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Antimicrobial resistance (AMR) is a global health issue. One key factor
contributing to AMR is the ability of bacteria to export drugs through efflux
pumps, which relies on the ATP-dependent expression and interaction of
several controlling genes. Recent studies have shown that significant cell-
to-cell ATP variability exists within clonal bacterial populations, but the
contribution of intrinsic cell-to-cell ATP heterogeneity is generally overlooked
in understanding efflux pumps. Here, we consider how ATP variability influ-
ences gene regulatory networks controlling expression of efflux pump genes
in two bacterial species. We develop and apply a generalizable Boolean
modelling framework, developed to incorporate the dependence of gene
expression dynamics on available cellular energy supply. Theoretical results
show that differences in energy availability can cause pronounced down-
stream heterogeneity in efflux gene expression. Cells with higher energy
availability have a superior response to stressors. Furthermore, in the absence
of stress, model bacteria develop heterogeneous pulses of efflux pump gene
expression which contribute to a sustained sub-population of cells with
increased efflux expression activity, potentially conferring a continuous
pool of intrinsically resistant bacteria. This modelling approach thus reveals
an important source of heterogeneity in cell responses to antimicrobials
and sheds light on potentially targetable aspects of efflux pump-related
antimicrobial resistance.
1. Introduction
Antimicrobial resistance (AMR) is a huge global health challenge, contributing
to over 700 000 deaths worldwide [1] and estimated to exceed cancer mortality
by 2050 if neglected [2]. Protein complexes called efflux pumps are an impor-
tant mechanism for intrinsic (and acquired) resistance to antibiotics [3–5].
Efflux pumps are capable of transporting a range of substances from the cell
compartment to the extracellular medium, reducing intracellular accumulation
of substances including antibiotics, and thus conferring resistance. Their central
role in facilitating clinically relevant AMR makes efflux pumps an attractive
drug target, with much research directed at efflux pump inhibitors as a novel
therapeutic to overcome efflux-mediated resistance [6–10].

A current mystery in the activity of efflux pumps is the causes and effects of
cell-to-cell heterogeneity in their expression. Recent data demonstrate efflux
pump gene expression is not homogeneous throughout the population—instead,
bacterial populations display significant cell-to-cell variability [11–13]. Hetero-
geneity in efflux activity has been suggested to have further downstream

http://crossmark.crossref.org/dialog/?doi=10.1098/rsif.2021.0771&domain=pdf&date_stamp=2022-01-26
mailto:s.jabbari@bham.ac.uk
mailto:iain.johnston@uib.no
https://doi.org/10.6084/m9.figshare.c.5776327
https://doi.org/10.6084/m9.figshare.c.5776327
http://orcid.org/
https://orcid.org/0000-0002-3454-7640
http://orcid.org/0000-0001-5235-0406
https://orcid.org/0000-0001-6904-4253
https://orcid.org/0000-0001-8559-3519
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


royalsocietypublishing.org/journal/rsif
J.R.Soc.Interface

19:20210771

2
influence on AMR. One study, by Sánchez-Romero &
Casadesús [13], reported a correlation between bacteria with
high efflux pump activity in the absence of antibiotic com-
pounds and increased resistance to antibiotics. Additionally,
a study by El Meouche & Dunlop [11] has shown a sub-
population of bacteria with higher efflux pump expression
has lower expression of mismatch repair genes, facilitating
mutations which can lead to permanent genetic changes
bestowing resistance. However, the underlying dynamics and
influences of efflux heterogeneity in cellular populations
remain to be uncovered.

One potential source of heterogeneity in gene expression
dynamics and interactions is cell-to-cell differences in available
energy supply [14,15]. Heterogeneity in adenosine tripho-
sphate (ATP) levels in bacteria (and other species; see §3) is
increasingly being characterized experimentally [16,17]. The
quantified range of intracellular ATP can cover almost an
order of magnitude, varying between 0.32 and 2.76mM in
Escherichia coli [16], for example. Although not uncontroversial,
the ubiquity of cell-to-cell variability in ATPacross life suggests
it is a genuine effect [18–20]. Following theoretical work show-
ing the potentially profound influence of this variability on
gene regulatory networks (GRNs) [14,15], we here investigate
the hypothesis that cell-to-cell differences in available energy
can contribute to cell heterogeneity in efflux pump expression,
intrinsic resistance to antimicrobials, and response to different
environmental stressors.

We previously applied an energy-dependent ordinary
differential equation (ODE) framework to a simple GRN,
describing the behaviour of many naturally occurring
decision-making circuits [14]. We predicted that differences
in cellular energy levels will cause differences in the dynamics
and stable outcomes of cellular decision-making. However,
while ODE models can in principle be used for GRNs of arbi-
trary size, the associated parameter space rapidly increases
with network size, making it harder to investigate general
principles. Here, we develop and use an alternative theoretical
framework based on Boolean network models [21,22], simpli-
fications that have been successfully applied to diverse
biological systems [23–25] (although to date not often used to
understand bacterial virulence and resistance mechanisms
[26,27]). Despite this widespread and successful use, there
has been little consideration of the fact that the processes
in Boolean GRN models correspond biologically to ATP-
dependent processes [21,26,28]. This ATP dependence is
important, because it generally influences the dynamics of
gene expression [29]. We therefore proceed by developing a
simple but highly generalizable modification for including
energy dependence in Booleanmodels of regulatory networks,
and use this theoretical framework to explore the effects of ATP
variability in experimentally derived GRN models of efflux
pump expression in E. coli and Salmonella.
2. Results
2.1. Literature-based model construction accounting for

energy availability
We first sought to construct a Boolean modelling framework
describing efflux pump expression dynamics, supported by
data and yielding verifiable predictions about biological
behaviour. We considered AcrAB-TolC, an efflux pump
associated with clinically important drug resistance in E. coli
[30–32] and Salmonella [33–36]. TolC is constitutively expressed
[37] and predicted to be integrated within at least seven
additional efflux transport systems in E. coli [38], suggesting
the dynamics of acrAB aremore limiting on producing the com-
plete efflux pump system within each cell. We performed a
broad literature review (see the electronic supplementary
material, S1) of efflux pump gene regulation in E. coli and
Salmonella to define a core GRN of acrAB in each species
(figure 1b,c). This review defined the structure of our model
i.e. the nodes, regulatory interactions and edge weights in the
corresponding wiring diagrams (electronic supplementary
material, figure S1A,B).

Escherichia coli contains a global activator of efflux genes
acrAB, calledmarA (of themarRAB operon), which is repressed
locally by the product of marR [39]. Similarly, in Salmonella, a
global activator ramA is repressed locally byRamR, the product
of ramR [40]. In both networks, repressor AcrR, the gene pro-
duct of acrR, down-regulates its own expression and prevents
over-expression of efflux genes acrAB [41] (see figure 1b,c for
each complete GRN). acrAB encodes the proteins AcrA and
AcrB [42], which can assemble together with TolC to form
the AcrAB-TolC system [43,44] that provides the physical
means to expel unwanted substances from the cell (such as
toxic metabolic intermediates or bile salts [45,46]).

The expression of efflux pumps is inducible by the pres-
ence of environmental signals, or chemical compounds
(such as antibiotics), which we will generally refer to as ‘stres-
sors’. The inducibility of efflux genes enables bacteria to
adapt to a wide range of environmental conditions. Noxious
substances, such as antibiotics, can bind to GRN products
MarR, RamR and AcrR, inhibiting their ability to bind to
DNA, and initiating a response cascade that leads to the
upregulation of efflux genes acrAB [47–52]. In our model
the expression of acrAB corresponds to the capacity of the
assembled efflux pump to export molecules.

To avoid the aforementioned parameterization issues in
continuous models, we developed a general Boolean frame-
work that captures the influence of energy availability.
Our model represents genes as nodes in a network, where
each gene can be ‘on’ (expressed) or ‘off’ (not expressed) at
a given time. Edges describe activating and repressing inter-
actions, and the state of a network changes over time with
asynchronous update rules following these interactions (see
Methods), capturing the stochastic nature of gene regulatory
dynamics. Edge weights for our model were chosen through
a manual tuning process, seeking to reproduce our ‘training’
observations given the imposed structure of the regulatory
network from the literature review. In a Boolean network,
edge weights encode logical interactions rather than specific
physical rates or quantities, and therefore there is substantial
flexibility in the particular values used (see §3).

To explicitly capture the fact that the fundamental pro-
cesses (hence all gene interaction ‘arrows’) involved in gene
expression depend on ATP, we modulate the rate with which
regulatory interactions from node X to node Y are applied
according to cellular energy levels (see Methods). This reflects
the fact that, for example, cells with low ATP will have a lower
rate of transcription elongation per timestep [53], slowing the
dynamics of the biochemical intermediates involved in these
regulatory interactions, and thus slowing the interactions
themselves [14]. While fast fluctuations in ATP supply may
exist within cells, as gene expression processes are dynamically
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Figure 1. Boolean network modelling of gene regulatory network architectures controlling efflux pump gene expression. (a) Schematic overview of the Boolean
network framework. Regulatory architectures (i) are converted into wiring diagram form (ii). These wiring diagrams include ‘ghost nodes’ (G1) if necessary, providing
a constant signal to ensure constitutively expressed genes are ‘on’ unless switched ‘off’ by a regulator. The considered network is repeatedly simulated over a set
number of timesteps (iii), from some initial configuration, producing individual and averaged pictures of network behaviour through transition matrices and
expression dynamics of each node per timestep (iv). (b,c) Coarse-grained E. coli (b) and Salmonella (c) AcrAB efflux pump gene regulatory networks, containing
a collection of genetic regulators (blue circles) that interact with each other (directed edges) and govern the expression level of efflux genes acrAB. Full layouts with
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effects through the network. Removal of the stressor is integrated through a repressive interaction from acrAB to the stress node (dotted edges).
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slower, we assume the network is exposed to a time-averaged
ATP level, and thus define three energy levels ‘high’, ‘inter-
mediate’ and ‘low’, respectively, involving a characteristic
mean rate of 1, 1/2 and 1/10 per simulation, corresponding
to the aforementioned order of magnitude range observed in
biology (see Methods).

2.2. Efflux network models reproduce experimentally
observed behaviour in Escherichia coli and
Salmonella

Having constructed our model based on a set of experimental
observations, we next asked whether it made predictions
that could be tested using independent experimental data.
In the electronic supplementary material, we present a table
assessing the predictions of our model, for our choice of
edge weights, with respect to a multiscale set of experiments
at both the population and single-cell level, where agreement
is demonstrated across a wide variety of observations
(electronic supplementary material, table S1). The overall be-
haviour of both systems—which we will describe in detail
below—predicts a range of coarse- and fine-grained features
observed in independent experiments, including pronoun-
ced gene expression heterogeneity at the single-cell level,
prominent increases in gene expression when a short or
long stress signal is provided, the expression of repressive
genes in response to stress [41,54]), and the details of
expression levels of different actors in the GRN in the
presence and absence of stress.
2.3. Stress-free efflux network behaviour with a
maximal cellular energy budget

To dissect the dynamics of these networks in detail, we first
explored the stress-free population-level behaviour of each net-
work. In the absence of stress, the population-wide mean
behaviour in expression levels approaches a steady state
(pre-stress dynamics in figure 2). We found at high energy
availability, initial conditions had no influence on this
population-level equilibrium of the E. coli and Salmonella
networks (see the electronic supplementary material, S5). We
therefore proceed by investigating network behaviour starting
from a particular initial state—which models an ‘unstressed’
baseline condition—in the rest of the study and focus on
the E. coli network before comparing the behaviour of the
two networks.

To explore the variabilitywithin the equilibriumpopulation
without energetic limitations,we calculated the expression level
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Figure 2. Mean expression dynamics for E. coli from the unstressed initial condition in response to a short or long stress period. Time-series dynamics of mean
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coefficient of variation (standard deviation divided by mean)
for each genetic component in theE. colinetwork. In the absence
of stress, expression level coefficient of variation (ELCV), corre-
sponding to population variability in gene expression, ranged
between 1.0 and 1.35 at equilibrium (see stress-free period in
figure 2). This diversity is owing to population-level asyn-
chrony in expression dynamics; in simulated individual
bacteria, network components are expressed in heterogeneous
pulses (pre-stress dynamics in figure 3). This diversity, particu-
larly in acrAB, suggests that the network structure itself may
support a degree of ‘bet-hedging’ in the absence of stress,
where some members of a population are primed to respond
to stressors at any given time, agreeing with experimentally
observed behaviour in Salmonella enterica [13] (see §3).
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2.4. Efflux network behaviour with a maximal cellular
energy budget after exposure to a stressor

We next asked how exposure to a stressor affects network be-
haviour. Following a simulated stress-free period as in the
previous section, we simulated exposure to a stressor for
either a short (one timestep) or long (25 timesteps) stress
period. In response to stress, the mean expression levels of
all genes in the system change, with different rates and mag-
nitude (figure 2). acrAB mean expression rises throughout
stress exposure, thus becoming higher for the longer stress
duration (figure 2a,c). After the long stress period, the high
energy population displays homogeneous behaviour (active
efflux expression), increasing the capacity of each cell to
remove the stressor (see figure 3d to qualitatively observe
this behaviour). The high energy population can then rapidly,
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and collectively, expel the noxious substance, promptly
restoring baseline conditions in mean expression following
the steps discussed previously.

When stimulated by a short stress (figure 2a), high varia-
bility is observed in efflux pump activity throughout the
entire stress response, corresponding to diverse responses
across the bacterial population. Individual simulation
dynamics (figure 3a) suggest this behaviour originates from
sub-populations of cells developing unsynchronized responses
to stress, and a delayed development of the efflux response.
The unsynchronized dynamics prolong the population-level
stress response, potentially benefiting a clonal population by
providing a hedging mechanism against future stress.

Once the simulated stressor is removed, repressive
transcription factors resume downregulation of their GRN
target, initially reducing the mean expression level of
marRA and acrR, followed by a reduction in acrAB mean
expression (figure 2). This process switches off the response
cascade, allowing acrAB mean expression to return to the
pre-stress population equilibrium (figure 2).

We next asked when the population of E. coli cells reached
an equilibrium in acrAB expression after each perturbation—
that is, when the statistics of efflux gene expression levels no
longer changed with time in the population after the stress
period. We found that the number of timesteps for acrAB to
attain a post-stress population equilibrium, in the maximal
energy case, was similar after a short or long stress (nine
timesteps versus eight timesteps, respectively, figure 2a,c),
and the equilibrium eventually attained was the same for
both stress durations. These timings differ when energy is
limited, as described in the following sections.

To understand these dynamics in more depth, we next
asked how the different patterns of gene expression between
which a network can transition vary when a cell is exposed
to stress (reflecting the diversity of behaviours supported by
the network). We define ‘accessible transitions’ to be the set
of expression patterns that can be reached directly from a
given network state. To explore these transition patterns, we
analysed the transition matrices describing the dynamics of
the E. coli regulatory network in the presence and absence of
a stressor, visualized through heatmap images (figure 4; see
figure 1a for illustration of the process to yield these outputs).

In the absence of stress, all transitions are accessible
(figure 4a). When a stress is applied, the accessible transitions
for each network state are significantly restricted (compare
figure 4a to d). The presence of a stressor removes the negative
regulation within E. coli’s regulatory architecture (figure 1b),
and consequently the ability to actively switch components
‘off’. The stressed network contains a steady-state attractor—a
single state that when reached stays constant—corresponding
to all components of the network being ‘on’. Under stress-free
conditions no such single steady-state attractor exists
(figure 4a). The presence of this attractor suggests that an E. coli
cell under stress shifts its regulatory poise to allow the expression
of eachGRN component, allowing a response to the stressor and
a faster dynamic response when the stress is removed.

2.5. Efflux network behaviour is modulated by available
cellular energy

We next sought to understand how energy availability
changes network behaviour in E. coli cells, in environments
with and without a stressor. We first explored how the
amount of energy available to a cell affects the accessible net-
work transitions. Both with and without stress, the accessible
transitions for each network state are the same across all
energy levels, but the probabilities of these transitions vary
dramatically with energy (figure 4). At lower energies, it is
more likely that the system remains in the same state from
one timestep to the next; increasing energy distributes the
probability of each accessible transition more evenly among
the total accessible transitions.

When a stressor is present, accessible transitions are
restricted to subsets of the stress-free case at each energy level
(figure 4a–c versus d–f). As energy increases, the likelihood of
transitioning between supported network behaviours expands,
transitioning more directly towards the steady-state attractor,
‘1111’. Therefore, increasing energy availability supports more
rapid shifting of behaviour in the E. coli efflux network
(figure 4), particularly towards a high efflux state.

Next, we askedwhether the equilibriummean expression of
efflux pump genes changed at different energy levels, both in
the presence and absence of stress. Perhaps counterintuitively,
we found that increasing energy availability decreased the
mean expression equilibrium of acrAB in simulated stress-free
conditions (figure 2). In thepresenceof a stressor, thepopulation
response ismore rapid andofhighermagnitudeas energyavail-
ability increases (figure 2). Simulated single-cell dynamics
predict cell-to-cell variability in the time taken to transition to
an active efflux expression state during stress exposure in each
energy state (figure 3). The delayed response is more pro-
nounced as energy decreases (figure 3d versus f). Following
either stress period, the network returns to the pre-stress
equilibrium more rapidly at higher energy levels (figure 2).

2.6. Energy levels influence heterogeneity in individual
expression level dynamics

To investigate how energy level influences the detailed
dynamics of single-cell pulses of efflux pump genes acrAB,
we calculated the mean pulse length in acrAB expression
at different energy levels (figure 5). Intuitively, from time-
scaling effects, mean pulse length increased as energy
decreased (figure 5a), agreeing with qualitative observations
(figure 3a–c). The introduction of a short stress results in only
a very small transient increase in mean pulse length, more
pronounced at higher energy (figure 5). Pulse lengths during
the long stress period are more dependent on energy level,
with pulse statistics in high-energy cells changing more
dramatically than in low-energy cells.

We next addressed our central hypothesis, whether
energy availability could be a cause of the observed cell-to-
cell variability in efflux pump expression. To explore this,
we calculated the dynamics of the ELCV for E. coli acrAB at
each energy level. As seen previously, substantial cell-to-cell
variability exists in the system in the absence of a stressor,
reflecting asynchrony and intrinsic noise in the system
(figure 2). This variability is higher for low-energy cells
(ELCV 1.34 at low energy, 1.01 at high energy). Exposure to
stress reduces this variability, as the population synchronizes
and responds in a similar way to the imposed stressor.
Exposure to a longer stress period imposed a more substantial
decrease in efflux variability than a shorter stress at all energy
levels (figure 2a,c) and, as observed for the maximal energy
case (§2.4), the ELCV converged to zero at intermediate to
high energy (figure 2c). After the stress exposure, the original
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Figure 4. Escherichia coli transition dynamics depend on cellular energy and the presence of stress. Heatmap plots showing E. coli’s transition matrix. Each row
contains the transition probability distribution from each of possible global states (rows) to each subsequent state (columns), in the absence (a)–(c) and presence
(d)–( f ) of a stressor, with increasing energy availability; here, owing to the coupling of marR and marA (as they form the marRA operon), we do not artificially
implement unattainable network states, for example, ‘1011’. Each matrix element is coloured to indicate the probability p (using a logarithmic scale) that
global state A transitions to global state B from timestep t = τ to t = τ + 1. Hierarchical clustering of global states is calculated using the destination possibilities
(t = τ + 1) for each t = τ global state, with clustering employing a Euclidean distance metric to determine the distances between each element. Global state binary
vectors are displayed in the order [marR, marA, acrR, acrAB].
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level of variability is recovered, allowing the same potential
‘hedging’ against further stress in the future (figure 2a) [55–58].

Next, we quantitatively investigated how energy level
influences the variability of efflux pump gene expression
pulses, by calculating the coefficient of variation of pulse
lengths (PLCV) starting from each timestep in acrAB
(figure 5). In the absence of stress, heterogeneity in pulse
length is higher at lower energy (figure 5b,d), while high
energy levels display relatively low PLCV <1, corresponding
to lower variability when dynamics are faster and individual
events less rare. As with expression level dynamics, when
stimulated by a short stress period, PLCV decreases more
dramatically at lower energy levels (figure 5b), as the popu-
lation becomes more synchronized by the imposition of an
external stress. For longer stress periods (figure 5d), differ-
ences between different energy levels are more dramatic.
Pulse lengths remain highly variable for the low energy
population, but PLCV decreases to zero at higher energy.
Thus, higher energy availability allows more concerted and
synchronous population-level behaviour in dealing with the
stressor. Following stress exposure, PLCV behaviour returns
to its pre-stress level for each energy level.
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2.7. Escherichia coli and Salmonella efflux networks
share functional similarity

We next compared the behaviour of the Salmonella network to
identify similarities and differences between bacterial species.
We first explored the capacity of the Salmonella network to
transition between expression states. As with E. coli, the
Salmonella network architecture supports the same accessible
transitions (electronic supplementary material, figure S5).
Clustering by the set of accessible transitions for each
global state at a given energy level shows analogous features
in both bacterial species, with transitions between states lim-
ited by energy (electronic supplementary material, figure S5).

Next, we asked how Salmonella’s acrAB efflux pump genes
respond to a stressor, compared to the homologous efflux
pump in E. coli, by analysing the population-level activity of
acrAB in both species in response to a short and long stress
period (figure 2; electronic supplementary material, figure S3
for E. coli and Salmonella respectively). Simulation results predict
both species respond more dynamically to stress at higher
energy, regardless of stress duration and, at each energy level,
rapidly return to baseline conditions after the stress period
(compare figure 2; electronic supplementarymaterial, figure S3).

Salmonella displays several other analogous behaviours
compared to E. coli. At maximal energy availability, the
number of timesteps for Salmonella to return to the mean
expression baseline after a short and long stress period is similar
(electronic supplementary material, figure S3), as observed for
E. coli (see §2.3). Other analogous behaviours include a zero
acrAB ELCV at the maximum stress response to the long
stress period (electronic supplementary material, figure
S3(iii)), and the observation of heterogeneous pulses in network
components (electronic supplementarymaterial, figures S7–S8).

Simulations predict the stress-free acrAB ELCV is lower in
Salmonella at low and intermediate energy, but greater at high
energy, compared to E. coli (compare figure 2a; electronic
supplementarymaterial, figure S3(i)). This behaviour is a down-
stream consequence of the mean and variability in global
activator expression in each species, which is modulated by
the energy level, and the decoupled expression of Salmonella’s
activator ramA and repressor ramR, compared with E. coli’s
coupled marRA operon (figure 1b,c).

Together, this suggests the GRNs for both bacterial species
in this study display behavioural similarities in the presence
and absence of a stressor, but despite structural similarities in
their architectures (figure 1) there are differences in the
dynamics of efflux pump expression (figure 2; electronic sup-
plementary material, figure S3).
3. Discussion
We have applied a Boolean modelling framework to coarse-
grained E. coli and Salmonella efflux pump gene regulatory
networks, to explore how efflux pump activity depends on
the energy available to fuel the expression of efflux proteins
and their regulators. We find quantitative support for
our hypothesis that differences in available energy can
contribute to cell heterogeneity in efflux pump expression,
and dissect this heterogeneity in different mechanisms (see
table 1 for a summary).

In the absence of cell-to-cell energy variability, our model
suggests (supported by experiments) that substantial intrinsic
variability exists in efflux gene expression. The imposition of
a population-wide stressor reduces this intrinsic variability
by partially synchronizing cell behaviour; stochastic effects
after stress exposure recover the original variability. This
intrinsic noise can potentially be acting to hedge the popu-
lation against future stress, while maintaining cells that
invest less resource in defence mechanisms and/or protect



Table 1. Summary of energy availability effects on regulatory network behaviour. (The table displays a summary of our main results from applying the
modified Boolean network framework to E. coli and Salmonella acrAB GRNs. The magnitude, under low, intermediate and high energy availability, of each key
result is presented through a discretized scale: low (†), medium (††) and high (†††).)

low energy intermediate energy high energy

speed of network dynamics † †† †††
diversity of supported network behaviour in the absence of stress ††† ††† †††
diversity of supported network behaviour in the presence of stress † † †
cell-to-cell variability in population-level acrAB expression in the absence of stress ††† ††† †††
cell-to-cell variability in population-level acrAB expression in the presence of stress †† † †
cell-to-cell variability in pulses of acrAB expression in the absence of stress ††† †† †
cell-to-cell variability in pulses of acrAB expression in the presence of stress ††† † †
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the lineage from diverse environmental conditions. When
extrinsic differences in ATP availability between cells are
additionally imposed, the population variability in efflux
response will be amplified. Cells with lower energy levels
will experience more variable expression of efflux com-
ponents (amplifying intrinsic variability), slower responses
to stressors, and hence slower removal of stressors from the
environment. In future, experimental tests of this hypothesis
could involve, for example, jointly tracking bacterial ATP
levels and efflux gene expression in a culture prior to,
during and post antibiotic stress using fluorescent reporters
[11,12,16,59].

In our model, stress-free bacteria naturally express hetero-
geneous pulses of efflux genes (figure 3; electronic
supplementarymaterial, figure S7). This behaviourmay be bio-
logically valuable for several reasons. The products of acrAB
have an extremely long half-life in E. coli [60], suggesting that
the genes may only need to be transcribed in short pulses
(which is predicted to be a less energetically demanding pro-
cess compared to translation [61]) for the protein to be in an
abundant supply. Dealing with external stressors is one role
of the AcrAB-TolC efflux pump, but it also, for example,
removes endogenous waste products [62], suggesting the
pulse behaviour could aid physiological functions by expres-
sing acrAB mRNA to be used in these processes. The pulse
behaviour may also confer a natural resistance phenotype
to a fraction of cells in stress-free environmental conditions
at all times, as reported experimentally in S. enterica [13]. There-
fore, the predicted pulsing behaviourmay contribute to several
essential intracellular functions.

Recent mathematical models have studied themar network
at the protein level, suggesting the motif is monostable, and
supports a single deterministic steady-state in the absence
of stress [63,64]. A theoretical study has also shown, at the
protein level, the development of stochastic pulses in marRA
products [64]. The cell-to-cell heterogeneity in mar expression
that we predict agrees with ODE models of the mar operon—
which account for the inherent stochasticity of biological
systems—and experimental demonstrations of heterogeneous
cell-to-cell steady-state mar expression within a population,
in the presence and absence of stress [64–66] (figure 2;
electronic supplementary material, figure S6). With the devel-
opment of advanced experimental assays, future studies
may resolve the behaviour at the transcript level to test our
theoretical predictions.
Even for these relatively simple networks, our Boolean
modelling approach has demonstrated general principles of
energy influence without requiring characterization of a
large parameter space. Developed with a view to scalability,
this approach can be applied to many naturally occurring
decision-making phenomena. Our previous work [14] has
demonstrated the profound influence that energy variability
can have on simple decision-making circuits; this GRN
approach allows the expansion of this philosophy to a
much wider range of architectures, including the broader
regulatory context of these core networks (see the electronic
supplementary material, S1–S2). As cell-to-cell variability in
ATP is increasingly elucidated [18–20] we believe that our
approach will help reveal the theoretical underpinnings of
this important influence on regulatory dynamics.

It is important to note some limitations of our modelling
approach. First, the coarse-grained nature of a Boolean model
limits the precise quantitative agreement of individual obser-
vations with either more detailed models or biological reality.
Instead, we focus on the relative magnitudes and directions
of behaviour—for example, does X increase or decrease Y,
and does Z do so more. Second, our models are deliberately
simple. Model refinements, including allowing heterogeneity
in the timescales [67] and ATP dependencies of different
genes, could be invoked to allow a more detailed connection
with biology, and doing so as more data becomes available is
an important target for future work. Third, our models are
not guaranteed to be unique. The edge weights in our
models were manually chosen for compatibility with our
training observations. As they encode logical interactions
rather than physical quantities, there are ranges of values
around our choices that will give networks that behave iden-
tically. The existence of non-overlapping sets of parameter
values that would also describe and predict observations
has not been addressed here. Parameter inference approaches
including approximate Bayesian computation [68,69] could
be used in future work to explore parameter space more fully.

Our hypothesized relationship between energy availability
and efflux-pump activity, variability, and capacity to respond
to antimicrobials has, as far as we are aware, not been pre-
viously considered. However, our hypothesis is not restricted
to this AMR mechanism or motif. A connected phenomenon
thatmay bemechanistically related is the formation of bacterial
persisters in the presence of antibiotics [55,70,71]. Here, pheno-
typic variants display a transient tolerance to external stress



Table 2. Escherichia coli node initial values. (Table defines the stressed and
unstressed initial conditions for E. coli gene regulatory network components
(figure 1b).)

marR marA acrR acrAB

unstressed 0 0 1 0

stressed 1 1 0 1

Table 3. Salmonella node initial values. (Table defines the stressed and
unstressed initial conditions for Salmonella gene regulatory network
components (figure 1c).)

ramR ramA acrR acrAB

unstressed 1 0 1 0

stressed 0 1 0 1
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[72,73], causing a leading factor in the recalcitrance of chronic
infections [74–77]. An approach grounded in optimal control
theory has found that the persister strategy is dependent
upon stochastic fluctuations in both the proportion of persisters
in the colony and the environment [78]. The results also predict
that producing persisters in the absence of environmental vola-
tility leads to a lower per capita growth rate, giving the
population a possible evolutionary disadvantage. Increasing
evidence has reported a mechanism linking persister cells
and intracellular energy, or more specifically ATP [17,79–82].
One study has gone further, suggesting there may be a general
low energy mechanism of persister formation in bacteria [83].
This relationship bears substantial similarities to our model
where we predict high variability and noise in gene expression
pulses in low energy cells, compared to intermediate and high
energy cells (figures 2 and 5). High expression variability con-
tributes to cell-to-cell variation within a clonal population,
implying a different set of phenotypes may be expressed in
the low energy sub-population. As energy, or more precisely
ATP, increases, cell-to-cell variability decreases, implying a uni-
form phenotype displayed across the population. We would
predict, in agreement with growing evidence, intracellular
ATP is a factor in the mechanisms of persister generation,
and future work will explore this using our approach when
the governing GRNs can be identified.
4. Methods
4.1. Wiring diagrams
In the electronic supplementary material, figure S1, we present
the wiring diagram form of each GRN (figure 1b,c). The wiring
diagrams contain the regulatory interactions in each GRN (acti-
vatory or inhibitory) and edge weights, outputting a directed
graph. A stress, such as antimicrobial exposure, is included
through the ‘stress node’, S, within the wiring diagram. A
stress input is modelled as repressing gene-gene regulatory
edges, representing a ‘repressive’ modulation of transcription
factors (MarR/RamR and AcrR). The capacity to expel sub-
stances by the efflux pump is integrated through a repressive
regulation from acrAB to S.

Estimates of edge weights were gleaned from the relevant lit-
erature, integrating the natural behaviour of each network, and
giving each regulatory actor the ability to operate. In E. coli, the
marRA operon is separated into its individual components to
allow each regulation of marRA to be captured, but are coupled
in all iterative updates; the inability to model a node that both posi-
tively and negatively regulates itself is a limitation of the Boolean
modelling framework. Experimental data have shown transcrip-
tion of marA and acrA increase in marR mutant cells [84], and
minimum inhibitory concentrations (MICs) of various antibiotics
increase in an acrR mutant strain [44] (consistent with the limited
repressor function of AcrR [41]). Together, these suggest, under
normal conditions, edge weights of interactions from marR to
marRA and acrR to acrAB should be dominant. Inactivation of the
ramR gene upstream of ramA resulted in increased expression of
ramA and the AcrAB efflux pump in Salmonella [85]. This requires
the edge weight from ramR to ramA to outweigh ramA basal
expression under normal conditions. Constitutive gene expression
is captured using ‘ghost nodes’. These nodes are permanently
‘on’ in the network, supplying a constant positive influx to a node.

Interaction matrix J is constructed from the data contained
within a wiring diagram. A weighted edge from node j to node i,
is represented by element Ji,j within J. Each matrix element can
take a positive, negative or zerovalue; edgeweight sign corresponds
to a negative, positive or absence of regulation respectively. Because
edges are directed, Ji,j≠ Jj,i, except for i = j or Ji,j = Jj,i = 0. Matrix J is
implemented in numerical simulations of the Boolean model and
has dimension N-by-N (N is the total number of nodes in a wiring
diagram, including ghost and stress nodes).
4.2. Initial conditions
Two configurations of initial node states were considered in
simulations of the E. coli and Salmonella wiring diagrams. These
were named the ‘unstressed’ and ‘stressed’ initial condition,
with the initial node states set as follows (tables 2 and 3).
4.3. Modulation of transition rates allows energy
variability to be captured in gene regulatory
network models

Wiring diagrams, consisting of nodes and edges, schematically rep-
resent the interactionsbetweenelementswithin regulatorynetworks
(as shown in the electronic supplementary material, figure S1). The
edges often illustrate combined processes such as transcription,
translation and phosphorylation. However, the information con-
tained within edges in regulatory networks is coarse-grained,
omitting a substantial amount of important biological detail. Several
of theprocesses represented by these edges requireATPas an energy
source [29,53], so there exists a core energy dependence in the
dynamics modelled within each wiring diagram.

To address this and capture the fact that all the processes
involved in gene expression depend on ATP, we constructed a
modelling approach, modulating the strength of regulation from
node X to node Y according to cellular energy levels. This reflects
the fact that, for example, cells with low ATPwill have a lower rate
of transcription elongation per timestep [53]. We interpret this
modulation as influencing the rate with which regulatory inter-
actions can be applied from node X to node Y. The rationale for
this picture is that if the expression of regulatory components is
slowed by reduced energy levels, the corresponding biochemical
interactions will occur at a lower rate.

In the absence of energy variability, our asynchronous Boolean
modelling framework interprets regulatory interactions as stochas-
tic events occurring with a characteristic mean rate of one per
timestep per interaction. To include the influence of energy avail-
ability on the system, we allow this rate to be a function of
energy level. To capture an order-of-magnitude range across
cells, we use rates for a simulation timestep of 1 for ‘high’ energy
(hence, all interactions are always realised), 0.5 for ‘intermediate’
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energy, and 0.1 for ‘low’ energy. We thus modulate the probability
of any given interaction being realized in a given simulation
timestep by the level of available cellular energy.

4.4. Node update function
Nodes within the Boolean network are updated iteratively, using
an update function. An update function defines the value of each
node according to its regulatory nodes and remains fixed for all
timesteps [86]. We consider a threshold update function to
update the state of node i at timestep t = τ + 1, denoted σi(τ + 1).
The argument of the update function consists of the regulatory
nodes of node i, the states of these nodes at t = τ and the N-by-
N interaction matrix J, where N is the total number of nodes in
the wiring diagram. The summation value determines the state
of node i at t = τ + 1.

During an active stress time frame, the state of stress node S
(electronic supplementary material, figure S1) is imposed to be
‘on’ at the start of each timestep, regardless of the behaviour
from the previous update. Once the final timestep within the
stress period is reached, S is allowed to be switched ‘off’ from
regulation within the network.

We consider the update function displayed in equation (4.1).
Here, a node requires a non-zero sum of its inputs to change state
from t = τ to t = τ + 1. In the case where the sum is zero, the node
state remains unchanged:

siðtþ 1Þ ¼
1 if

PN
j¼1ðJi,j � s jðtÞÞ . 0,

siðtÞ if
PN

j¼1ðJi,j � s jðtÞÞ ¼ 0,

0 if
PN

j¼1ðJi,j � s jðtÞÞ , 0:

8>><
>>:

ð4:1Þ

Alternate threshold update functions are possible. We could,
for example, consider the conditions that set a node as ‘on’ if
there is an overall positive input, and ‘off’ otherwise. However,
this would automatically remove a stress in the system by setting
the stress node state to ‘off’ once reaching the endpoint of the
stress time frame. This removes the capability of the efflux
node to ‘expel’ the stress through feedback to the stress node S
(electronic supplementary material, figure S1), behaviour which
is not the focus of this study. By choosing update rule (4.1), it
allows the efflux pump node to have the capacity to remove
stress in the network, through regulatory interactions, depicting
the behaviour observed in bacteria.

At each timestep, the binary vector containing all node states
is the global, or network, state [87]. The set of all possible global
states forms the state space of a network [86]. The state space for
each network in this study is of size 2M for Salmonella, as we are
interested in the dynamics of the M-component GRN network
being modelled, and 2M−1 for E. coli, owing to the coupling of
marR and marA.

4.5. Node update methods
There are twomethods for updating global states, synchronous and
asynchronous. In the synchronous mode, all the nodes (including
the stress node) are updated at every timestep, with the state of
each node at t = τ + 1 depending on the states of its inputs at t = τ.
The deterministic nature of synchronous Boolean models,
combined with each model containing a finite state space (2M or
2M−1), where M is the number of elements in the original GRN,
guarantees that a synchronously updated time series simulation
will eventually end at a steady-state attractor, or a cycle of repeating
global states [86]. It also means the network will always reach the
same state for a given initial condition and number of timesteps.
We do not consider synchronous updating in this study owing to
the artefacts that can arise from its imposition, and its inability to
model stochastic processes. Amore complex, but biologically realis-
tic, protocol is the asynchronous mode, which gives a reasonable
overview of the random dynamics in the cell and better captures
transient behaviour. This method updates nodes of the system
according to the last update of their regulator nodes, either from
the previous or current iteration [88]. Previous studies have
employed numerous different versions of asynchronous updating
[27,67,89,90], including methods where all nodes are updated
according to a random sequence, or one randomly selected node
is updated at a timestep [91]. In this study, the asynchronous proto-
col updates η nodes per timestep, with η drawn from a Poisson
distribution with a mean equal to the number of original elements
in the regulatory network (M), plus the stress node. Additionally,
each node can be updated more than once per timestep and the
state of each node at t = τ + 1 depends on the states of its inputs at
themost recent update. We used an asynchronous protocol because
we believe it better captures the stochasticity in the cell.

4.6. Boolean analysis
Taken together, the wiring diagram, initial conditions, update
functions and update method form the Boolean network
model. Time-dependent numerical solutions of the presented
Boolean model were generated in PYTHON 3.8.2 using modules
numpy, pandas and random. Numerical solutions were calculated
from prescribed initial conditions covering the stressed and
unstressed state of each network. Time-series figures, displaying
the expression profiles of each node, were constructed from the
mean of node expression and standard deviation per timestep,
from 104 simulations. Visualizations of ‘single-cell’ expression
profiles, and pulse statistics, were constructed from 20 and
5000 randomly selected simulations, respectively. Transition
matrices were constructed from the simulation data and visual-
ized through a heatmap structure, from 107 simulations. Each
entry of the transition matrix is a non-negative real number
representing the probability of transitioning between two net-
work states from timestep t = τ to t = τ + 1. Clustering of global
states was performed using the same data, with an Euclidean
distance matrix from modules scipy.cluster and scipy.cluster.hierar-
chy. All scripts used in this study are openly accessible through
https://github.com/StochasticBiology/boolean-efflux.git.
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