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Genetic screens in mammalian cells commonly focus on loss-of-function approaches. To evaluate the phenotypic conse-

quences of extra gene copies, we used bulk segregant analysis (BSA) of radiation hybrid (RH) cells. We constructed six pools

of RH cells, each consisting of ∼2500 independent clones, and placed the pools under selection in media with or without

paclitaxel. Low pass sequencing identified 859 growth loci, 38 paclitaxel loci, 62 interaction loci, and three loci for mitochon-

drial abundance at genome-wide significance. Resolution wasmeasured as∼30 kb, close to single-gene. Divergent properties

were displayed by the RH-BSA growth genes compared to those from loss-of-function screens, refuting the balance hypoth-

esis. In addition, enhanced retention of human centromeres in the RH pools suggests a new approach to functional dissec-

tion of these chromosomal elements. Pooled analysis of RH cells showed high power and resolution and should be a useful

addition to the mammalian genetic toolkit.

[Supplemental material is available for this article.]

A variety of experimental strategies have been developed over the
last two decades to explore genotype–phenotype correlations in
mammalian cells. Gene “knockdowns” use either interfering
RNA (RNAi) or small interfering RNAs (siRNAs) to specifically
degrade transcripts. These reagents have given insights into multi-
ple phenotypes (Root et al. 2006; Blakely et al. 2011; Mohr et al.
2014; Boettcher and McManus 2015). More recently, CRISPR-
Cas9 gene editing approaches that introduce targeted mutations
into DNA have emerged as a powerful strategy to enable ge-
nome-wide screens for growth and pharmacological mechanisms
(Koike-Yusa et al. 2014; Shalem et al. 2014; Hart et al. 2015;
Wang et al. 2015; Liu et al. 2017; Pawluk 2018).

These technologies have been fruitful but have some draw-
backs. Potential off-target effects exist for both RNAi (Alagia and
Eritja 2016; Bofill-De Ros and Gu 2016) and CRISPR-Cas9 (Mohr
et al. 2016; Tycko et al. 2016). Furthermore, cell delivery requires
the use of lentiviral libraries of unknown stability and high com-
plexity. Assuming 20,000 protein coding genes, each knockout is
represented by ∼500 cells in a 75-cm2 flask. Decreased power, or
even missing data, are therefore risks. The addition of noncoding
transcripts trebles the number of genes (Derrien et al. 2012;
Kozomara and Griffiths-Jones 2014; Frankish et al. 2015; Liu
et al. 2017), augmenting the problem.

Overexpression provides complementary information to loss-
of-function screens (Prelich 2012). For example, screens for viabil-
ity in Saccharomyces cerevisiae revealed no overlap of overexpressed
and knockout genes, suggesting that overexpression alters cell
physiology in a distinct manner to loss-of-function (Sopko et al.
2006).

Gain-of-function screens can be particularly revealing in can-
cer, where overexpression is a key disease driver (Vogelstein et al.

2013). Overexpression is also valuable when genes are haploinsuf-
ficient, ruling out the use of knockouts. While cDNA overexpres-
sion can be achieved with lentiviral libraries, genome-wide
screens have yet to be performed in mammalian cells (Yang et al.
2011; Arnoldo et al. 2014). In addition, cDNA screens typically
omit novel isoforms, whose number exceeds that of known tran-
scripts (Škalamera et al. 2011; Eksi et al. 2013; Li et al. 2014), as
well as noncoding genes (Derrien et al. 2012; Kozomara and
Griffiths-Jones 2014; Frankish et al. 2015; Liu et al. 2017).

Gene expression can bemanipulated in a targeted fashion us-
ing CRISPR interference (CRISPRi) or CRISPR activation (CRISPRa),
in which a catalytically dead Cas9 (dCas9) protein is fused with
a transcriptional repressor or activator domain, respectively
(Gilbert et al. 2014; Kampmann 2018). The approach has been
used in a number of cellular screens, but the overexpression is
strongly constitutive with no tissue specific regulation.

As a new strategy to dissecting genotype/phenotype relation-
ships inmammalian cells, we have been retooling radiation hybrid
(RH) technology (Park et al. 2008; Ahn et al. 2009; Lin et al. 2010;
Ranola et al. 2010;Wang et al. 2011; Khan et al. 2016). This vener-
able approach to genetic mapping employs lethal doses of radia-
tion to break the genome of a human cell line into small
fragments, which are then transferred to living hamster cells by
cell fusion (Goss and Harris 1975; Cox et al. 1990; Walter et al.
1994). Human markers that are close together tend to be found
in the same set of RH clones, while markers far apart tend to be in-
herited independently.

A typical RH panel consists of ∼100 clones, each containing
∼4%–10% of the human genome as extra copies. The number of
breakpoints in RH mapping is far larger than in meiosis, giving
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the approach close to single gene resolution and facilitating high
resolution maps of mammalian genomes (McCarthy et al. 2000;
Avner et al. 2001; Hudson et al. 2001; Olivier et al. 2001; Kwitek
et al. 2004).

AlthoughRHpanelswerewidely used in the genomeprojects,
their potential for dissecting biological traits was not fully realized.
Recently, we measured the growth of clones from a human RH
panel in the presence of the antitubulin drugs paclitaxel (Taxol)
and colchicine (Khan et al. 2016). We identified a single gene,
ZNRF3, as important to the action of both agents. However, statis-
tical power was limited by the modest size of the RH panel
(79 clones).

Bulk segregant analysis (BSA) is an efficient approach to en-
hancing statistical power in genetic mapping (Michelmore et al.
1991). A pool of diverse cells is placed under selection and loci
that contribute to survival are revealed by enrichment of nearby
genetic variants (Ehrenreich et al. 2010). The approach surveys a
large population of cells using a small number of assays.

Here, we describe experiments that combine RH mapping
with BSA.We reasoned that this combination would provide three
benefits: (1) a genome-wide approach to gene identification that
uses extra dosage rather than loss-of-function; in this study, we
sought genes for cell growth in the presence or absence of paclitax-
el; (2) the ability to assess coding andnoncoding genes on an equal
footing; and (3) gains in both statistical power and the already im-
pressive resolution of RHmapping by usingmultiple independent
pools of RH cells, each with thousands of clones.

Results

Creating six RH pools

The strategy for RH-BSA is shown in Figure 1.We lethally irradiated
humanHEK293 cells (TK1+) to fragment their DNA. The cells were
then fused with living hamster A23 cells (TK1−) and plated in HAT
selective medium. The HEK293 cell line is an important resource
for cell biology and biotechnology and its genome has been se-
quenced (Lin et al. 2014). In addition, a high-quality draft genome
is available for hamster, with continuity approaching that of the
mouse (Rupp et al. 2018).

After fusion, the surviving RH cells receive the selectable
marker thymidine kinase (TK1) from the donor cells in addition
to a random assortment of human DNA fragments. We main-
tained the RH cells as heterogeneous pools, rather than picking in-
dividual clones as is usually done for genetic mapping. The pools
were genotyped by low-pass sequencing before and after competi-
tion due to growth or drug exposure. Human genes that confer a

proliferative advantage become more abundant, while genes that
confer a disadvantage become less abundant.

We created six independent RH pools, each with amean frag-
ment size of 7.4 ± 0.1 Mb (Supplemental Fig. S1). Each pool had
2621± 441 clones, after taking into account a spontaneous rever-
tant rate of 26%±2% (Supplemental Table S1).

When the cells from the fusion reactions reached confluence,
an aliquot from each of the pools was reserved for genotyp-
ing. These samples represent week 0 and 0 nM paclitaxel
(Supplemental Table S2) and are referred to as the “RH pools.”
The cells were further propagated as separate pools and genotyped
after 1, 2, 3, 4, and 6 wk in HAT medium supplemented with 0, 8,
25, or 75 nM paclitaxel. There were 115 RH samples in total.

Human DNA in the RH samples

We used low-pass sequencing to analyze the RH samples under
the various conditions of growth and drug (Fig. 1; Supplemental
Tables S3–S6). A mean of 40.5 ±0.7 million (M) reads was ob-
tained for each sample, corresponding to a sequencing depth
of 0.84±0.01 times the human genome. Reads were aligned to
the human and hamster genomes and cross-species reads discard-
ed, leaving only species-specific alignments for subsequent
analyses.

The hamster genome in the six RH pools was not changed by
the cell fusions (Fig. 2A,B; Supplemental Figs. S2, S3A). In contrast,
a selection of human DNA fragments from the HEK293 cells
was retained by each RH pool (Fig. 2C–F; Supplemental Figs. S3B,
S4–S6).

Since human TK1was used as the selectable marker, this gene
has an expected retention frequency of one in the hybrid cells.
Donor centromeres also showed increased retention, as these chro-
mosomal regions confer increased stability on the DNA fragments
(Fig. 2D–F; Supplemental Figs. S5, S6; Wang et al. 2011). In con-
trast, noncentromeric regions showed relatively constant reten-
tion across the genome, as previously documented in RH panels
(Fig. 2D–F; Supplemental Figs. S5, S6; McCarthy et al. 2000;
Avner et al. 2001; Hudson et al. 2001; Olivier et al. 2001; Kwitek
et al. 2004).

The mean retention frequency in the RH pools was 3.9%±
0.3% (Supplemental Table S7), with each gene harbored by 3.9 ×
105 (± 3.4 ×104) cells in a 75-cm2 flask of 107 RH cells. This cell
number compares favorably with the 500 cells expected for a pro-
tein-coding lentiviral library. The human genome is represented
with 103± 20-fold redundancy in each of the six individual RH
pools.

The mapping resolution of RH-BSA depends on the length of
the DNA fragments, their average retention frequency, and the

number of clones. At the mean fragment
size of 7.4 ± 0.1Mb, the number of break-
points in the individual RH pools is 8.7 ×
104 (± 1.7 ×104) and is expected to yield
a mapping resolution of 71±14 kb for
each pool and 12±3 kb for all six pools
together.

Retention changes in the RH samples

Human DNA is commonly lost during
growth of hybrid cells, and this phenom-
enon has been exploited as a tool
for gene mapping (Kucherlapati and
Ruddle 1975; Harris 1993; WasmuthFigure 1. Creating the RH pools.
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2001). In a pooled setting, alterations in human DNA levels can
also occur as a result of changes in relative clone abundance.

The overall mean retention of humanDNA in the RH samples
showed a significant decrease as a result of growth (3.9%±0.3%,
week 0; 1.1%±0.2%, week 6), but not paclitaxel (Supplemental
Figs. S7–S9). When profiled across the genome, the hamster ge-
nome was stable, while human DNA levels showed significant de-
creases together with increased variance (Fig. 3A–D; Supplemental
Fig. S10).

Growth loci

Growth loci tally

Human growth loci were identified by employing a negative bino-
mial mixed model to detect significant changes in read counts
across the genome as a result of growth time at the various paclitax-
el concentrations (Supplemental Figs. S11–S17). Cross-validation
procedures confirmed high levels of reproducibility
(Supplemental Fig. S18). In total, there were 859 unique growth
loci, ∼1.4% of all known genes (Fig. 4A; Supplemental Figs. S19–
S21; Supplemental Table S8).

Coding and noncoding growth loci

Four of the growth loci mapped to cen-
tromeres. Of the remaining loci, the
nearest genes were coding for 442 (52%)
and noncoding for 413 (48%). Although
the RH coding growth genes were signifi-
cantly enriched compared to noncoding,
noncoding genes clearly play a substan-
tial role in cell proliferation. Detailed
views of growth loci are shown in Figure
5A–F and Supplemental Figure S22.

Nearly all growth loci show DNA loss

Consistent with the decrease of human
DNA in the RH samples (Fig. 3B,D; Sup-
plemental Figs. S7–S10), only seven of
the 859 growth loci, including SEMA3A
and TOR1A, had positive coefficients
(Supplemental Fig. S23A). Growth genes
thus showed preferential loss rather
than gain. Our observation echoes the
finding that inactivation of tumor sup-
pressor genes is more common in cancer
than oncogene activation (Harris 1993;
Vogelstein et al. 2013), although the dif-
ferences between RH and tumor cells
mandate caution when making this
analogy.

RH growth genes and complex human disease

The RH growth genes were significantly
enriched in the catalog of human ge-
nome-wide association studies (GWAS;
false discovery rate [FDR] = 5.8 ×10–12)
(Chen et al. 2013) and also significantly
overrepresented in 16 of 203 disease-re-
lated terms in the NCBI Database of
Genotypes and Phenotypes (dbGaP;
https://www.ncbi.nlm.nih.gov/gap/; FDR<

0.05) (Chen et al. 2013; Tryka et al. 2014). In contrast, there was
no significant enrichment for common human disease genes in
loss-of-function CRISPR screens (FDR>0.76, GWAS; FDR>0.25,
dbGaP) (Hart et al. 2015; Wang et al. 2015).

Most common human disease variants represent polymor-
phisms in regulatory regions, which have more subtle effects
than null alleles (Gallagher and Chen-Plotkin 2018). The enrich-
ment of RH growth genes in human disease may thus be related
to the restrained effects of an extra copy compared to a knockout.
The RH growth genes may be good candidates for causative genes
in complex human disease.

The balance hypothesis

The “balance” hypothesis postulates that the effects of altered
gene dosage occur as a result of unequal synthesis of gene products
(Papp et al. 2003). For example, mismatched stoichiometry could
lead to decreased efficiency of multi-subunit protein complexes,
such as many enzymes. The hypothesis yields two predictions:
(1) genes that show a phenotype when dosage is increased should
also show a phenotype when dosage is decreased; and (2) genes
with dosage effects should be more likely to participate in multi-

E F
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Figure 2. Genome copy number in the RH pools. (A) Hamster copy number deduced from reads in the
A23 cells, normalized to a mean value of 1. (B) Hamster copy number averaged across the six RH pools.
(C ) Human copy number in the HEK293 cells. (D) Human DNA copy number (retention) averaged across
the six RH pools. TK1 assigned retention of 1. (E) Increased retention of human centromere on
Chromosome 2. (F) Increased retention of human centromere and TK1 on Chromosome 17.
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subunit complexes. The balance hypothesis has been falsified in
yeast (Sopko et al. 2006), but whether it is true inmammalian cells
is unknown.

We tested the first prediction by asking whether there was in-
creased overlap between the growth genes identified using RH-BSA
and those identified in loss-of-function CRISPR (Hart et al. 2015;
Wang et al. 2015) and CRISPRi screens (Gilbert et al. 2014).
Contrary to expectations, the RH growth genes had significantly
decreased effect scores, decreased cell line hit rates, and significant
underrepresentation among the CRISPR growth genes (Fig. 6A–F;
Supplemental Figs. S24, S25). These observations refute the first
prediction of the balance hypothesis.

To test the second prediction, we asked whether the RH
growth genes had increased likelihood of protein–protein interac-
tions, similar to the CRISPR essential genes (Hart et al. 2015;
Wang et al. 2015). Using the STRING v11 database (Szklarczyk
et al. 2019), the RH growth genes showed decreased numbers
of high-confidence protein–protein interactions and a corre-
sponding increase in low-confidence in-
teractions (Fig. 6G,H). Further, the RH
growth genes showed no significant en-
richment in protein interactions, molec-
ular pathways, or multi-subunit protein
complexes using Enrichr or DAVID
(FDR>0.05) (Huang et al. 2009; Chen
et al. 2013). These findings contradict
the second prediction of the balance
hypothesis.

Based on our results and those in
yeast (Sopko et al. 2006), it appears that
gene dosage alterations do not exert their
effects through unbalanced synthesis of
gene products, even in evolutionarily

distant cells. Other mechanisms are like-
ly responsible for gene dosage effects.

Further divergent properties of RH-BSA

and loss-of-function growth genes

There were further divergent properties
between the RH and CRISPR growth
genes, in addition to those discussed in
the previous section. Essential coding re-
gion genes identified in loss-of-function
CRISPR screens showed increased expres-
sion (Hart et al. 2015; Wang et al. 2015).
In contrast, the RH-BSA growth genes
had the opposite behavior with de-
creased expression of coding, but not
noncoding, genes in both a microarray
data set from a human RH panel (Fig.
6I; Wang et al. 2011) and in RNA-seq
data from human tissues (Fig. 6J,K; Sup-
plemental Fig. S26; The GTEx Consor-
tium 2015). The decreased expression of
the RH growth genes may be the result
of evolutionary selection for this proper-
ty in genes with high dosage sensitivity.

CRISPR growth genes were less like-
ly to have humanparalogs because dupli-
cated genes offer functional redundancy
(Wang et al. 2015). The RH growth genes

also had fewer duplicates but perhaps for a different reason; addi-
tional copies of the RH growth genes could result in adverse phe-
notypes, as these genes inhibit proliferation when present in an
extra dose (Fig. 6L).

Similar properties of RH-BSA and loss-of-function growth genes

In other respects, the RH and CRISPR growth genes had compara-
ble properties. Both sets of genes were intolerant of loss-of-func-
tion mutations, suggesting similar functional importance
(Supplemental Fig. S27A; Wang et al. 2015). In addition, the RH
and CRISPR growth genes showed decreased human/mouse se-
quence divergence, indicating evolutionarily conserved roles
(Supplemental Fig. S27B; Hart et al. 2015; Wang et al. 2015). The
RH and CRISPR growth genes also showed increased numbers of
orthologs across species (“phyletic retention”), further suggesting
evolutionary conservation of these two gene classes (Supplemen-
tal Fig. S27C; Wang et al. 2015).

BA

C D

Figure 3. Copy number changes at week 4. (A) Hamster genome, growth at week 4 compared toweek
0; 0 nM paclitaxel. (B) Human genome, growth at week 4 compared to week 0; 0 nM paclitaxel. (C)
Hamster genome, 75 nM paclitaxel compared to 0 nM paclitaxel; week 4. (D) Human genome, 75
nM paclitaxel compared to 0 nM paclitaxel; week 4. Changes on log2 scale averaged across the six RH
pools.

BA

Figure 4. Loci for average conditional effects of growth and paclitaxel. (A) Significance values for
growth. (B) Significance values for paclitaxel. Red dotted line, permutation significance threshold.
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The CRISPR screens for essential genes were restricted to cod-
ing genes and showed longer transcripts, increased exon numbers,
and longer coding sequences (Hart et al. 2015; Wang et al. 2015).
The coding and noncoding RH growth genes also showed in-
creased gene length, transcript size, and exon numbers, as well
as longer open reading frames for coding genes (Supplemental
Fig. S27D–J).

Receiver operating characteristic (ROC) curves showed that
gene length was the best predictor of RH growth genes (area under
the curve [AUC]= 0.76 and 0.70 for coding and noncoding genes,
respectively), followed by CRISPR essentiality scores, protein inter-
actions, and RH expression levels (Supplemental Fig. S27K). The
ROCs were significantly better predictors than random (P< 4.9 ×
10–4, Wilcoxon rank sum test).

The RH growth genes showed no significant increase in effect
scores, or overlap, with growth genes from a CRISPRa screen (Fig.
6F; Supplemental Fig. S25F; Gilbert et al. 2014). The constitutive
overexpression of the CRISPRa technology may be responsible
for the discrepancy.

Novel RH growth genes

The coding region RH growth genes were relatively poorly studied,
having fewer literature citations in the GeneRIF and Reactome da-
tabases (Supplemental Fig. S28). Of the 442 coding region RH
growth genes, 148 had neither literature citations in GeneRIF

nor entries in the Reactome database.
Study of these little understood genes
may provide insights into mammalian
cell growth.

Unconventional RH growth loci in-
cluded six that mapped to olfactory gene
clusters (Supplemental Fig. S29A) and
two that mapped to gene deserts, with
the nearest gene >250 kb away (Supple-
mental Fig. S29B,C).

Paclitaxel loci

Paclitaxel loci were identified by detect-
ing significant changes in human reads
as a result of rising drug concentration
at the various growth times. The number
of loci increased significantlywith longer
growth periods, suggesting that the vari-
ous exposure times recruit different
genes (Fig. 4B; Supplemental Figs. S20,
S21B, S30; Supplemental Tables S9–
S11). This observation is consistent with
our previous study using a panel of hu-
man RH clones (Khan et al. 2016), as
well as findings in yeast (Wang and
Kruglyak 2014). There were 38 unique
paclitaxel loci in total.

Compared to the growth loci, a sig-
nificantly greater proportion of paclitax-
el loci (seven out of 38) had positive
coefficients indicating increased repre-
sentation as a result of drug exposure
(Supplemental Fig. S23B).

Of the 34 noncentromeric paclitax-
el loci, the nearest genes were coding
for 19 (56%) and noncoding for 15

(44%), not significantly different from random. Coding and non-
coding genes make important contributions to the action of pacli-
taxel as well as growth.

Close-up views of significant paclitaxel loci are shown in
Supplemental Figure S31. Consistent with the activity of paclitaxel
as an antitubulin drug, there were two genes among the paclitaxel
loci that are known to participate in microtubule function;NEK10
(Porpora et al. 2018; Yi et al. 2018) and PDE4DIP (Bouguenina et al.
2017; Yang et al. 2017). The role of PDE4DIPmay explain the clin-
ical utility of phosphodiesterase 4 inhibitors as antiproliferative
and immunosuppressive agents (Keating 2017).

There were 10 genes in common between the 38 paclitaxel
loci and 859 growth loci, including LSAMP, SEMA3D, and
GATAD2A (Supplemental Fig. S32). The dual role of these genes
in growth and microtubule function suggests that they may be at-
tractive targets for the development of antiproliferative drugs.

A number of the paclitaxel loci mapped to novel genes, sug-
gesting fresh entry points for understanding the mechanisms of
action of this drug.

Interaction loci

A total of 62 human interaction loci were identified based on read
changes due to growth depending significantly on paclitaxel con-
centration and vice versa. Of the 57 noncentromeric interaction
loci, the nearest genes were coding for 26 (46%) and noncoding

E F
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Figure 5. Close up views of growth loci. (A) Chromosome 1. (B) Chromosome 3. (C) Chromosome 16.
(D) Sequence read changes on log2 scale for six significant growth loci. Colored lines, best fit. Gray bands,
95% confidence intervals. (E) Locus for CTTNBP2 on Chromosome 7. (F) Locus for MCTP2 on
Chromosome 15. Horizontal red and black lines, permutation significance thresholds.
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for 31 (54%), not significantly different from random. Coding and
noncoding genes make important contributions to the action of
the interaction genes.

Of the interaction loci, 15 overlapped with the 859 growth
loci and 14 overlapped with the 38 paclitaxel loci (Supplemental
Figs. S21C, S23C, S32–S34; Supplemental Tables S9, S10). The in-
teraction loci included genes previously demonstrated to coregu-
late growth and tubulin function. For example, HGF promotes
microtubule assembly and shows complex cell growth effects
when combined with paclitaxel (Dugina et al. 1995; Rasola et al.
2004; Tian et al. 2014; Ying et al. 2015). Similarly, FSIP1 regulates
growth of triple-negative breast cancer cells and resistance to doce-
taxel, a drug in the same class as paclitaxel (Liu et al. 2018). SIKE1
(Sonnenschein et al. 2018) and CPT1A
(Li et al. 2013) also regulated both cell
growth and microtubule activity. The in-
teraction genes may thus provide useful
clues to the relationship between growth
inhibition and paclitaxel action.

Empirical evaluation of mapping

resolution using RH-BSA

The−2log10Pwidth of the RH loci (Fig. 5;
Supplemental Figs. S31, S34) suggested a
mapping resolution of <100 kb. To ob-
tain an empirical estimate ofmapping ac-
curacy, we used the increased retention
frequency of TK1 and the centromeres
as a proxy for locus identification (Fig.
2; Supplemental Figs. S5, S6, S35). The
mapping accuracy estimated using both
approaches was similar, together suggest-
ing a resolution∼30 kb. Thismapping ac-
curacy was consistent with that expected
from the number of breakpoints in the
RH pools.

Despite its high mapping resolu-
tion, the RH strategy could not always re-
solve neighboring loci, particularly in
areas of high gene density (Supplemental
Fig. S36). In the future, increased radia-
tion doses and pool numbers will help re-
solve these complex regions.

Mitochondrial copy number

Mitochondria in HEK293 and A23 cells

The sequence data revealed a mitochon-
drial copy number of 2145 for the donor
HEK293 cells and 843 for the recipient
A23 cells (Supplemental Table S4), simi-
lar to published values for mammalian
mitochondria (Phillips et al. 2014; van
Gisbergen et al. 2015; Reznik et al.
2016; Wachsmuth et al. 2016).

Human loci regulating hamster mitochondrial

abundance

The hamster mitochondrial copy num-
ber in the six RH pools was 757±63,

not significantly different from A23 cells (t[1,5] = 0.51, P=0.63;
two-sample t-test) (Supplemental Fig. S37A,B; Supplemental Table
S12).

We identified three human loci that significantly regulat-
ed hamster mitochondrial reads in the RH samples, DARS2,
GORAB, and GRID2 (Supplemental Fig. S38). Increased dosage
of all three loci was associated with higher hamster mito-
chondrial copy number (Supplemental Fig. S38A–D). DARS2
encodes human mitochondrial aspartyl-tRNA synthetase
(Scheper et al. 2007), while GRID2 encodes the glutamate ion-
otropic receptor delta type subunit 2 which has previously
been shown to promote mitochondrial fission (Liu and Shio
2008).

E
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Figure 6. RH growth genes. (A) RH growth genes (RH+) have weaker CRISPR effects (Hart et al. 2015)
than nongrowth RH genes (RH−). (BF) Bayes factor for growth effects in each cell line, P-values shown
above comparisons. (B) Mean number of cell lines with a CRISPR hit is lower for RH growth genes.
(C) Lack of overlap between RH and CRISPR growth genes in HCT116 cells. Abscissa shows threshold
BF used to calculate overlap. (D) CRISPR scores (CS) for growth effects (Wang et al. 2015) multiplied
by −1, so that higher scores mean stronger effects. (E) Lack of overlap between RH and CRISPR growth
genes in KBM7 cells. (F) RH growth genes show weaker CRISPRi, but not CRISPRa, effects (−γ) in K562
cells (Gilbert et al. 2014). (G) RH growth genes have increased numbers of low-confidence protein–pro-
tein interactions and decreased numbers of high-confidence interactions. Score threshold (abscissa) is a
measure of confidence. (H) Number of protein–protein interactions at most significant low-confidence
score threshold (160) andmost significant high-confidence threshold (995). (I ) RH coding region growth
genes have decreased expression compared to nongrowth genes in microarray data from a human RH
panel. (J) Coding region (cr) RH growth genes have decreased expression compared to cr nongrowth
genes in GTEx RNA-seq data from substantia nigra. (K) Noncoding (nc) RH growth and nongrowth genes
show no significant expression differences in substantia nigra. (L) Decreased number of human paralogs
(duplicates) for RH growth genes. P-values, Welch’s two-sample t-test except in C and E, Fisher’s exact
test. (FDR) False discovery rate (Benjamini and Hochberg 1995). Transcripts per million (TPM) thresh-
olded at ≥5.
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Human loci regulating human mitochondrial abundance

Humanmitochondriawere only present at lowcopynumber (1.0 ±
0.4, mean copy number all RH samples; t[1,5.3] = 2.7, P=0.04,
Kenward-Roger degrees of freedom; average conditional effects),
suggesting that these organelles are either donated inefficiently
or replicate poorly in hamster cells (Supplemental Fig. S37C–H;
Supplemental Table S12).

Consistent with the low levels of human mitochondria, we
found no permutation significant human loci that regulated the
read numbers of this organelle. However, one locus on
Chromosome 3 surpassed the less stringent FDR threshold of
0.05 (−log10P=8.6, FDR=8.1 ×10–4) (Supplemental Fig. S38E,F).
This locus mapped to CAPN7 and was 14.9 kb from SH3BP5,
whose product is localized to the outer mitochondrial membrane
and is involved in regulation of apoptosis (Win et al. 2018).
Nevertheless, the locus should be viewed with considerable cau-
tion; deeper sequencing may provide stronger evidence for loci
that regulate human mitochondrial levels.

Hamster loci

Significant hamster loci due to pre-existing copy number alter-
ations (CNAs) (Fig. 2A,B; Supplemental Fig. S2) were identified
for growth, paclitaxel, and their interaction (Supplemental Figs.
S39, S40).

The hamster loci had weaker −log10P values than the human,
consistent with the greater stability of the hamster genome (Fig.
3A–D; Supplemental Fig. S10). In addition, hamster CNAs and
their corresponding loci ranged over megabases which, combined
with random fluctuations in −log10P values, precluded gene iden-
tification (Supplemental Fig. S41).

Mycoplasma contamination

The sequence data revealed appreciable levels of mycoplasma con-
tamination in the A23 parental cells, as well as in the RH samples
(Supplemental Table S13). However, including theMycoplasma fer-
mentans reads in our statistical model left the growth and paclitax-
el loci essentially unchanged. In addition, no significant human
loci were found that regulated the levels of the bacterium (all
FDR=1). Together, these results indicate that the mycoplasma
contamination had little effect on our study.

Discussion

We implemented RH-BSA by creating six independent pools of RH
cells, each with ∼2500 clones. The RH pools were placed under
growth selection in either normal medium or medium supple-
mented with paclitaxel. We used low-pass sequencing to identify
human genes with significant read changes as a result of growth
or drug treatment.

The mean length of the human DNA fragments was ∼7 Mb,
and the number of breakpoints in each pool was ∼105. The cells
contained an average of ∼4% of the human genome as extra cop-
ies, with each pool carrying the human genome with ∼100-fold
redundancy.

Unlike current screening technologies, where each cell carries
one altered gene, each cell in RH-BSA harbors multiple genes. This
extra layer of multiplexing helps assure equal and robust represen-
tation of the human genome in the pooled analysis.

Significant loci were identified using permutation,with a null
expectation for each genome-scan of 0.05 false positives, or 0.7 loci

from 13 genome scans. We found 859 growth loci, 38 paclitaxel
loci, 62 interaction loci, and three loci regulating mitochondrial
levels, far exceeding expectations and suggesting a low false posi-
tive rate. Cross-validation further demonstrated the high reliabili-
ty of the approach.

We used the increased retention of TK1 and the centromeres
to measure the mapping resolution of RH-BSA as ∼30 kb, close to
single gene. This resolution was consistent with that expected
from the breakpoint number. Unlike association mapping
(Edwards et al. 2013), the resolution of RH-BSA is not limited by re-
combination hotspots and linkage disequilibrium. In fact, the res-
olution and power of RH-BSA can be further increased by using
higher doses of radiation and more pools. Tenfold enhancements
are readily attainable.

While the measured resolution was frequently sufficient for
single gene identification, gene-rich regions could not be clearly
resolved. Nevertheless, a number of conclusions could be drawn
from our study.

The RH-BSA growth genes showed significant nonoverlap
with genes identified from loss-of-function screens, as well as de-
creased participation in multi-subunit complexes. These findings
repudiated the balance hypothesis, agreeing with findings from
yeast. Altered gene dosage may thus exert its effects via absolute,
rather than relative, expression levels.

As well as their divergent properties, the RH-BSA and loss-of-
function growth genes also shared attributes. In particular, both
sets of genes showed higher evolutionary conservation and in-
creased gene lengths.

The RH growth genes were overrepresented in the GWAS cat-
alog and dbGaP. Complex trait variants are often found in regula-
tory regions, exerting their effects through altered gene expression.
The extra human gene copies in the RH pools may simulate these
mild allelic effects and hence represent attractive candidate genes
for complex traits. In addition, both coding and noncoding RH
genes made substantial contributions to cell growth, paclitaxel ac-
tion, and their interaction.

Three significant human loci that regulated hamster
mitochondrial abundance were identified, two of which had
known functions in mitochondria. Further study of these genes
may provide useful therapeutic insights into mitochondrial
disorders.

RH-BSA may also allow better mapping of functional centro-
mere elements based on increased retention. The X and Y centro-
meres have been characterized in their entirety using long-read
sequencing, with the α-satellite repeats necessary for centromere
function extending over 2.8 Mb and 365 kb, respectively (Jain
et al. 2018; Miga et al. 2020). The long reads were placed using
landmark patterns of specific variants in the satellite arrays, with
a frequency of ∼1 per 50 kb. Although the mapping resolution of
RH-BSA is ∼30 kb, the average lengths of individual human frag-
ments in the RH cells is ∼7 Mb. These fragments will encompass
numerous α-satellite landmarks, if not entire arrays, allowing the
reconstruction of centromeres for functional mapping by long-
read sequencing.

Centromeric α-satellites bind to CENPA, a histone H3 variant
essential for kinetochore formation. Further, α–satellite variants
(epialleles) can affect CENPA binding (Aldrup-MacDonald et al.
2016). An alternative strategy for mapping functional centromeric
elements would therefore employ a combination of chromatin im-
munoprecipitation (ChIP) and immunolabeling-fluorescent in
situ hybridization (immunoFISH) to assay CENPA-associated
DNA in the donor human cells and RH pools. Both long-read
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sequencing and immunoFISH will allow individual centromere
homologs to be examined.

Changes in humanDNA abundance in the RH pools could be
due either toDNA loss or altered clone representation. Pooled anal-
ysis cannot distinguish between these possibilities. However, the
majority of the growth and paclitaxel loci showed decreased read
counts, which is consistent with the known tendency of RH cells
to lose human DNA fragments. Thus, DNA loss may be the pre-
dominant mechanism of copy number change in the RH pools.
Single cell analysis can discriminate unequivocally between the
two alternatives.

RH cells are a unique tool. These cells are not entirely normal.
Their genome does not exist in nature, representing hybrids of two
closely related mammalian species, human and hamster. They are
also aneuploid, with ∼4% of the genome in the triploid state.
Nevertheless, the cells grow and divide and contain all the stan-
dard features found in mammalian cells (e.g., cytoskeleton, mito-
sis, etc.). For a small number of genes, the evaluated phenotypes
may be due to species differences, but such occurrences will be in-
frequent and will still be valuable in highlighting phenotypic
mechanisms.

The parental cells used to create the RH pools are immortal-
ized and, in the case of HEK293, also tumorigenic. Pre-existingmu-
tations in these cells may influence the effects of copy number
changes across the genome, imposing limitations on the relevance
of our findings to cell types such as primary cells.

Such constraints can be overcome by exploring the utility of
other cells in the fusion process (Hiratsuka et al. 2015; Liskovykh
et al. 2016; Suzuki et al. 2016). A variety of species, including hu-
man, can be evaluated for both donor and recipient cells. In addi-
tion, selectable markers such as neomycin resistance can be used
instead of TK1, alleviating concerns about the perturbation of nu-
cleotide synthesis pathways by HAT medium (Aoki et al. 2014).

Although the mycoplasma infection did not appear to affect
the gene mapping results, follow-up investigations of gene func-
tion could be influenced by this contamination. The hamster cells
can be cured of mycoplasma using well-established antibiotic reg-
imens (Uphoff et al. 2012). Knownmycoplasma-free cells can also
be employed as the recipients.

We previously identifiedZNRF3, a regulator ofWnt signaling,
as a target for paclitaxel action using individual clones from the
humanG3RHpanel (Khan et al. 2016). This locuswas not replicat-
ed using the RH pools. In our original study, the RH clones were
weaned from HAT, unlike the RH-BSA experiments. In addition,
the ability to detect growth factor signaling pathways is likely to
be attenuated in a pooled setting. These differences may explain
the lack of replication.

The RH-BSA approach can be harnessed to uncover genes for
any phenotype where a convenient selection can be devised
(Miyake et al. 2019). The approach is complementary to loss-of-
function screens and provides information on both coding and
noncoding genes. RH-BSA should be a valuable addition to the
suite of tools for mammalian genetics.

Methods

Sequencing

Libraries were prepared using the Illumina TruSeq Nano DNA li-
brary prep kit employing 2 μg of DNA from each RH sample. We
performed the sequencing using 1×64-bp single reads on an

Illumina HiSeq 2500 machine in rapid run mode with OLB (off-
line basecaller) software and on-board cluster generation.

Reads were aligned to the indexed GRCh38/hg38 human
genome assembly (hg38.fa) or the Chinese hamster (Cricetulus gri-
seus) genome assembly (RAZU01) (Rupp et al. 2018) using BWA-
0.7.12 mapping software (Li and Durbin 2009). The reference ge-
nomes were downloaded from the UCSC Genome Browser prior
to use (https://genome.ucsc.edu) (Kent et al. 2002), unzipped,
and relevant files concatenated and indexed using BWA.
Sequence reads were aligned to the human and hamster genomes
at high stringency, allowing only one mismatch. Aligned reads
were then cross-aligned to the other species and reads that aligned
to both species discarded, effectively discriminating between hu-
man or hamster sequences.

Aligned sequences were converted to SAM format and sorted
and indexed using SAMtools-1.2 software (Li et al. 2009). To read
and view sequence information, SAM files were converted to
BAM files employing SAMtools. Indexed sorted BAM files were
converted to BED files using BEDTools-2.15.0 (Quinlan and Hall
2010).

Read quantitation

The human and hamster nuclear reference genomes were indexed
into 1-Mb windows using BEDTools, with 10-kb steps for both hu-
man and for hamster. BED files were then mapped against the in-
dexed reference genome and the number of reads per 1-Mb
window ascertained. We chose the 1-Mb window size as being
small enough to reflect the mapping accuracy of RH-BSA but large
enough to keep the sampling variance within bounds. Similarly,
the 10-kb step size was sufficiently small to accurately delineate
the mapped loci, while keeping the computing load manageable.
The reads per nonoverlapping 1-Mb window in the 115 RH sam-
ples were 237±12 for human and 13,798±234 for hamster.

Data access

The sequencing data generated in this study have been submitted
to the NCBI BioProject database (https://www.ncbi.nlm.nih.gov/
bioproject/) under accession number PRJNA592253. Other data,
tables, and computer scripts are available as Supplemental Code
and from NIH figshare (https://nih.figshare.com/; http://dx.doi
.org/10.35092/yhjc.11370204).
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