationmethod of dual efficacy and toxicity. LGT stands for TripterygiumwilfordiiHook.
f., JQC stands for Lysimachia christinae Hance.
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converted to standardized SMILES using the Open Babel Toolkit

(Version 2.4.1).

2.3 Active component analysis of LGT
and JQC

ADMET includes pharmacokinetic and toxicological issues such

as whether a compound can be effectively absorbed by the human

body and reach the target tissue, orwhether a compoundhave toxicity,

ADMET property usually list as key indicators for evaluating the

ability of small molecular compounds to be made into

pharmaceuticals (Lucas et al., 2019). Components passed the

filtration of ADMET screening usually have better pharmacokinetic

characteristics and higher bioavailability during in vivo metabolism,

thus effectively reflecting the safety and effectiveness levels of candidate

drugs and improving the success rate of drug research and

development (Gu et al., 2021). In this study, the active

components in LGT and JQC were primarily selected by ADEMT.

The screening requirements of ADEMT includemolecular weight less

than 500 Da, number of hydrogen bond donors less than 5, number of

hydrogen bond receptors less than 10, number of rotatable bonds less

than 10, high gastrointestinal absorption and exclusion of components

with high risk of inhibiting potassium channel (hERG_inhibition), etc.

2.4 Target prediction for LGT and JQC

Component target (C-T) networks for LGT and JQC were

constructed using Cytoscape software (Version 3.9.1) (Lopes

et al., 2010). The topological parameters of networks were

analyzed using Cytoscape plugin NetworkAnalyzer (de Jong

et al., 2003).

2.5 Constructing initial influence
coefficient of components on their targets
by matrix decomposition

The initial influence coefficient between the LGT

components and the target was obtained by matrix

decomposition. The matrix decomposition steps are as follows:

1. Perform a rank-L Eckart–Young–Mirsky approximation of A

by singular value decomposition (SVD) asAL � UL∑LV
T
L , and

let W � UL.

2. Estimation of Y:

For i � 1, . . . ,M

Re-order rows of W so that the ith column of Y has the

structure yi � [ ~yi
0
].

Partition W � [Wc

Wr
] conformally with this structure.

Do SVD forWr and get the last L-M+1 right singular vectors,

denoted as a matrixX0. Compute ~yi � the first left singular vector

of WcX0XT
0 end.

3. Estimate the initial influence coefficient matrix by S = Y†AL

For the choice of L, it has been shown by published

literature that we can choose L = M with good

performance and superior computational efficiency (Chang

et al., 2008). If L = M, due to the column dimension of Wr

(which is M) V0 in P̂
⊥
Ŝ
T
r
� X0XT

0 becomes a 1-dimensional

vector x, which is the Mth (the last) right singular vector of

Wr , so that

~P
⊥
~S
T
r
� xxT

Then

~Wc � ~P
⊥
~S
T
r
WT

c � xxTWT
c � ~s1 ~y

T
1 + �Γ

T
0

Γ is the inevitable measurement noise. Hence we get an

estimate of ~y1 simply as

~y1 � Wc

2.6 Identification of toxic targets

Through published literature retrieval, toxicity information

of LGT was obtained, including which systems caused which

specific toxic and side effects. For example, LGT has renal

toxicity, which is likely to cause renal failure and renal

insufficiency. The corresponding gene targets for toxic and

side effects were obtained in the DisGeNET database (Pinero

et al., 2021) (https://www.disgenet.org/) as toxicity targets

for LGT.

2.7 Scoring of efficacy-toxicity network by
using propagation model

The process of component transmission to the pathogenic

gene through the target involves the effective targets and toxicity

targets of the component. In this study, we constructed the

efficacy-toxicity network using the propagation model. The

principles of the propagation model are as follows:

(1) At the beginning, P � {u}, Q � H − {u}. For all nodes x in Q,

if there is a path from u to x, then du,x � cu,x; otherwise,

du,x � ∞.

(2) For all nodes x in Q, find the node t with smallest du,t ,i.e.,:
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du,x � min{du,x

∣∣∣∣x ∈ Q}
du,t is the shortest distance from target u to key lung

cancer metabolic gene t. Node t is also the closest node to u

among all nodes in Q. Delete node t from Q and merge it

into P.

(3) Update the value of du,x with the following formula for nodes

x adjacent to t in Q

du,x � min{du,x, du,t + ct,x}
(4) Continue the above steps until Q is an empty set

Therefore, we used the model to construct Gene

Transmission Chains (GTC) against LGT component targets,

Protein-protein interactions (PPI) networks, and pathogenic

genes of lung cancer. And finally obtaining a GTC which is

transmitted to a lung cancer pathogenic gene from a LGT

component target through a plurality of genes:

A − −B − −C − −D − −E

In the GTC, we believe that the later the toxic target appears

in the GTC, the less toxicity will be accumulated, and the earlier

the JQC target appears, the better the synergistic effect will be.

Therefore, we labeled the genes in GTC, with the component

target of JQC in GTC labeled [JQC], and the toxicity target of

LGT in GTC labeled [TOX]:

A − −B[JQC] − −C[TOX] − −D − −E

Using the lung cancer gene expression profile data

obtained by The Cancer Genome Atlas (TCGA) (Tomczak

et al., 2015) (https://portal.gdc.cancer.gov/), the correlation

between the two genes was calculated and recorded

as cor(i, j) � si,j:

A − sA,B − B[JQC] − sB,C − C[TOX] − sC,D −D − sD,E − E

The initial value v0 of the GTC is equal to the sum of the

initial influence coefficients a corresponding to the first target of

the GTC:

v0 � ∑ aAk(k � 1, . . . , n)

The initial score value v1 of the GTC is equal to v0 multiplied

with the correlation between genes si,j until the end of the GTC:

v1 � v0sA,BsB,CsC,DsD,E

v1 � ∑ v0si,j

After the scores of complete GTCs were calculated, the

change in scores when toxic targets and JQC targets were

encountered in the GTCs was calculated. When toxic targets

were encountered in the GTC, the scoring method was changed,

and the scoring value was recorded as v2:

v2 � v0sA,BsB,CsC,E

The scoring method also changed when JQC targets were

encountered in the GTCs, and the score value was recorded as v3:

v3 � v0sA,BsB,E

Final score v of the GTC:

v � v1 − v2 + v3

After the final score of complete GTCs was calculated, the

median score (~v) of all GTCs was taken and all GTCs were

screened. The GTCs with the score greater than ~v were

considered to be the GTCs with significant effect and were

retained.

2.8 Reverse screening of key components
for experimental verification

In order to screen out the components of LGT and JQC with

the strongest synergistic effect, we calculated the synergistic

scores of LGT and JQC according to the following steps:

(1) The number of targets of LGT componentA is a, the number

of targets of JQC component B is b, and the number of toxic

targets of LGT component A is c. The score calculation

formula is as follows:

s1 � a ∩ b − c

a + b

(2) Scale the scores s1 calculated by all paired components to the

range of [0,1] to get s2.

(3) Through the common C-T network diagram of LGT-JQC,

get the values of between for each component, which are

denoted as x(A), y(B), and the calculation formula is as

follows:

s3 � 					
x × y

√

(4) Final score s between paired components:

s � s2 + s3

Details of all LGT and JQC pairing components and scores

are recorded in Supplementary Table S1. By screening the high-

scoring paired components, we selected Perillyl alcohol,

Triptolide, and α-Terpineol as the components for

experimental verification.

2.9 GO analysis and pathway analysis

To analyze the main functions of the GTCs, Gene Ontology

(GO) analysis was performed using the Diversity Visualization
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Integrated Database (DAVID 6.8) (Huang da et al., 2009). And

the pathway data were obtained from the Kyoto Encyclopedia of

Genes and Genomes (KEGG) database for KEGG (Draghici et al.,

2007) pathway enrichment analyses. p-values were set at 0.05 as

the cut-off criterion. The results of analysis were annotated by

Pathview (Luo and Brouwer, 2013) in the RBioconductor

package (https://www.bioconductor.org/).

2.10 Experimental verification

2.10.1 Cell culture and reagents
The human lung cancer cell A549 and the human hepatocyte

cell L-02 were cultured in Dulbecco’s Modified Eagle’s Medium

(Invitrogen, Shanghai, China) supplemented with 10% FBS

(FSP500, ExCell bio, Shanghai), 100 U·mL−1 penicillin and

100 μg mL−1 streptomycin at 37°C in 5% CO2 atmosphere.

Triptolide, Perillyl alcohol and α-Terpineol (≥98% purity by

HPLC) were purchased from Jingzhu Biotechnology (Nanjing,

China) and dissolved in dimethyl sulfoxide (Sigma,

United States).

2.10.2 Cell viability assay
Cells viability was evaluated by Cell Counting Kit-8 (CCK-8;

Selleck Chemicals, China). Briefly, A549 cells were digested and

plated into each well of a 96-well plate after adjusting the cell

suspension to the appropriate concentration of 1×103 cells per

100 μL. The next day, the culture medium was discarded and the

cells were exposed to Triptolide, Perillyl alcohol and α-Terpineol
at different concentrations for 0 h, 24 h, 48 h, 72 h, 96 h and

120 h, 10 μL of CCK-8 (Bimake, United States) was added in the

plates and cultured at 37 °C for 2 h. Absorbance at 450 nm was

measured using spectrophotometer. The experiments were

carried out in triplicate.

2.10.3 Colony formation assay
1,000 cells were seeded in 6-weel plates with 2 ml complete

DMEM. Then, new complete DMEM containing different

concentrations of drugs was added. The medium should be

replaced every 3–4 days. After 2 weeks of cultivation, the

supernatant was abandoned and the cells were washed with

phoshate buffered saline (PBS), then fixed with methanol and

stained with crystal violet (Beyotime, China, C0121) for 15 min.

The numbers of colonies were counted for analysis.

2.10.4 Migration and invasion assays
Cells resuspended in FBS-free medium which containing

different concentrations of drugs was placed into the upper

uncoated chamber for migration assay or chamber coated

with matrigel (BD Biosciences, Bedford, MA) for invasion

assay. All the bottom chambers were added with 20% FBS

medium. Following 48 h of incubation, cells remaining in the

upper membrane were removed, whereas the migrated cells were

fixed with methanol and stained with crystal violet, and then

counted under the microscope.

2.10.5 Western blot analysis
Cells were collected and total protein was extracted by RIPA

lysis buffer (Beyotime, Shanghai, China, P0013 B), and BCA

protein assay kit (Thermo Fisher Scientific, United States) was

used to determine protein concentration. Equal amount of

protein samples was resolved by SDS-PAGE gel and the

proteins were subsequently moved to PVDF membrane

(Millipore, Bedford, MA), then the PVDF membrane were

blocked (Beyotime, Shanghai, China, P0252) and

immunoblotted with primary antibody of p44/42 MAPK

(Erk1/2) (1:1,000; cat. no.4695T; Cell Signaling Technology),

p-p44/42 MAPK (Erk1/2) (1:1,000; cat. no.4370T; Cell

Signaling Technology), PD-L1 (1:1000, cat. no.66248-1-Ig,

proteintech), GAPDH (1:1000, cat. no.60004-1-Ig, proteintech)

at 4°C overnight. After washing by TBST (TBS containing 1%

Tween), The membranes were exposed to corresponding

secondary antibodies for 1 h. Antibody signal was detected

using Clarity Western ECL substrate (Abbkine Scientific,

China). The GAPDH served as an endogenous reference.

3 Results

3.1 Chemical analysis

Chemical component analysis plays an important role in the

compatibility and the material basis research of Chinese material

medica, and is the foundation of the research on the action

mechanism of Chinese medicine. Through literature retrieval, we

collected the high-concentration chemical components verified

by HPLC and other experimental methods in LGT and JQC

(Table 1). The chemical components of Chinese herbal medicine

and the identified component concentrations provide auxiliary

chemical experimental proof for searching the active components

of the Chinese herbal medicine. This will provide a valuable

reference for further analysis.

3.2 Component collection and active
component screening in LGT and JQC

A total of 144 components in LGT and 61 components in

JQC were obtained by combined searching of the TCMSP,

TCMID, and TCM@Taiwan databases. ADMET screening is

one of the commonly used filtrate methods for drug selection

in pharmaceutical research. After ADMET screening,

68 active ingredients in LGT and 29 active ingredients in

JQC passed the integrated filtering criteria (Table 2). Further

analysis of the active components in LGT and JQC revealed

that the LGT and JQC have 67and 28 unique components,
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respectively (Figure 2A). In addition, LGT and JQC have one

component in common. The shared active components

Kaempferol has many pharmacological effects, such as anti-

cancer, anti-oxidation, anti-virus, anti-inflammation, anti-

bacteria, and enhancing the immunity (Imran et al., 2019).

Meanwhile, it can protect against LGT-induced acute liver

injury (WANG Jun-ming et al., 2013). Triptolide, as one of the

most important active ingredients of LGT, has

immunosuppressive, anti-inflammatory, anti-fertility and

anti-tumor biological activities. At the same time, it has

different degrees of toxicity to heart, liver, bone marrow

and spleen (Mingxing Liu et al., 2005). Triptolide also has

anti-tumor effect in vitro and induces apoptosis. Among the

components of JQC, perilla alcohol could sensitize lung tumor

cells to apoptosis by genetic lesions present in tumor cells (Xu

et al., 2004). In addition, as the ethanol extract component of

JQC, quercetin could protect the liver injury induced by LGT

by reducing lipid peroxidation in mouse liver and enhancing

the activities of superoxide dismutase and catalase (WANG

Jun-ming et al., 2013). These results suggest that the

compatibility of LGT and JQC may exert the efficacy of

enhancing the efficacy and reducing the toxicity in the

treatment of lung cancer by affecting the common and

specific components.

3.3 C-T network construction and analysis

To facilitate analysis of the complex relationship between

the active components and their targets in LGT and JQC, a

component-target (C-T) network was constructed by using

Cytoscape3.9.1 (Figure 3). The results showed that in the

common C-T network of LGT-JQC, active components of

LGT and JQC are related to multiple targets, resulting in

5778 associations between 97 active components and

944 targets. The average number of targets for per

component is 11.2, and the average number of components

for per target is 8.1, which reflect the characteristics of multi-

component and multi-target mediated synergistic reaction

and the complexity of the action mechanism of TCM. The

most targeted components were (2R,3R, 4S)-4-(4-hydroxy-3-

methoxyphenyl)-7-methoxy-2,3-dimethyl-tetralin-6-ol

(LGT59, degree = 168), followed by quercetin (JQC22,

degree = 159), poly-β-hydroxybutyric acid (JQC21,

degree = 158) and zhebeisu (LGT61, degree = 152). These

results indicate these shared components may play synergetic

effect in the combination treatment of lung cancer.

There were 525 shared targets in LGT and JQC (Figure 2B),

and among these common targets, aromatase (CYP19A1,

degree = 64) was targeted by the most components in LGT

TABLE 1 Experimentally confirmed high concentration composition of LGT and JQC.

Herb Method Component Concentration References

Tripterygium wilfordii
Hook.f

HPLC Triptolide 677 μg/g (Li and Wang, 2005; Cai et al., 2011; Wu et al., 2017; Guo
et al., 2019)Wilfortrine 1601.3 μg/g

Triptophenolide 108.3 μg/g

Wilfordine 90.9 μg/g

Wilforgine 2987.5 μg/g

Triptonolide 15.3 μg/g

Wilforine 430.4 μg/g

Demethylzeylaseral 7769.3 μg/g

Celastrol 7732.5 μg/g

chlorogenic acid 250 μg/g

Lysimachia christinae
Hance

HPLC quercetin 124 μg/g (Guo et al., 2012; Jeong et al., 2021)

Kaempferol 156 μg/g

Kaempferol-3-O-β-D-
glucopyranoside

195 μg/g

rutin 146 μg/g

linarin 105 μg/g

GC-MS perillyl alcohol 1.407% (Relative percentage of
mass)

HOU Dong-yan, (2003)

α-terpineol 0.767% (Relative percentage of
mass)

Pulegone 0.376% (Relative percentage of
mass)

alpha-humulene 0.947% (Relative percentage of
mass)
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TABLE 2 Components in LGT and JQC for further analysis after screening by ADME.

ID Component MW HDON HACC RBN Fraction
Csp3

GI
absorption

hERG_inhibition Source

MID002175 Dehydroabietlc acid 300.44 1 2 2 0.65 High low_risk Tripterygium
wilfordii
Hook.f

MID002604 1,8-Dihydroxy-4-hydroxymethyl
anthraquinone

270.24 3 5 1 0.07 High medium_risk Tripterygium
wilfordii
Hook.f

MID003059 13,14-Epoxide 9,11,12-
hydroxytriptolide

378.42 3 7 1 0.85 High low_risk Tripterygium
wilfordii
Hook.f

MID004372 16-Hydroxy-19,20-epoxy-kaurane 304.47 1 2 0 1 High low_risk Tripterygium
wilfordii
Hook.f

MID004566 16-Hydroxytriptolide 376.4 2 7 2 0.85 High low_risk Tripterygium
wilfordii
Hook.f

MID004591 Hypolide methyl ether 326.43 0 3 2 0.57 High medium_risk Tripterygium
wilfordii
Hook.f

MID004875 Isoneotriptophenolide 342.43 1 4 2 0.57 High low_risk Tripterygium
wilfordii
Hook.f

MID005713 (+)-Medioresinol 388.41 2 7 5 0.43 High medium_risk Tripterygium
wilfordii
Hook.f

MID006737 Neotriptophenolide 342.43 1 4 2 0.57 High low_risk Tripterygium
wilfordii
Hook.f

MID008653 DL-Syringaresinol 418.44 2 8 6 0.45 High low_risk Tripterygium
wilfordii
Hook.f

MID009364 Triptonoterpene; 14-Hydroxy-
abieta-8,11,13-trien-3-one

300.44 1 2 1 0.65 High low_risk Tripterygium
wilfordii
Hook.f

MID009365 Triptonoterpenol 346.46 2 4 3 0.67 High low_risk Tripterygium
wilfordii
Hook.f

MID009708 Wilforonide 220.26 0 3 0 0.69 High low_risk Tripterygium
wilfordii
Hook.f

MID009909 DIBP 278.34 0 4 8 0.5 High low_risk Tripterygium
wilfordii
Hook.f

MID010186 succinic acid 118.09 2 4 3 0.5 High low_risk Tripterygium
wilfordii
Hook.f

MID010204 syringaresinol 418.44 2 8 6 0.45 High low_risk Tripterygium
wilfordii
Hook.f

MID010234 (+)-Syringaresinol 418.44 2 8 6 0.45 High low_risk Tripterygium
wilfordii
Hook.f

MID010260 kaempferol 286.24 4 6 1 0 High medium_risk Tripterygium
wilfordii
Hook.f

MID010507 DBP 278.34 0 4 10 0.5 High low_risk Tripterygium
wilfordii
Hook.f

(Continued on following page)
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TABLE 2 (Continued) Components in LGT and JQC for further analysis after screening by ADME.

ID Component MW HDON HACC RBN Fraction
Csp3

GI
absorption

hERG_inhibition Source

MID011265 protocatechualdehyde 138.12 2 3 1 0 High low_risk Tripterygium
wilfordii
Hook.f

MID011615 Cedar acid 198.17 2 5 3 0.22 High low_risk Tripterygium
wilfordii
Hook.f

MID011639 HX 136.11 2 3 0 0 High medium_risk Tripterygium
wilfordii
Hook.f

MID011860 40957-99-1 388.41 2 7 5 0.43 High medium_risk Tripterygium
wilfordii
Hook.f

MID012941 2,5-Dimethoxybenzoquinone 168.15 0 4 2 0.25 High medium_risk Tripterygium
wilfordii
Hook.f

MID012951 (+)-Medioresinol di-O-beta-D-
glucopyranoside_qt

388.41 2 7 5 0.43 High medium_risk Tripterygium
wilfordii
Hook.f

MID012953 81827-74-9 342.43 1 4 2 0.57 High low_risk Tripterygium
wilfordii
Hook.f

MID012954 (1R,4aR,10aS)-5-hydroxy-1-
(hydroxymethyl)-7-isopropyl-8-
methoxy-1,4a-dimethyl-
4,9,10,10a-tetrahydro-3H-
phenthren-2-one

346.46 2 4 3 0.67 High low_risk Tripterygium
wilfordii
Hook.f

MID012956 triptolide 360.4 1 6 1 0.85 High low_risk Tripterygium
wilfordii
Hook.f

MID012957 Tripchlorolide 396.86 2 6 1 0.85 High low_risk Tripterygium
wilfordii
Hook.f

MID012960 Tripdiolide 376.4 2 7 1 0.85 High low_risk Tripterygium
wilfordii
Hook.f

MID012961 Triptonide 344.36 0 6 1 0.79 High low_risk Tripterygium
wilfordii
Hook.f

MID012965 Tryptophenolide 312.4 1 3 1 0.55 High low_risk Tripterygium
wilfordii
Hook.f

MID012968 5,8-Dihydroxy-7-(4-hydroxy-5-
methyl-coumarin-3)-coumarin

352.29 3 7 1 0.05 High medium_risk Tripterygium
wilfordii
Hook.f

MID012969 HRP 220.22 4 4 3 0.18 High medium_risk Tripterygium
wilfordii
Hook.f

MID012972 8-Epilpganic acid_qt 214.22 3 5 1 0.7 High low_risk Tripterygium
wilfordii
Hook.f

MID012975 Canin 278.3 1 5 0 0.8 High low_risk Tripterygium
wilfordii
Hook.f

MID012977 Celafurine 369.46 2 4 3 0.43 High medium_risk Tripterygium
wilfordii
Hook.f

(Continued on following page)
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TABLE 2 (Continued) Components in LGT and JQC for further analysis after screening by ADME.

ID Component MW HDON HACC RBN Fraction
Csp3

GI
absorption

hERG_inhibition Source

MID012983 Dunnisinin 226.23 1 5 2 0.73 High low_risk Tripterygium
wilfordii
Hook.f

MID012985 trans-Nepetalactone 166.22 0 2 0 0.7 High low_risk Tripterygium
wilfordii
Hook.f

MID012986 Isoxanthohumol 354.4 2 5 4 0.29 High medium_risk Tripterygium
wilfordii
Hook.f

MID012987 Neouralenol 370.35 5 7 3 0.15 High medium_risk Tripterygium
wilfordii
Hook.f

[(3aR,4S,6E,9S,10Z,11aR)-9-
hydroxy-6,10-dimethyl-3-
methylene-2-oxo-3a,4,5,8,9,11a-
hexahydrocyclodeca [b]furan-4-
yl] (E)-2-methylbut-2-enoate

346.42 1 5 3 0.5 High medium_risk Tripterygium
wilfordii
Hook.f

MID012992 Tripdiotolnide 360.4 2 6 1 0.7 High low_risk Tripterygium
wilfordii
Hook.f

MID012993 Hypodiolide A 318.45 1 3 0 0.95 High low_risk Tripterygium
wilfordii
Hook.f

MID012996 Norathyriol 260.2 4 6 0 0 High low_risk Tripterygium
wilfordii
Hook.f

MID012997 Triptinin B 314.42 2 3 2 0.55 High low_risk Tripterygium
wilfordii
Hook.f

MID012999 Triptoditerpenic acid B 328.45 1 3 3 0.57 High low_risk Tripterygium
wilfordii
Hook.f

MID013005 (3E,7E)-2alpha,10beta,13alpha-
Triacetoxy-5alpha,20-dihydroxy-
3,8-seco-taxa-3,7,11-trien-9-one

492.56 2 9 7 0.62 High ambiguous Tripterygium
wilfordii
Hook.f

MID013011 Triptolidenol 376.4 2 7 1 0.85 High low_risk Tripterygium
wilfordii
Hook.f

MID013012 Triptonide 358.39 0 6 1 0.8 High low_risk Tripterygium
wilfordii
Hook.f

MID013013 Triptonoditerpenic acid 344.44 2 4 3 0.57 High low_risk Tripterygium
wilfordii
Hook.f

MID013014 11-Hydroxy-14,15alpha-
epoxytabersonine

368.43 2 5 3 0.57 High low_risk Tripterygium
wilfordii
Hook.f

MID013015 Triptonoterpene methyl ether 330.46 1 3 2 0.67 High low_risk Tripterygium
wilfordii
Hook.f

MID013016 Triptonoterpene 300.44 1 2 1 0.65 High low_risk Tripterygium
wilfordii
Hook.f

MID013031 Wilfordic acid 223.23 2 5 5 0.36 High low_risk Tripterygium
wilfordii
Hook.f

(Continued on following page)
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TABLE 2 (Continued) Components in LGT and JQC for further analysis after screening by ADME.

ID Component MW HDON HACC RBN Fraction
Csp3

GI
absorption

hERG_inhibition Source

MID013037 104331-87-5 220.26 0 3 0 0.69 High low_risk Tripterygium
wilfordii
Hook.f

MID013040 Wilsonine 343.42 0 5 3 0.6 High low_risk Tripterygium
wilfordii
Hook.f

MID013047 99694-86-7 376.4 2 7 1 0.85 High low_risk Tripterygium
wilfordii
Hook.f

MID013048 TRIPTONOLIDE 326.39 1 4 1 0.5 High low_risk Tripterygium
wilfordii
Hook.f

MID013051 (2R,3R,4S)-4-(4-hydroxy-3-
methoxy-phenyl)-7-methoxy-2,3-
dimethylol-tetralin-6-ol

360.4 4 6 5 0.4 High medium_risk Tripterygium
wilfordii
Hook.f

MID013722 caffeine 194.19 0 3 0 0.38 High medium_risk Tripterygium
wilfordii
Hook.f

MID014181 Zhebeiresinol 280.27 1 6 3 0.5 High low_risk Tripterygium
wilfordii
Hook.f

MID014393 fraxetin 208.17 2 5 1 0.1 High low_risk Tripterygium
wilfordii
Hook.f

MID016058 (2R,3R,4S)-4-(4-hydroxy-3,5-
dimethoxy-phenyl)-5,7-
dimethoxy-2,3-dimethylol-
tetralin-6-ol

420.45 4 8 7 0.45 High low_risk Tripterygium
wilfordii
Hook.f

MID016077 4-[(1R,3aS,4R,6aS)-4-(4-hydroxy-
3,5-dimethoxyphenyl)-
1,3,3a,4,6,6a-hexahydrofuro [4,3-
c]furan-1-yl]-2,6-
dimethoxyphenol

418.44 2 8 6 0.45 High low_risk Tripterygium
wilfordii
Hook.f

MID017234 3-hydroxy-1-(3,5-dimethoxy-4-
hydroxyphenyl)propan-1-one

226.23 2 5 5 0.36 High low_risk Tripterygium
wilfordii
Hook.f

MID018996 3,3′-bis-(3,4-dihydro-4-hydroxy-
6-methoxy)-2H-1-benzopyran

358.39 2 6 3 0.4 High medium_risk Tripterygium
wilfordii
Hook.f

MID022242 Antiarol 184.19 1 4 3 0.33 High low_risk Tripterygium
wilfordii
Hook.f

MID004896 Isopinocamphone 152.23 0 1 0 0.9 High low_risk Lysimachia
christinae
Hance

MID005770 Menthol 156.27 1 1 1 1 High low_risk Lysimachia
christinae
Hance

MID005771 Menthol-b 156.27 1 1 1 1 High low_risk Lysimachia
christinae
Hance

MID007428 L-Pinocamphone 152.23 0 1 0 0.9 High low_risk Lysimachia
christinae
Hance

MID009860 apigenin 270.24 3 5 1 0 High medium_risk Lysimachia
christinae
Hance

(Continued on following page)
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TABLE 2 (Continued) Components in LGT and JQC for further analysis after screening by ADME.

ID Component MW HDON HACC RBN Fraction
Csp3

GI
absorption

hERG_inhibition Source

MID009925 ent-Epicatechin 290.27 5 6 1 0.2 High medium_risk Lysimachia
christinae
Hance

MID009949 quercetin 302.24 5 7 1 0 High medium_risk Lysimachia
christinae
Hance

MID009953 PHB 138.12 2 3 1 0 High low_risk Lysimachia
christinae
Hance

MID009966 Nol 142.24 0 1 7 0.89 High low_risk Lysimachia
christinae
Hance

MID009968 (L)-alpha-Terpineol 154.25 1 1 1 0.8 High low_risk Lysimachia
christinae
Hance

MID009980 CAM 152.23 0 1 0 0.9 High low_risk Lysimachia
christinae
Hance

MID010041 (R)-lilool 154.25 1 1 4 0.6 High low_risk Lysimachia
christinae
Hance

MID010093 Rhamnocitrin 300.26 3 6 2 0.06 High medium_risk Lysimachia
christinae
Hance

MID010193 isorhamnetin 316.26 4 7 2 0.06 High medium_risk Lysimachia
christinae
Hance

MID010260 kaempferol 286.24 4 6 1 0 High medium_risk Lysimachia
christinae
Hance

MID010435 O-Methylthymol 164.24 0 1 2 0.45 High medium_risk Lysimachia
christinae
Hance

MID010526 patchouli alcohol 222.37 1 1 0 1 High low_risk Lysimachia
christinae
Hance

MID010546 l-Menthone 154.25 0 1 1 0.9 High low_risk Lysimachia
christinae
Hance

MID010700 Cedrol 222.37 1 1 0 1 High low_risk Lysimachia
christinae
Hance

MID011127 o-Acetyl-p-cresol 150.17 1 2 1 0.22 High low_risk Lysimachia
christinae
Hance

MID011208 49070_FLUKA 222.37 1 1 0 1 High low_risk Lysimachia
christinae
Hance

MID011498 acacetin 284.26 2 5 2 0.06 High medium_risk Lysimachia
christinae
Hance

MID011502 Perillyl alcohol 152.23 1 1 2 0.6 High low_risk Lysimachia
christinae
Hance

MID011777 Pulegone 152.23 0 1 0 0.7 High low_risk Lysimachia
christinae
Hance

(Continued on following page)
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and JQC. Previous reports have confirmed that aromatase had

biological activity in lung cancer cells, and the polymorphisms of

CYP19A1 may be related to the increased risk of lung cancer

(Zhang et al., 2013). In addition, among common targets of LGT

and JQC, a series of carbonic anhydrase such as CA12, CA2,

CA1, and CA9 are also highly expressed, and published evidence

shown that carbonic anhydrase can affect the proliferation of

non-small cell lung cancer (NSCLC) through the Wnt/β-catenin
signaling pathway (Wang et al., 2020a).

In LGT, there were 4120 interactions between 68 active

components and 901 targets. Except for common targets,

many targets of components in LGT are directly or

indirectly related to lung cancer. Such as PTPN1 (degree =

44) and AKT1 (degree = 42). PTPN1 (degree = 44), a unique

target of LGT has been proved to promote the proliferation

and metastasis of NSCLC and high expression in lung cancer

tissues (Wang et al., 2013). GPR37 has attracted much

attention as a therapeutic target for lung cancer. The

down-regulation of GPR37 expression can significantly

inhibit the proliferation and migration of lung

adenocarcinoma in vitro and in vivo (Xie et al., 2022).

These results indicate that the high degree genes

specifically targeted by LGT are mostly related to the

pathogenic mechanism of lung cancer.

In JQC, there were 1656 interactions between the 29 active

components and 514 targets. In addition to the significant targets

already discussed above among the common targets, we can also

focus on several other targets that are significantly associated

with lung cancer. For example, ESR2 (degree = 13), also known as

ERβ, it could promote lung cancer invasion via increasing

CXCR4 expression (Liu et al., 2022). In addition, the TTR

(degree = 13) is selectively highly expressed in lung cancer

cells and can be secreted out of cells (Hao et al., 2016).

In summary, these results suggested that the active

ingredients between LGT and JQC may treat lung cancer

through multi-target synergy, and achieve the effects of

promoting efficiency and reducing toxicity after

compatibility.

TABLE 2 (Continued) Components in LGT and JQC for further analysis after screening by ADME.

ID Component MW HDON HACC RBN Fraction
Csp3

GI
absorption

hERG_inhibition Source

MID011806 (-)-Caryophyllene oxide 220.35 0 1 0 0.87 High medium_risk Lysimachia
christinae
Hance

MID011844 thymol 150.22 1 1 1 0.4 High low_risk Lysimachia
christinae
Hance

MID012135 Hesperetin 302.28 3 6 2 0.19 High medium_risk Lysimachia
christinae
Hance

MID012156 beta-Ionone 192.3 0 1 2 0.62 High low_risk Lysimachia
christinae
Hance

MID017581 2-Hexanoylfuran 166.22 0 2 5 0.5 High low_risk Lysimachia
christinae
Hance

FIGURE 2
Venn diagram of components and targets of LGT and JQC. (A) Common and specific components of LGT and JQC. (B) Common and specific
targets for LGT and JQC.
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3.4 Analysis of pathogenic genes of lung
cancer

To determine the pathogenic genes in lung cancer, we

downloaded the data of lung cancer from TCGA, and obtained

8319 differential expression genes (DEGs), of which 5867 genes

were up-regulated and 2452 genes were down-regulated

(Figure 4A). Next, we identified the key pathogenic genes using

the PPI network of DEGs. The PPI network of DEGs was

constructed using the STRING (https://cn.string-db.org/) and

Cytoscape (Figure 4B). Modular analysis of PPI networks was

performed by using the MCODE plugin (degree cutoff = 2, node

score cutoff = 0.2, k-core = 2, and max. depth = 100). We screened

the top cluster with the highest clustering score (score = 22.957) to

do further analyses (Figure 4C). Then, the central node gene (more

than 10 connections/interactions) was figured out, and the top

ranked 24 highly linked genes were RAD51, CCNB1, CCNB2,

KIF14, EZH2, CDC20, FoxM1, AURKA, BUB1B, SGOL1, etc. The

functions of these genes in this module are mainly related to

nuclear division, organelle fission, mitotic nuclear division, sister

chromatid segregation, Mitotic Cell Cycle Phase Transition, and

chromosome segregation. EZH2 is known to play an important

role in the occurrence, development and metastasis of cancer,

while studies have demonstrated that many lncRNA promote the

function of lung cancer cells by interacting with EZH2 to silence

tumor suppressor factors (Su et al., 2018). In addition,

CDK1 mRNA expression was negatively correlated with the

overall survival of lung cancer patients, and CDK1/

Sox2 regulated the activity of liver cancer stem cells in a

positively regulated manner (Huang et al., 2021). Other studies

have demonstrated that CCNB1 participates in the lung cancer

related lncRNA-miRNA-mRNA ceRNA network (Wu et al.,

2020). AURKA is an important gene for cell cycle regulation.

CBLC could delay the accumulation and activation of AURKA

through consumption to prevent cancer cells from entering cell

division and increase the apoptosis of lung cancer cells (Hong et al.,

2022). In addition, FoxM1 as a tumor marker for lung cancer has

been commonly recognized (Gao et al., 2021). In summary, these

FIGURE 3
The C-T network of LGT and JQC. (A) C-T network of LGT. (B) C-T network of JQC. (C) Common and specific C-T network for LGT and JQC.
The blue nodes represent components of LGT. The green nodes represent components of JQC. The red nodes means common targets of LGT and
JCQ, and the yellow ones as the specific targets.
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results have revealed a complex network of multiple targets and

multiple mechanisms among lung cancer -causing genes.

3.5 Identification of toxic targets

Literature retrieval and statistics showed that the most

serious adverse reactions of LGT were mainly in the bone

marrow and blood system, followed by the digestive system

and renal system [Supplementary Table S2]. These adverse

reactions involve many target genes. We defined the toxicity

targets that are related to adverse reactions in multiple systems

and the number of literature reports is greater than 10. According

to the above criteria, the top 10 important toxicity targets are:

TP53, CFTR, AGT, ESR1, PPARG, CDKN2A, MDM2, AR,

JAK2, and AGTR1. As an important tumor suppressor gene,

TP53 is associated with apoptosis and cell cycle regulation. At the

same time, it is a disease target in the adverse reactions of

LGT—palpitation, pancytopenia, renal failure, acute renal

insufficiency, and anemia. The frequency of TP53 mutation

FIGURE 4
Analysis of pathogenic genes of Lung cancer. (A) Significant DEGs of lung cancer. (B) PPI network of lung cancer pathogenic genes. (C) The sub-
networks were identified by Cytoscape MCODE plugin.
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increased with the progression of multiple myeloma (Jovanovic

et al., 2018). In addition, TP53 regulated the invasion of renal

clear cell carcinoma through PI3K/PTEN/AKT signal (Lei, 2020).

All these indicated that TP53 was an important toxic target of

LGT. The toxicity of LGT in cardiovascular system often leads to

the occurrence of palpitation, arrhythmia and bradycardia (Hua

et al., 2011), and in the bone marrow and blood system often lead

to anemia and pancytopenia (LiuMiaoHui and Yumeng, 2014).

AGT, as an essential component of the renin-angiotensin system,

is an effective blood pressure regulator and an important target

for diseases in the cardiovascular system, bonemarrow and blood

system. It was closely related to the adverse reactions in the

cardiovascular system and bone marrow blood system caused by

the toxicity of LGT. PPARG is expressed to different degrees in

adipose tissues, liver, skeletal muscle, kidney, pancreas and other

tissues, and is also one of the pathogenic targets of lung cancer.

More importantly, PPARG is a disease-related target in the

development of LGT adverse reactions such as renal failure,

infrequent menstruation, neutropenia, hepatomegaly, and other

reproductive and hepatic toxicity. Taken together, these results

reveal a complex network of multiple systems and multiple

targets between the toxicities and side effects of LGT.

3.6 Construction and validation of
quantitative efficacy-toxicity network
of LGT

3.6.1 Construction of quantitative efficacy-
toxicity network of LGT

To better detect the gradual transfer of LGT from target to

pathogenic gene during treatment, we first need to obtain the

initial influence coefficients of components on the target. To

solve this problem, we design amatrix decompositionmodel with

the interaction of components and targets as well as the

expression of target genes as inputs, finally we obtain a total

of 10,423 component-target regulations with initial influence

coefficients, based on the initial impact coefficient, we designed a

new propagation model. The propagation model not only

considered that the initial influence coefficient would transmit

the effect to other effective targets but also to other targets related

to side effects in the propagation process, so the model could

reflect the cascade effect mechanism of drugs in vivo in a

quantitative manner. Through this model we finally obtained

1,396,561 GTCs [Supplementary Table S3]. These GTCs are

complex and large. How to quickly extract important

information from many GTCs is a key step in deciphering the

potential molecular mechanism of the compatibility of LGT and

JQC in the treatment of lung cancer. Here, the GTCs with high

scores are considered to have high correlation with LGT

combined with JQC in the treatment of lung cancer.

Therefore, the median of the final scores of all GTCs is

selected as the screening criterion, and GTCs with scores

higher than the median are retained and defined as efficacy-

toxicity network for further analysis. We found that most of the

first 50 GTCs with the highest scores passed through both LGT

and JQC targets, suggesting that LGT and JQC had synergistic

effects in the treatment of lung cancer (Figure 5). Detail of the

GTCs in the efficacy-toxicity network are shown in Table 3.

3.6.2 Validation of quantitative efficacy-toxicity
network for LGT

In order to verify whether the constructed quantitative

efficacy-toxicity network of LGT better reveals the mechanism

of the combination of LGT and JQC in the treatment of lung

cancer, we adopted three strategies to verify the accuracy,

reliability and effectiveness of the quantitative efficacy-toxicity

network of LGT. The first strategy is to observe the percentage of

the number of component targets with high initial influence

coefficient obtained by matrix decomposition method to all

component targets of LGT. Targets with a higher initial

coefficient of influence were considered to be significant

targets for LGT (LGT-ST), and coverage was defined as the

number of LGT-ST as a percentage of the number of targets for

all components of LGT and the lung cancer pathogenic gene. The

high coverage indicated that LGT-ST could retain most of the

effective targets. The second strategy aims to observe and

compare the number of targets for LGT and lung cancer in

the screened GTSs with the number of targets for all components

of LGT and pathogenic genes for lung cancer. High coverage may

indicate that the GTCs retains the majority of LGT and lung

cancer targets. The third strategy was mainly used to observe

whether the gene enrichment pathways in the quantitative

efficacy-toxicity network covered as much as possible of the

gene enrichment pathways for LGT and lung cancer.

3.6.3 Verify the coverage of the LGT-ST
We collected the lung cancer pathogenic genes reported in

the published literature and database (Supplementary Table S4).

We found that there are 765 LGT-ST genes in total, and among

the 301 target genes shared by LGT and lung cancer, the coverage

rate of LGT-ST is 77.7%. This confirmed that the LGT-ST had a

high degree of consistency with the effective targets of LGT

(Figure 6), and there was a high coverage rate between the

common targets of LGT and lung cancer, which also indicated

that the LGT-ST obtained by matrix decomposition could

accurately reveal the influence coefficient between LGT

components and targets. Therefore, the propagation model in

which the initial influence coefficient participated in the

calculation was more reliable.

3.6.4 Verifying target coverage in the GTC
The number of LGT targets and lung cancer targets in the

GTCs was counted and compared with the number collected

through literature retrieval. Fortunately, 1198 LGT targets and

1192 lung cancer targets were included in the GTCs, accounting

Frontiers in Pharmacology frontiersin.org17

Zhang et al. 10.3389/fphar.2022.1018273

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2022.1018273


for 94% and 88% of all LGT targets and lung cancer targets

(Figure 5A). This result confirmed that the GTCs obtained by the

transmission model had a high degree of coincidence with LGT

targets and lung cancer targets.

3.6.5 Validated the genes enriched Pathways in
efficacy-toxicity network

We obtained the gene enrichment pathways for the efficacy-

toxicity network、LGT and lung cancer fromKEGG (Kanehisa and

Goto, 2000). The analysis results showed that the GO functional

enrichment of LGT-ST accounted for 95.7% and 74.49% of gene GO

functional enrichment in LGT and lung cancer, respectively. The

functional enrichment of GO by targets in the GTC accounted for

90.1% and 88.6% of the functional enrichment of LGT and lung

cancer, respectively. In addition, 85.42% of pathways in the genes

enriched pathways of LGT-ST were the same as those for LGT and

lung cancer. Genes enriched pathways of targets in the GTCs

accounted for 89.1% and 86.6% of the pathways for LGT and

lung cancer, respectively (Figures 5C–E). This result demonstrated

high coincidence of the GTCs with LGT and lung cancer at the gene

level, and also indicated that the quantitative efficacy-toxicity

network of LGT constructed by us can maximize the

conservation of the functional pathways of LGT and JQC in the

treatment of lung cancer.

3.7 Potential mechanism analysis of the
combination of LGT and JQC in the
treatment of lung cancer

To reveal the potential mechanism of the compatibility of

LGT and JQC in the treatment of lung cancer, we conducted path

FIGURE 5
quantitative efficacy-toxicity network of LGT.
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TABLE 3 50 representative GTFs.

inital_value Gene
transmission
chain

Spread
value

Loss
value

tox_begin
value

tox_fin
value

JQC_begin
value

JQC_fin
value

fin_value

86.93 DHCR24 [JQC]-UBC-CFL1 26.74 60.19 0.00 0.00 86.93 63.29 90.03

86.93 DHCR24 [JQC]-UBC-MAP2K1 25.54 61.39 0.00 0.00 86.93 60.45 85.99

86.93 DHCR24 [JQC]-UBC-ACTB 25.29 61.64 0.00 0.00 86.93 59.86 85.15

86.93 DHCR24 [JQC]-UBC-PTBP1 25.03 61.90 0.00 0.00 86.93 59.25 84.28

86.93 DHCR24 [JQC]-UBC-CSNK2A2 [JQC] 23.06 63.87 0.00 0.00 86.93 54.58 77.65

86.93 DHCR24 [JQC]-UBC-PPIA [JQC] 22.44 64.48 0.00 0.00 86.93 53.12 75.57

86.93 DHCR24 [JQC]-UBC-KDM2A [JQC] 22.18 64.75 0.00 0.00 86.93 52.50 74.68

86.93 DHCR24 [JQC]-UBC-RAF1 [JQC] 21.59 65.34 0.00 0.00 86.93 51.10 72.69

270.12 PGC-ULK2-CREB1 [JQC] 33.41 236.71 0.00 0.00 33.41 33.41 66.83

86.93 DHCR24 [JQC]-UBC-NRAS [JQC] 19.12 67.81 0.00 0.00 86.93 45.25 64.36

86.93 DHCR24 [JQC]-RBPJ-CREB1 [JQC] 13.75 73.18 0.00 0.00 86.93 50.52 64.27

65.71 PAM [JQC]-UBC-PSMD9 19.13 46.58 0.00 0.00 65.71 44.33 63.46

65.71 PAM [JQC]-UBC-POLD4 18.81 46.90 0.00 0.00 65.71 43.60 62.42

65.71 PAM [JQC]-FAU-EEF1A1 [JQC] 15.18 50.53 0.00 0.00 65.71 47.17 62.36

65.71 PAM [JQC]-UBC-DHDDS 18.61 47.10 0.00 0.00 65.71 43.13 61.74

270.12 PGC-CDK9 [JQC]-EWSR1 30.79 239.33 0.00 0.00 40.06 30.79 61.58

270.12 PGC-CDK9 [JQC]-RELA 30.27 239.85 0.00 0.00 40.06 30.27 60.54

65.71 PAM [JQC]-UBC-MARK2 17.56 48.15 0.00 0.00 65.71 40.70 58.27

65.71 PAM [JQC]-UBC-STAT3 17.51 48.20 0.00 0.00 65.71 40.58 58.10

86.93 DHCR24 [JQC]-UBC-LMNA [TOX] 23.37 63.55 23.37 23.37 86.93 55.32 55.32

86.93 DHCR24 [JQC]-TP53 [TOX]-SRSF1 16.94 69.98 27.22 16.94 86.93 54.11 54.11

86.93 DHCR24 [JQC]-UBC-ACTN4 [TOX] 21.66 65.27 21.66 21.66 86.93 51.26 51.26

65.71 PAM [JQC]-CALM1 [JQC]-RELA 13.53 52.18 0.00 0.00 65.71 36.22 49.75

65.71 PAM [JQC]-CALM1 [JQC]-TRAF6 13.52 52.19 0.00 0.00 65.71 36.21 49.73

86.93 DHCR24 [JQC]-UBC-SRRM2 14.60 72.32 0.00 0.00 86.93 34.57 49.17

86.93 DHCR24 [JQC]-TP53 [TOX]-BAX 15.03 71.90 27.22 15.03 86.93 48.01 48.01

270.12 PGC-CDK9 [JQC]-MAPK3 23.90 246.22 0.00 0.00 40.06 23.90 47.80

65.71 PAM [JQC]-UBC-SOD2 13.54 52.17 0.00 0.00 65.71 31.38 44.93

86.93 DHCR24 [JQC]-TP53 [TOX]-XRCC1 14.04 72.89 27.22 14.04 86.93 44.84 44.84

272.62 MMP1-UBC-CSNK2A2 [JQC] 20.97 251.65 0.00 0.00 20.97 20.97 41.94

272.62 MMP1-UBC-MCL1 [JQC] 20.84 251.78 0.00 0.00 20.84 20.84 41.68

272.62 MMP1-UBC-KDM2A [JQC] 20.17 252.45 0.00 0.00 20.17 20.17 40.33

272.62 MMP1-UBC-GAPDH [JQC] 20.12 252.50 0.00 0.00 20.12 20.12 40.23

272.62 MMP1-UBC-RAF1 [JQC] 19.63 252.98 0.00 0.00 19.63 19.63 39.26

86.93 DHCR24 [JQC]-TP53 [TOX]-SETD2 12.18 74.75 27.22 12.18 86.93 38.88 38.88

270.12 PGC-CDK9 [JQC]-CDK2 [JQC] 19.14 250.98 0.00 0.00 40.06 19.14 38.27

86.93 DHCR24 [JQC]-MDM2 [TOX][JQC]-
EEF1A1 [JQC]

3.71 83.22 11.75 3.71 86.93 27.42 27.42

86.93 DHCR24 [JQC]-UBC-APOE [TOX] 10.46 76.47 10.46 10.46 86.93 24.75 24.75

65.71 PAM [JQC]-UBC-F3 [TOX][JQC] 10.50 55.21 10.50 10.50 65.71 24.33 24.33

18.84 PPP1CC [JQC]-CDK2 [JQC]-HNRNPC 9.06 9.78 0.00 0.00 18.84 12.78 21.84

86.93 DHCR24 [JQC]-MDM2 [TOX][JQC]-MTOR 2.93 84.00 11.75 2.93 86.93 21.70 21.70

18.84 PPP1CC [JQC]-ATP6V1A-PSMD2 8.14 10.71 0.00 0.00 18.84 12.28 20.42

39.05 CD81-UBC-CASP3 [JQC] 10.15 28.90 0.00 0.00 10.15 10.15 20.30

39.05 CD81−CD4 [JQC]-CD44 10.12 28.93 0.00 0.00 19.04 10.12 20.23

39.05 CD81-UBC-CASP7 [JQC] 10.09 28.96 0.00 0.00 10.09 10.09 20.17

(Continued on following page)
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enrichment analysis on the toxic targets of LGT, JQC, lung

cancer, and LGT as well as related genes in the GTC. First,

genes of LGT were enriched in 194 pathways, genes of lung

cancer were enriched in 180 pathways, and related genes in GTC

were enriched in 225 pathways, among which there were

137 common pathways, the more significant ones were MAPK

signaling pathway, PI3K-Akt signaling pathway, HIF-1 signaling

pathway, cAMP signaling pathway, etc. In JQC, genes were

enriched along 145 pathways, while toxicity targets for LGT

were enriched along 69 pathways. We performed unified analysis

on the obtained pathways of LGT, JQC, lung cancer and LGT

toxicity targets, and found that the common pathway of LGT,

JQC and lung cancer covered 114 pathways. These include:

MAPK signaling pathway, PI3K-Akt signaling pathway, cAMP

signaling pathway, PD-L1 expression and PD-1 checkpoint

pathway in cancer, Rap1 signaling pathway, etc. JQC

pathways covered 42 pathways of LGT toxicity targets,

including IL-17 signaling pathway, Fluid Sheet Stress and

Atherosclerosis, and Human cytomegalovirus infection. These

results indicate that LGT and JQC can exert the effect of treating

lung cancer through multiple common pathways, and JQC also

has multiple common pathways with the toxic targets of LGT

(Figure 7), which may be the key to the mechanism of JQC in the

promoting efficiency and reducing toxicity of LGT.

To further analyze the important pathways of the

compatibility of LGT and JQC in the treatment of lung

cancer, we constructed a target-pathway (T-P) network for

common pathways that covered more targets, including

pathways related to adverse reactions (Figure 8). The T-P

network consists of 100 nodes (20 pathways and 80 targets

and 437 edges). PRKCA, PRKCB, PRKCG, MAPK3, and

MAPK1 had the highest degree in the T-P network. Among

them, the up-regulation of PRKCA and HDGF is considered to

be a negative factor for the development of lung adenocarcinoma

(Jiang et al., 2019). Both PKC family and MAPK family are

involved in a variety of cell signal transduction pathways and play

roles in different cellular processes. They are also involved in the

carcinogenesis of cancers such as lung cancer. Pathways

associated with these targets are shown in addition to more

prominent features. Therefore, we choose the pathway of the top

four target connections in the synergistic pathway and the

pathway of the highest number of target connections in toxic

pathway for further study. TheMAPK signaling pathway exhibits

the highest number of target connections (hsa004010, degree =

44), followed PI3K-Akt pathway (hsa04020, degree = 41),

Chemical carcinogenesis-receptor activation signaling pathway

(hsa05207, degree = 35), PD-L1 expression and PD-1 checkpoint

pathway in cancer (hsa05235, degree = 28), and toxicity target-

enriched IL-17 signaling pathway (hsa05235, degree = 22), etc.

MAPK pathway activity plays a key role in EGF-and IFNγ-
induced PD-L1 expression in lung adenocarcinoma (Stutvoet

et al., 2019). In addition, the activation of PI3K/Akt/mechanistic

target of rapamycin (mTOR) pathway has become a marker of

the occurrence of many cancers, and in NSCLC, the PI3K/Akt/

mTOR pathway is closely related to tumorigenesis and disease

progression (Tan, 2020). The activation of PD-1/PD-L1 signaling

pathway is widely involved in the occurrence and development of

tumors, chronic infections, and autoimmune diseases (Zhang

et al., 2004). According to the literature, we can find that high-

degree pathways are involved in a series of cellular physiological

activities such as cell growth, development, differentiation, and

apoptosis, and also have a close relationship with the occurrence

of cancer. To elucidate the mechanism by which LGT works in

conjunction with JQC in more detail, we conducted literature

retrieval on the common pathways of high-degree.

Through published literature retrieval, we found that among

the common pathways, MAPK pathway, PI3K-Akt pathway and

PD-L1 expression and PD-1 checkpoint pathway in cancer had

the highest correlation with lung cancer; therefore, we selected

MAPK pathway, PI3K-Akt pathway, and PD-L1 expression and

PD-1 checkpoint pathway in cancer to elaborate the detailed

mechanism of LGT and JQC in the treatment of LC. First, we

constructed an integrated signaling pathway by integrating the

three pathways. The component targets of LGT and JQC were

thenmapped to an integrated signaling pathway (Figure 9A). The

results showed that the common component targets of LGT and

JQC were mainly located upstream of the comprehensive

signaling pathways, such as EGFR, ALK, and CD4. The

targets of JQC components were distributed downstream of

the comprehensive signaling pathway, like RAF1; As for the

TABLE 3 (Continued) 50 representative GTFs.

inital_value Gene
transmission
chain

Spread
value

Loss
value

tox_begin
value

tox_fin
value

JQC_begin
value

JQC_fin
value

fin_value

39.05 CD81-UBC-PAM [JQC] 8.10 30.95 0.00 0.00 8.10 8.10 16.20

18.84 PPP1CC [JQC]-CSNK2A1 [JQC]-CCDC6 6.53 12.31 0.00 0.00 18.84 9.60 16.14

18.84 PPP1CC [JQC]-UBC-WDTC1 6.00 12.85 0.00 0.00 18.84 10.14 16.14

18.77 KDR [JQC]-BTRC-NFKB1 [JQC] 3.62 15.15 0.00 0.00 18.77 11.28 14.90

18.77 KDR [JQC]-BTRC-AXIN1 3.61 15.16 0.00 0.00 18.77 11.24 14.85

Frontiers in Pharmacology frontiersin.org20

Zhang et al. 10.3389/fphar.2022.1018273

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2022.1018273


component targets of LGT, they are present both upstream and

downstream of the comprehensive signaling pathway, for

example, PIK3CA, AKT3, MAP3K3, etc. This result fully

demonstrated that LGT and JQC exert synergistic therapeutic

effect on lung cancer by targeting different genes in the

comprehensive signaling pathway as well as the common

component targets.

In addition, we have found that the IL-17 pathway in the

toxicity target enrichment pathway plays a key role in the

pathological process of a variety of inflammatory reactions

and autoimmune diseases, including the toxic and side effects

of a variety of LGT such as acute renal failure and liver

dysfunction. JQC covered multiple pathways related to

toxicity targets including IL-17 pathway, which also indicated

that JQC participated in the regulation of toxicity-related

pathways such as IL-17 pathway to achieve the effect of

reducing toxic and side effects on LGT. We mapped the JQC

targets and the LGT toxicity targets onto the IL-17 signaling

pathway (Figure 9B) to discuss the mechanisms of JQC

attenuation of LGT. The results showed that the target of JQC

FIGURE 6
Validation of quantitative efficacy-toxicity network of LGT. (A) The number of LGT targets and lung cancer targets in the GTC; (B) Number of
overlapping genes of LGT, Lung cancer and LGT-ST; (C,D): Coverage of pathway analysis between LGT targets and lung cancer targets with GTC (C)
and LGT-ST (D); (E,F): Coverage of GO function enrichment between LGT targets and lung cancer targets with GTC (E) and LGT-ST (F).
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components were mainly distributed upstream of the pathway,

such as NFKB1, FOS, and MAPK14. The toxic targets of LGT

were mainly distributed in the downstream of the pathways, such

as LCN2, IL6, IL1B, and CSF3, and ultimately target the

inflammatory host defense autoimmunity, proinflammatory

activities and other inflammatory reactions and autoimmune

diseases. These results suggest that JQC may attenuate the toxic

and side effects of LGT by targeting upstream genes in the IL-17

pathway.

3.8 Experimental verification

3.8.1 Experimental validation in vitro
To further validate the reliability of the possible mechanisms

of promoting efficiency of LGT and JQC in the treatment of lung

cancer, the human lung cancer cell A549 was used for experiment

verification in vitro. A549 cell was treated with triptolide

(12.5 nM), perillyl alcohol (500 μM) and α-terpineol (500 μM)

alone or in combination. As shown in Figures 10A,B, the

combination of low-dose triptolide and perillyl alcohol or

triptolide and α-terpineol were all significantly inhibited the

cell viability and colony formation ability compared with

inhibition by either triptolide, perillyl alcohol or α-terpineol
alone. In addition, we observed the similar results from

transwell assays, as the migration and invasion abilities were

decreased in A549 cell exposed to the combination of triptolide

and perillyl alcohol or triptolide and α-terpineol (Figure 10C). To
further validate the results of the comprehensive pathway,

western blot assay was employed to detect the activities of the

MAPK signaling pathway and PD-L1 signaling pathway. Our

data identified that the combination of triptolide and perillyl

alcohol or triptolide and α-terpineol could effectively suppress

MAPK signaling pathway and the expression level of PD-L1

FIGURE 7
The enrichment pathway map of LGT and JQC in the treatment of lung cancer. (A) Target enrichment pathways of LGT, LUAD and GTC; (B)
Gene enrichment pathways for toxic targets of LGT, LUAD, JQC, and LGT.
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(Figure 10D). This further verifies the accuracy of the T-P

network we built. Collectively, the present results showed that

although triptolide, perillyl alcohol and α-terpineol had slight

antiproliferation effects individually, the combination of

triptolide and perillyl alcohol or triptolide and α-terpineol
could exert a synergistic effect on inhibiting cell proliferation

in A549 cells.

In addition, to validate the reducing toxicity effect of LGT

and JQC in the treatment of lung cancer, the human hepatocyte

cell L-02 was used for experiment verification in vitro. L-02 cell

was treated with Triptolide, Perillyl alcohol and α-terpineol alone
or in combination. As shown in Figures 11A,B, Triptolide

showed obvious cytotoxicity compared with Perillyl alcohol

and α-Terpineol. When the concentration of Triptolide

reached 50 nM, the survival rate of L-02 cells decreased to

below 30%. And then, when Triptolide is mixed with Perillyl

alcohol and α-Terpineol at the ratio of 1: 500, and the drug

concentration is 6.25 nM, the cell survival rate of triptolide alone

is about 75%, while that of perilla alcohol combined with

triptolide is about 86%, and that of α-Terpineol is about 79%.

Within the concentration range of 6.25 nM–50 nM, the

combination of low-dose Triptolide and Perillyl alcohol or

Triptolide and α-terpineol were all significantly increased the

survival rate of L-02 cells compared with the survival rate by

either Triptolide, Perillyl alcohol or α-terpineol alone.

Collectively, the combination of Triptolide and Perillyl alcohol

or Triptolide and α-terpineol could exert a toxicity reduction

effect on increasing the survival rate of L-02 cells. It indicated that

the combination of LGT and JQC could exert the attenuation

effect.

4 Discussion

In the use of TCM, the formulas play important roles in the

treatment of complex diseases via multi-components, multi-

targets and multi-pathways, and the main purpose of

compatibility in formula is to promoting efficiency and

reducing toxicity. As the simplest form of compatibility of

TCM, herb pair is widely used in the treatment of complex

diseases. Herb pair, targets and pathogenic genes form a complex

intervention network. How to find the most effective

intervention relationship in this intervention network and the

underlying mechanisms of promoting efficiency and reducing

toxicity between LGT and JQC are the keys to understand the

material basis and molecular mechanism of the Chinese herb

pair, and also the basis for the secondary development of TCM.

At present, the research on TCM based on network

FIGURE 8
Target-pathway network of LGT-JQC. The green nodes are the common targets of LGT and JQC, and the blue represents the LGT targets, the
yellow nodes are the common targets of LGT-tox and JQC, the red represents the pathways. The orange area represents the tox-related pathway,
the green area represents the synergism -related pathway.

Frontiers in Pharmacology frontiersin.org23

Zhang et al. 10.3389/fphar.2022.1018273

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2022.1018273


pharmacology mainly focuses on decoding the potential

mechanism of the efficacy of prescriptions. Through optimal

model, the herbs and components with good intervention effect

can be screened out, and the herbs and components with

antagonistic effect and even side effect are removed, so that

the herb pairs or the prescriptions is simpler and more effective

(Yang et al., 2021). Compatibility rule of TCM is the foundation

and basic structural unit of a prescription (SU, 2010). However,

in the current stage, bioinformatics and network pharmacology

models were mainly used to analyze the hidden mechanisms of

prescription, while systematic biology analysis was not

conducted to detection the promoting efficiency and reducing

toxicity mechanisms of individual herb pairs. Here, we design

network pharmacology and network toxicology methods as well

FIGURE 9
Gene enrichment pathways analysis of efficacy-toxicity network of LGT. (A) Gene enrichment pathways analysis of from LGT and JQC
respectively; (B) Gene enrichment pathways analysis of JQC and LGT toxic targets.
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FIGURE 10
Synergistic Experimental Validation In Vitro. (A–C): The cell proliferation, colony-formation and migration ability of the lung cancer cell
A549 treated with triptolide (12.5 nM), perillyl alcohol (500 μM) and α-terpineol (500 μM) alone, or the combination of triptolide and perillyl alcohol/
triptolide and α-terpineol for up to 5 days were determined by CCK-8 assay (A), colony-formation assay (B) and transwell assay (C), respectively. D
Western blot assay was carried out to measure the expression of ERK1/2, p-ERK1/2 and PD-L1 in A549 cell treated with triptolide (12.5 nM),
perillyl alcohol (500 μM) and α-terpineol (500 μM) alone, or the combination of triptolide and perillyl alcohol/triptolide and α-terpineol. Bars, SD; *p <
0.05, **p < 0.01, ***p < 0.001.
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as bioinformatics algorithms to screen the relationship between

promoting efficiency and reducing toxicity from TCM herb pairs

to explore the possible mechanism of LGT combined with JQC in

the treatment of lung cancer. This integrated strategy can

combine dynamic relay mode of target gene to pathogenic

gene and toxicological gene. Through literature reports and

experimental verification, we confirmed the accuracy of the

efficacy-toxicity network. This study provided methodological

reference for the secondary development of herb pairs and the

development of new drugs. Our method has several advantages:

1. Network pharmacology has established a fixed analytical step

in the analysis of therapeutic mechanisms. In this rule, the first

step is to collect the components of the plant drugs, do

ADMET screening to select the active components, then

predict the target and deduce the molecular mechanism.

This flowchart really solves the molecular mechanism of

some formulas of TCM in treating complex diseases. Such

as: Uncovering the Complexity Mechanism of Different

Formulas Treatment for Rheumatoid Arthritis Based on a

Novel Network Pharmacology Model (Wang et al., 2020b),

Computational Network Pharmacology–Based Strategy to

Capture Key Functional Components and Decode the

Mechanism of Chai-Hu-Shu-Gan-San in Treating

Depression (Wang et al., 2021).

2. The second step is to identify the toxicity targets from the

active ingredient prediction targets, and further screen

through the literature reports to retain the significant

toxicity targets. However, there are also exist two problems.

One is the clutter and interference of component target

networks. The other is that most network pharmacology

analyses ignore that the intervention of components is a

cascade transmission process, specifically refers to the

transmission of the intervention effect from target genes to

pathogenic genes. In order to solve these two problems, we

have adopted some new strategies. In the first strategy, the

matrix decomposition method is used to calculate the initial

influence coefficient of the component targets. Through the

verification of this method, we have found that the component

targets with high initial influence coefficient obtained by this

method cover the majority of significant component targets of

LGT, and have high coverage for the functional pathways of

FIGURE 11
Attenuation Experimental Validation In Vitro. The cell proliferation ability of the human hepatocyte cell L-02 treated with triptolide, perillyl
alcohol and α-terpineol alone (A), or the combination of triptolide and perillyl alcohol/triptolide and α-terpineol at the ratio of 1: 500 (B) for 48 hwere
determined by CCK-8 assay. *p < 0.05, **p < 0.01, ***p < 0.001.
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LGT. In the second strategy, considering that the intervention

of component targets could be transmitted to the pathogenic

genes through PPI network, we constructed a complex

network of component-target-pathogenic genes. The

network takes into account the presence of both LGT

toxicity targets and JQC targets and includes the effects of

the propagation. Based on this model, we constructed an

efficacy-toxicity network consisting of LGT and JQC

component targets, LGT toxicity targets, lung cancer

pathogenic genes, and PPI network.

Through the verification of target and pathway coverage, we

also found that some ineffective or weak GTCs were removed, and

the significant GTCs covered most of the functional targets, further

proving the effectiveness of the efficacy-toxicity network we

constructed. In the efficacy-toxicity network, multiple cascade

GTCs exist in the same cascade signal module. This module

mainly controls the downstream genes such as CFL1, MAP2K1,

ACTB, PTBP1, CSNK2A2, PPIA, KDM2A, and RAF1 to treat lung

cancer through the cascade reaction of DHCR24-UBC. In this

module, the first gene, DHCR24 is capable of resisting oxidative

stress-induced apoptosis by scavenging hydrogen peroxide and

plays a vital role in the antioxidant/anti-inflammatory cellular

signaling pathway (Hou et al., 2010; Sansone et al., 2017). As an

important member of the ubiquitin family, UBC has been widely

reported as a target for the treatment of lung cancer. Once the

regulation of ubiquitin-mediated signaling pathway is abnormal, it

will lead to various clinical diseases, including tumor formation and

metastasis. The transformation of protein ubiquitin in lung cancer

is an important process of lung cancer development (Jin et al.,

2021). In addition, in the constructed efficacy-toxicity network, we

can also see the representative tumor suppressor genes such as

TP53 emerging as toxicity targets, indicating that LGT has obvious

toxic and side effects in the treatment of lung cancer.

Based on the propagation models of network toxicology and

network pharmacology, we designed an integrated model of

efficacy and toxicity which based on matrix decomposition

and effect propagation, to detect the possible mechanisms of

promoting efficiency and reducing toxicity of LGT and JQC in

the treatment of lung cancer. Compared with other published

studies, this study specifically reported the initial influence

coefficients of drug component targets obtained by matrix

decomposition and the construction of quantitative efficacy-

toxicity network based on propagation model, which fully

considers that the intervention effect of the TCM components

is a cascade transmission process. Our research is a

computational mining work based on pharmacological basic

data, which provides a feasible scheme to reduce the

verification scale for the experiment. The accurate application

of this method is expected to provide a theoretical reference for

the compatibility law of TCM prescriptions.

However, this study also has some limitations. First of all, we

should select more targets with significant initial influence

coefficients from the targets of LGT components to verify the

reliability of the matrix decomposition method. In addition, the

efficacy-toxicity network of component-target-pathogenic gene

we constructed ignores the path loss that may occur during gene

transmission. In future studies, we hope to further improve the

model and try to eliminate the effect of path loss in the gene

transfer process on the final result.
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