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Abstract

Foxp2(R552H) knock-in (KI) mouse pups with a mutation related to human speech–language disorders exhibit poor
development of cerebellar Purkinje cells and impaired ultrasonic vocalization (USV), a communication tool for mother-
offspring interactions. Thus, human speech and mouse USV appear to have a Foxp2-mediated common molecular basis in
the cerebellum. Mutations in the gene encoding the synaptic adhesion molecule CADM1 (RA175/Necl2/SynCAM1/Cadm1)
have been identified in people with autism spectrum disorder (ASD) who have impaired speech and language. In the
present study, we show that both Cadm1-deficient knockout (KO) pups and Foxp2(R552H) KI pups exhibit impaired USV and
smaller cerebellums. Cadm1 was preferentially localized to the apical–distal portion of the dendritic arbor of Purkinje cells in
the molecular layer of wild-type pups, and VGluT1 level decreased in the cerebellum of Cadm1 KO mice. In addition, we
detected reduced immunoreactivity of Cadm1 and VGluT1 on the poorly developed dendritic arbor of Purkinje cells in the
Foxp2(R552H) KI pups. However, Cadm1 mRNA expression was not altered in the Foxp2(R552H) KI pups. These results
suggest that although the Foxp2 transcription factor does not target Cadm1, Cadm1 at the synapses of Purkinje cells and
parallel fibers is necessary for USV function. The loss of Cadm1-expressing synapses on the dendrites of Purkinje cells may
be associated with the USV impairment that Cadm1 KO and Foxp2(R552H) KI mice exhibit.
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Introduction

Cadm1 (also known as RA175, Necl2, and SynCAM1), a

member of the immunoglobulin superfamily (IgSF), localizes to both

sides of the synaptic cleft and functions as a synaptic cell–cell

adhesion molecule. Cadm1 induces functional synapses [1]. The

extracellular domain of Cadm1 mediates calcium-independent,

homophilic trans interactions [1,2], and its cytoplasmic tail has a

band 4.1 region and a PSD95/Dlg/ZO-1 (PDZ)–binding motif [2].

At the pre-synapse, Cadm1 associates with calmodulin associated

serine/threonine kinase (CASK) via a single PDZ domain [1].

Mutations in genes encoding synaptic adhesion proteins,

including neuroligin (NLGN) 3 and 4, contactin-associated protein-like 2

(CNTNAP2, Caspr2), and CADM1, are associated with autism

spectrum disorder (ASD) [3–5]; the CADM1 mutations H246N

and Y251S specifically have been found in people diagnosed with

ASD who had impaired social interactions and communication,

including speech and language impairments [5]. Mutations in

CADM1 increase its susceptibility to processing errors and the

accumulation of CADM1 peptide fragments in the endoplasmic

reticulum [5,6]; they also reduce CADM1 affinity in cell adhesion

and lead to synaptic defects in neuron cultures [6]. Cadm1

knockout (KO) mice [7] exhibit abnormal social and emotional

behaviors that share similarities with some behaviors associated

with ASD [8]. These findings suggest that CADM1 loss of function

may be linked to ASD.

Speech–language impairment is one of the most prominent

symptoms in some types of ASD. Impaired speech–language

communication frequently also occurs as a phenotype of people

with mutations in the adhesion molecule gene CNTNAP2 [4]. A

previous study found an R553H mutation in human FOXP2 in

patients with speech–language disorders [9]. Normal FOXP2

associates with a corepressor and acts as a transcriptional repressor

[10]; however, mutated FOXP2 (R553H) lacks DNA-binding

activity [11]. Infant mice emit and use ultrasonic vocalizations

(USVs) as an essential communication tool for mother–offspring

interactions [12]. Foxp2 KO mice and knock-in (KI) mice for Foxp2

(R552H), which corresponds to the human FOXP2 (R553H)

mutation, exhibit severe USV impairments, suggesting human

speech and mouse USVs may have a common molecular basis in

the brain [13,14]. Foxp2(R552H) KI pups with USV impairment

show poor development of Purkinje cells in the cerebellum [13],

and the number of synapses on the dendrites of Purkinje cells is

decreased in the these pups.

Of interest, cerebellar abnormalities, including Purkinje cell

loss, have been found in autopsy samples from ASD patients [15].

We have observed that Cadm1 KO mice have smaller cerebellums.

Furthermore, Cadm1 mRNA is expressed not only in various

regions of the cerebrum but also in the developing cerebellum

[16]. Cadm1 is predominantly localized to the thalamus cortical

afferent pathway in the cerebrum [17]; however, little is known

about Cadm1 expression at synapses in the cerebellum.
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In the present study, we examined USV of Cadm1 KO mice,

Cadm1 localization in the cerebellum, and the relationship

between loss of Cadm1 at the synapses and impaired USV in

Cadm1 KO and Foxp2(R552H) KI pups.

Results

We established a strain of Cadm1 KO (C57BL/6J) mice (Cadm1

KO mice) by mating heterozygous Cadm1 KO (129Sv) mice [7]

with C57BL/6J for more than 10 generations. The homozygous

Cadm1 KO mice (postnatal day [P] 50) were smaller than their

wild-type counterparts (Figure 1A). At P10, we detected a

significant difference in mean body weight between homozygous

Cadm1 KO mice and their wild-type littermates, a difference that

increased over the next 20 days. The mean body weight of the

homozygous Cadm1 KO mice was 20–25% less than that of the

wild-type mice (Figure 1B). In addition, compared to the wild-type

mice, the brains of homozygous Cadm1 KO mice were smaller

(Figure 1C). In particular, the cerebellum of homozygous Cadm1

KO mice showed a reduction in size (Figure 1D, upper panel) and

weight (Figure 1D, lower panel) of approximately 20%.

We next investigated the pups’ USV because we previously found

poor development of Purkinje cells in Foxp2(R552H) KI mice with

impaired USV [13]. The Cadm1 KO pups exhibited impaired USV

upon separation from their mothers and litters, an effect similar to

that which we recently observed in Foxp2(R552H) KI pups (Figure 2A)

[13]. The Cadm1 KO pups produced some click-type USVs but only

low levels of whistle-type USVs, compared to the predominant

whistle-type USVs among wild-type pups (Figure 2B, C).

The detection of these functional effects associated with Cadm1

deficiency led us to investigate more thoroughly the distribution

pattern of Cadm1 in the cerebellum. In P11 wild-type pups, but

not Cadm1 KO pups, Cadm1 was detected in the dendritic arbor

of Purkinje cells and some of the granular cells in the cerebellum

(Figure 3A). Cadm1 preferentially localized to the apical–distal

portion of the dendritic arbor (Figure 3B). The dendrite

development of Purkinje cells in Cadm1 KO mice appeared poor

compared to that of wild-type mice (Figure 3B and Figure S1).

Purkinje cells receive two excitatory afferents, parallel fibers and

climbing fibers, which can be distinguished based on the expression of

VGluT1 and VGluT2 [18,19]; climbing fibers express VGluT2

throughout development while parallel fibers shift from VGluT2

expression to VGluT1. The onset of VGluT2 expression in the

individual parallel fiber terminals was clearly earlier than that of

VGluT1 in the samples; in the early postnatal stages (P6–8), Cadm1

was mainly expressed in the molecular layer with the expression of

VGluT2 (Figure 4A). During P6–11, Cadm1 expression intensity

increased. At P11, VGluT2 intensity decreased, while VGluT1

intensity increased (Figure 4B). Thus, VGluT2 in parallel fibers

expressing Cadm1 was replaced with VGluT1, which extended its

expression from proximal regions to apical–distal regions in the

molecular layer (Figure 4A). After this deep-to-superficial replace-

ment, Cadm1 and VGluT1 immunoreactivity was detected through-

out the molecular layer and appeared to co-localize at P14 (Figure 4A).

We next examined the levels of Foxp2, Synaptophysin, and

VGluT1 in the cerebellum of Cadm1 KO mice (Figure 5A). VGluT1

levels were markedly decreased in the cerebellum of Cadm1 KO

compared to wild-type mice. Compared to VGluT1, the decrease in

Figure 1. Abnormal cerebellum development of Cadm1 KO. (A) Wild-type, heterozygote, and homozygous Cadm1 KO mice. (P50) (B) The
difference in mean weight between homozygous Cadm1 KO mice and their wild-type littermates (five each) was significant at P10 and increased over
the next 20 days (A, B); at P30, the mean weight of the homozygous Cadm1 KO mice was 20–25% less than that of the wild-type mice. In addition, the
brains of homozygous Cadm1 KO mice were smaller (C, n = 22), and the cerebellums of homozygous Cadm1 KO mice had an approximately 20%
reduction in size and weight (D, n = 10). Bars in the graph indicate mean6standard error (SEM). Student’s t-test (*p,0.05). Bars in the pictures indicate
1 cm (A), 5 mm (C), and 0.75 mm (D), respectively.
doi:10.1371/journal.pone.0030151.g001
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Synaptophysin was not marked, but it was significant; however,

Foxp2 levels were unchanged. Real-time PCR analysis confirmed

that there was no alteration in Foxp2 mRNA levels in the

cerebellum of Cadm1 KO compared to wild-type mice (Figure 5B).

Thus, Cadm1 deficiency did not appear to affect Foxp2

expression and Foxp2-mediated development of Purkinje cell

dendrites; however, it may have influenced synapse formation.

We also examined the localization of Cadm1 in the cerebellum

of Foxp2(R552H) KI mice and found that Foxp2(R552H) KI pups

(P11) had poorly developed Purkinje cell dendrites with reduced

immunoreactivity for Synaptophysin [13] (Figure 6). Overall, the

immunoreactivity of Cadm1, as well as of VGluT1, was reduced

on dendritic arbors in Foxp2(R552H) KI mice (Figure 6 and Figure

S2), although Cadm1 mRNA levels were unchanged (Figure S3).

Discussion

Foxp2-mediated USV and Cadm1 activity in synapses in
the cerebellum

Human speech and mouse USV have a common molecular

basis in the brain, and Foxp2(R552H) KI mice exhibit abnormal

cerebellar development and poor dendrite development [13]. In

humans, some of the areas associated with speech and language

skills are located in the frontal/superior cerebellar articulation

control system and the parietal/inferior cerebellar phonological

storage system [20,21]. The cerebellar molecular systems control

both human spoken language and mouse USVs and therefore

share function in the two species.

In the present study, we found that Cadm1 KO mice had smaller

cerebellums, poor development of dendrites of Purkinje cells, and

impaired USV (Figures 1, 2, 3 and S1), as observed in

Foxp2(R552H) KI mouse pups. Cadm1 was preferentially localized

to the apical–distal portion of the dendritic arbor of Purkinje cells

in the molecular layer of wild-type pups (Figure 3), and the level of

VGluT1 decreased in the cerebellum of Cadm1 KO mice (Figure 5).

VGluT1/2-positive synapses have been detected in the brains of

transgenic mice overexpressing Cadm1 [22]. In the cerebellum, the

two excitatory afferents of Purkinje cells are the parallel fibers and

climbing fibers; climbing fiber terminals selectively express

VGluT2 throughout the postnatal period, but parallel fiber

terminals first express VGluT2 and then switch to VGluT1

[18,19]. In the current work, Cadm1 was expressed in the

granular cells and appeared to co-localize with VGluT1 at the pre-

synapse (Figure 4). Both Cadm1 and VGluT1 immunoreactivity

decreased in the Purkinje cells of Foxp2(R552H) KI pups (P11)

with impaired USV (Figure 6), however. Of note, Cadm1

Figure 2. Analysis of ultrasonic vocalizations (USVs) of Cadm1 KO mice (P8). (A) Real-time spectrography of the USVs by pups after
separation from the dam. (B) Major vocalization patterns of Cadm1 KO and wild-type pups. Wild-type vocalization was mainly whistle-type USVs, but
Cadm1 KO mice exhibited only a small number of click-type vocalizations. (C) The number of whistle-type USVs per min by pups. Vocalizations were
recorded for 3 min. Experiments were done three times for 5 pups in each group, and an example of typical results is shown. Values are
mean6standard error (SEM). Student’s t-test (**p,0.01).
doi:10.1371/journal.pone.0030151.g002
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homophilically trans interacts at the synapse [1,2]. In this study, at

P11, in addition to VGluT1, Cadm1 partly co-localized with

Synaptophysin, a pre-synaptic marker, and PSD-95, a post-

synaptic marker, in the molecular layer (Figure S4). In a separate

study, we found that Cadm1 also co-localized with GABBR2 on

the dendrites of Purkinje cells during development (Fujita et al.,

submitted). Thus, Cadm1 may localize at the pre-synapse and

post-synapse of the parallel fiber–Purkinje cells. The reduced

immunoreactivity of Cadm1 on the dendrites of Purkinje cells in

the Foxp2(R552H) KI mice could result from the decreased

number of synapses. Foxp2 is essential for Purkinje cell

development, while Cadm1 activity at parallel fiber–Purkinje cell

synapses may be involved in mouse USV, and perhaps also in

human spoken language. However, we note that loss of Cadm1

activity in other brain regions could also contribute to or even

cause the vocalization phenotype, an important issue that future

studies should address.

Cadm1 expression and Foxp2
The CADM1 mutations H246N and Y251S have been identified

in people with ASD who also had speech and language

impairment [5]. In the current study, we found that Cadm1 KO

male mice (C57BL/6) had small cerebellums (Figure 1), impaired

USV (Figure 2), and abnormal social and emotional behaviors,

analogous to some behaviors associated with ASD [8].

ASD patients with mutations in the CNTNAP2 gene also exhibit

impaired speech and language [23]. A recent study showed that

FOXP2 binds to the CAAATT motif in an intron of the human

CNTNAP2 gene, resulting in negative regulation of CNTNAP2

expression; mutant FOXP2 (R553H) lacking DNA-binding

activity resulted in increased CNTNAP2 expression in in vitro

experiments [11]. Human CADM1 and mouse Cadm1 have the same

CAAATT binding motif for FOXP2 (accession no. NC_000011.9

for human CADM1 and accession no. NC_000075.5 for mouse

Cadm1). In contrast to CNTNAP2, we found here that Cadm1

mRNA levels were unchanged in the cerebellum of Foxp2(R552H)

KI mice (Figure S1). Therefore, Foxp2 does not appear to regulate

directly the expression of mouse Cadm1 in the cerebellum. Thus,

Cadm1 and CNTNAP2 exhibit different sensitivities to Foxp2

regulation, although they have the same CAAATT motif. This

distinction may be attributable to different conditions in in vitro and

in vivo experiments or to subtle variations in the binding motifs in the

Cadm1 and CNTNAP2 genes; the nucleotide sequence of the

repeated CAAATT motif, which is necessary for binding of

dimerized Foxp2, may differ between the two genes.

In conclusion, Cadm1 is not a target of the Foxp2 transcription

factor, but Cadm1 activity at parallel fiber–Purkinje cell synapses

may be necessary for USV function. Loss of Cadm1 activity at the

synapse may be associated not only with USV impairment in mice

but also with impaired speech and language communication skills

in people with ASD.

Materials and Methods

Ethics statement
We followed the Fundamental Guidelines for Proper Conduct

of Animal Experiments and Related Activities in Academic

Research Institutions under the jurisdiction of the Ministry of

Education, Culture, Sports, Science and Technology, and all of

the protocols for animal handling and treatment were reviewed

and approved by the Animal Care and Use Committee of Jichi

University (approval numbers, H22-179, 10-179) and Internation-

al University of Health and Welfare (approval numbers, D1008;

10118). Wild-type, Cadm1 KO and Foxp2(R552H) KI mice [7,13]

(male mice) were used for the experiments.

Ultrasonic vocalization
We mated Cadm1 KO (129Sv) mice [7] with C57BL/6J strain

mice for 10 generations and established a strain of Cadm1 KO

(C57BL/6J) mice. USVs of five Cadm1 KO and five wild-type pups

(P8) were assayed as described previously [13]. Briefly, each pup

was separated from its mother and littermates, one at a time,

placed in a shallow beaker in a soundproof chamber, and then

positioned below a microphone connected to the UltraSound Gate

116 detector set (Avisoft Bioacoustics) to detect USVs of 40–

100 kHz. Analysis began after the pup had been habituated to the

chamber for 60 s. Sounds were recorded for 3 min.

Quantitative real-time PCR
Total RNA was prepared from a combined five pieces of

cerebellum of wild-type and Cadm1 KO and Foxp2(R552H) KI

male mice (P10), respectively, using the RNeasy mini kit (Qiagen)

according to the manufacturer’s specifications. Complementary

DNAs were synthesized from total RNA (1 mg) using reverse

transcriptase (Invitrogen) as described previously [24]. Real-time

PCR analysis was performed using the Applied Biosystems 7500

fast real-time PCR system (Applied Biosystems) with the TaqMan

Gene Expression Assays (Applied Biosystems) based on published

sequences for genes encoding the respective mouse Cadm1,

Foxp2, and VIC-labeled mouse Gapd (VIC-labeled MGD probe;

Applied Biosystems) as endogenous control. For each sample, the

20 ml total volume consisted of 10 ml TaqMan Fast Universal PCR

Master Mix (2x; Applied Biosystems), 1 ml TaqMan Gene

Expression Assays, and 5 ml of each first-strand cDNA sample.

The real-time PCR fragments were amplified as follows: 1 cycle at

Figure 3. Distribution of Cadm1 in the cerebellum (P11). The
Cadm1 intensity preferentially distributed in an apical–distal dendritic
portion. Wild-type (A, B, upper panel) and Cadm1 KO mice (B, lower
panel). Green, Cadm1. Red, Calbindin. Blue, Hoechst. Bars, 30 mm.
doi:10.1371/journal.pone.0030151.g003
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95uC for 20 s, 60 cycles at 95uC for 3 s, and 60uC for 30 s. Results

were analyzed using student’s t-tests (p,0.05 was considered

statistically significant).

Immunblot analysis
Five cerebellums each from wild-type and Cadm1 KO mice,

respectively, were combined and lysed in lysis buffer [50 mM Tris-

HCl pH 8.0, 150 mM NaCl, 10% glycerol, 0.5% IGEPAL

CA630, and protease inhibitors; complete mini (Roche Diagnos-

tics)] at 4uC for 15 min, and then each extract was subjected to

immunoblot analysis using mouse anti-Synaptophysin (Millipore),

rabbit anti-VGluT1 (Synaptic Systems), rabbit anti-Foxp2 (Ab-

cam), and mouse anti-Tubulin (Sigma). Immunoreactivity was

visualized using alkaline phosphatase-conjugated anti-mouse or

anti-rabbit IgG, Nitro blue tetrazolium, and 5-bromo-4-chloro-3-

indolyl-1-phosphate (Roche Diagnostics). Data from three exper-

iments were scanned and analyzed for quantification with Image J

software (National Institutes of Health). Results compared with

wild-type were analyzed using the student’s t-test (p,0.05 was

considered statistically significant).

Immunostaining
Wild-type, Cadm1 KO, and Foxp2(R552H) KI mice cerebel-

lums were fixed in 4% paraformaldehyde in phosphate buffered

saline at 4uC overnight. Frozen sections (10 mm thick) were cut

on a cryostat and immunostained with chicken anti-SynCAM1

(Cadm1; MBL), mouse anti-Calbindin (Sigma), rabbit anti-

Calbindin (Sigma), mouse anti-Synaptophysin, rabbit anti-

VGluT1, or rabbit anti-VGluT2 (Synaptic Systems). Alexa

Fluor 488– and Alexa Fluor 568-conjugated secondary anti-

bodies against mouse, rabbit, and goat IgGs were purchased

from Molecular Probes. Nuclei were detected by Hoechst 33342

(Molecular Probes). The reactivity was viewed using a Leica SP5

confocal microscope (Leica Microsystems). At least three

Figure 4. Developmental changes of Cadm1, VGluT1, and VGluT2 in wild-type pups. Alteration of the distribution of Cadm1, VGluT1, and
VGluT2 was examined in the molecular layer of the developing cerebellum (P6–14). VGluT2 first appeared in the molecular layer in the early postnatal
cerebellum (P6–8), in which Cadm1 co-localized with VGluT2, and then the level of VGluT2 decreased. VGluT1 increased in the later postnatal
cerebellum (P11–14), in which Cadm1 co-localized with VGluT1. Green, Cadm1. Red, VGluT1 or VGluT2. Blue, Hoechst. Bar, 30 mm. Values are
mean6standard error (SEM). Student’s t-test (*p,0.05, **p,0.01). Pups: n = 3. Images: n = 8.
doi:10.1371/journal.pone.0030151.g004

Cadm1 Synapse Is Involved in USV Activity
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animals per genotype were examined, and experiments were

repeated three times. Quantification of staining intensities was

done using LAS AF software (Leica Microsystems). The mean

pixel value in the area of interest and in the same size area of the

background was calculated. The background level was subtract-

ed from the value found in the area of interest (in the molecular

layer). Reported intensities were normalized to control, and the

Student’s t-test was performed for statistical analysis.

Supporting Information

Figure S1 Alteration of Purkinje cells in cerebellum of
wild-type and Foxp2(R552H) knock-in (Foxp2 KI) mice,
wild-type, and Cadm1 knockout (Cadm1 KO) (P11). The

immunoreactivity was performed using mouse anti-Calbindin.

Bar, 20 mm.

(TIF)

Figure S2 Altered distribution of the Cadm1 of wild-
type and Foxp2(R552H) KI mice (P11). Values are mean6

standard error (SEM). Student’s t-test (**p,0.01). Pups: n = 3.

Images: n = 10.

(TIF)

Figure S3 RT-PCR analysis of the expression of Cadm1
in the cerebellum of wild-type and Foxp2(R552H) KI
mice (P10). Values are mean6standard error (SEM). Pups:

n = 5. All experiments were performed three times. A comparison

showed no significant difference (Student’s t-test; p,0.05).

(TIF)

Figure S4 The immunoreactivity (p11) of Synaptophysin
(pre-synaptic marker) and PSD-95 (post-synaptic mark-
er). Green, Cadm1. Red, Synaptophysin or PSD-95 (Cell

Signaling Technology). Blue, Hoechst. Bar, 30 mm.

(TIF)

Author Contributions

Conceived and designed the experiments: TM MYM BI. Performed the
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Figure 5. The influence of Cadm1 deficiency on the expression of synaptic proteins and Foxp2 in the cerebellum. (A) Immunoblot
analysis of the influence of the deficiency in the cerebellums of Cadm1 KO and wild-type pups (P10). An example of the typical immunoblotting
results is shown. Values are mean6standard error (SEM). Student’s t-test (*p,0.05, **p,0.01). Pups: n = 5. All experiments were performed three
times. (B) RT-PCR analysis of the influence of the Cadm1 deficiency on the expression of Foxp2 in the cerebellum of wild-type and Cadm1 KO pups
(P10). Values are mean6standard error (SEM). Pups: n = 5. All experiments were performed three times. A comparison showed no significant
difference (Student’s t-test; p,0.05).
doi:10.1371/journal.pone.0030151.g005

Figure 6. Altered distribution of Cadm1 in the molecular layer of wild-type and Foxp2(R552H) KI mice (P11). Cadm1 preferentially
distributed in the apical–distal dendritic portion in the molecular layer. The immunoreactivity of Cadm1 as well as that of Synaptophysin and VGluT1,
pre-synaptic markers, was decreased in the molecular layer of the Foxp2(R552H) KI mice. Green, Calbindin. Red, Cadm1, VGluT1, Synaptophysin. Blue,
Hoechst. Bar, 30 mm.
doi:10.1371/journal.pone.0030151.g006

Cadm1 Synapse Is Involved in USV Activity
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