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Fibromine is a multi‑omics 
database and mining tool for target 
discovery in pulmonary fibrosis
Dionysios Fanidis1, Panagiotis Moulos2* & Vassilis Aidinis1*

Idiopathic pulmonary fibrosis is a lethal lung fibroproliferative disease with limited therapeutic 
options. Differential expression profiling of affected sites has been instrumental for involved 
pathogenetic mechanisms dissection and therapeutic targets discovery. However, there have been 
limited efforts to comparatively analyse/mine the numerous related publicly available datasets, to 
fully exploit their potential on the validation/creation of novel research hypotheses. In this context 
and towards that goal, we present Fibromine, an integrated database and exploration environment 
comprising of consistently re-analysed, manually curated transcriptomic and proteomic pulmonary 
fibrosis datasets covering a wide range of experimental designs in both patients and animal models. 
Fibromine can be accessed via an R Shiny application (http://​www.​fibro​mine.​com/​Fibro​mine) which 
offers dynamic data exploration and real-time integration functionalities. Moreover, we introduce a 
novel benchmarking system based on transcriptomic datasets underlying characteristics, resulting to 
dataset accreditation aiming to aid the user on dataset selection. Cell specificity of gene expression 
can be visualised and/or explored in several scRNA-seq datasets, in an effort to link legacy data with 
this cutting-edge methodology and paving the way to their integration. Several use case examples are 
presented, that, importantly, can be reproduced on-the-fly by a non-specialist user, the primary target 
and potential user of this endeavour.

Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive idiopathic pulmonary disease mainly manifested 
in older adults and characterized by extensive fibrosis of the lung interstitium that irreversibly affects normal 
lung function1. Although presenting a highly heterogeneous clinical course, half of the IPF patients succumb to 
respiratory failure or life-threatening comorbidities within 2–5 years post diagnosis2–4. Its enhanced morbidity, 
increased incidence among elder individuals4 and the lack of a curative option2 render IPF a rare disease of major 
concern, especially for ageing societies. Currently, new studies focus on providing healthcare practitioners with 
invaluable information about patient stratification and prioritization, non-pharmaceutical treatment options and 
medications confronting potentially fatal comorbidities2. Nevertheless, the task of new disease targets discovery 
is still greatly unfulfilled, as the most currently approved anti-fibrotics, nintedanib and pirfenidone, may delay 
lung function decline, but cannot help patients evade a fatal outcome5.

Since their first appearance, omics technologies have been extensively used to assess pathological deregula-
tion in multiple molecular levels, thus physically leading to the progressive accumulation of a great volume 
of publicly available datasets. As far as IPF is concerned, a large number of expression profiling studies in IPF 
patients, as well as animal models, have been performed providing the scientific society with important lists of 
implicated targets such as that of Kim et al.6. Most of their datasets have been deposited in public repositories, 
but the qualitative assessment and mining of this vast legacy information, require significant expertise and time 
investment, not always available at the average research lab.

Irrespective of its laborious nature, comparative meta/re-analysis of publicly available datasets would provide 
additional means to discover novel pathogenic targets. Towards this direction, several attempts have been made 
to integrate IPF datasets7–11, yet none of them spans a comprehensive collection of sample types, technologies 
and pathology models, while real-time data exploration features are either limited or absent.

Recognizing the need for a centralized, easily operable and comprehensive source of IPF(-related) data, we 
here introduce Fibromine, an open source application and database of integrable omics datasets accompanied 
by rich gene/RNA/protein level annotation and dataset meta-data. Currently, Fibromine hosts 60 consistently 
re-analysed and manually curated transcriptomic and proteomic datasets ranging over 42 unique comparisons, 
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two species and several cell culture-based experiments. Moreover, and to increase data resolution, our database 
hosts a collection of more than 200,000 single cells originating from healthy and various pulmonary diseases sam-
ples. Fibromine can be accessed through a website (http://​www.​fibro​mine.​com/​Fibro​mine) that offers, amongst 
others: (i) within and across species integration of the supported datasets (Dataset explorer), (ii) interrogation 
of coding and non-coding gene expression patterns (Gene explorer; miRNA explorer), and (iii) exploration of 
protein abundance changes during disease (Protein explorer). In addition, other functionalities include the crea-
tion of disease-specific protein–protein interaction (PPI) (Protein explorer) and lung-specific gene co-expression 
networks (Gene co-expression), inter-connection with single cell resolution data visually via Gene explorer and 
in more detail via Single cell data tab, pathway analysis of consensus differentially expressed genes (cDEGs) and 
creation of heatmaps and volcano plots (Dataset explorer). Last but not least, in order to guide the user through 
transcriptomic datasets’ underlying characteristics and inherent variability, a dataset benchmarking strategy 
based on seven distinct metrics has been applied (Datasets benchmarking tab). Conclusively, Fibromine not only 
aims to facilitate specialist and non-specialist users to validate their findings/observations and/or form nascent 
hypotheses prior to any time-consuming wet lab validation, but also to boost downstream research attempts via 
unconstrained access to all database data and integration/mining outputs.

Results
Fibromine datasets selection, re‑analysis, curation and organization.  Aiming to create a central-
ized repository for IPF omics data, we catalogued a plethora of publicly available microarray and RNA-seq tran-
scriptomic datasets via PubMed and omicsdi.org using “IPF” and “bleomycin” as search keywords for human 
and mouse datasets, respectively. In the case of omicsdi.org, search results were further narrowed down using 
the “Transcriptomics” filter. Datasets included in the work of Villaseñor-Altamirano11 were also taken into con-
sideration and finally, references from an IPF transcriptomics review3 along with results from ReGEO12 search 
using the “IPF” keyword were intersected with the already found datasets to form an initial pool of IPF datasets. 
To maintain the most informative, we excluded, among others, those consisting of less than three biological rep-
licates, those of poor data quality (see further down), as well as those created using custom developed platforms 
(Fig. 1a). A few exceptions to the latter criterion were made to include datasets such as GSE31934 that address 
rarely explored scientific questions.

A major issue in all meta-analytic efforts that include data from various technological principles is the pres-
ence of technical heterogeneity within and across datasets that can, if ignored, greatly affect the data integration 
results by introducing non-biological sources of variability. Hence, to address technical variability in a scalable 
fashion that would facilitate future Fibromine updates without the requirement of already included data re-
processing, we have re-analysed the collected transcriptomic datasets in a modular fashion maintaining the 
same re-analysis methods/parameters both across and within technologies in the highest degree possible. Then, 
to pinpoint and remove any sample outliers, all re-analysed datasets were manually curated using Principal 
Component Analysis (PCA)/MultiDimensional Scaling (MDS) and samples hierarchical clustering plots (Fig. 1a, 
Supplementary Fig. S1). Datasets failing to pass quality control criteria were excluded.

Subsequently, in order to further increase data resolution, we have pinpointed marker genes of all pathology-
originating cells compared to healthy donated ones, as integrated by Mayr et al.13. Pathology versus healthy state 
comparisons were performed for over 40 cell types’ top variable genes, resulting in an expression profiling of ten 
different pulmonary diseases.

Furthermore, in order to complement differential gene expression data, we retrieved deregulated proteins 
between IPF and control/healthy individuals from respective publications (Fig. 1a). The latter were selected 
via an extensive manual literature search and the only criterion applied for dataset selection was the provision 
of Differential Expression Analysis (DEA) results for more than just a couple of proteins in a tabular format. 
Proteomic datasets selection procedure was not as strict as the one for gene expression data, due to the relatively 
small number of the former publications relative to the latter14,15. Proteins quantified in mixtures/same aptamer 
were removed, while DEA thresholds were kept as is in each original publication.

With the purpose of organising the aforementioned data, we created Fibromine, a dedicated application 
backed by a manually curated database that holds both DEA results and normalized transcriptomics data from 
47 human and 13 murine datasets (Fig. 1a, Supplementary Fig. S2). Subsequently, because several datasets sup-
port multiple DE comparisons, we armed Fibromine with a controlled vocabulary of terms so as to be able to 
effectively codify and match all included phenotypes/DE comparisons across datasets. More specifically, based 
on respective literature and GEO retrieved nomenclature, all DEA comparisons were denoted by a three-part 
phrase, such as A_vs_B (or A vs B), where the first and third elements represent the two participating experi-
mental conditions. Any dashes or underscores used in the comparisons pre-fix and suffix elements, A and B, 
separate sample from potential treatments and/or time-points. The capital letter D followed by one or multiple 
digits is used to denote the day of sample collection respective to the starting time-point of a given treatment.

Last, to enrich these data and support an unhampered by external parameters data exploration experience 
we have also included into Fibromine gene, transcript and protein level annotation retrieved from Ensembl16, 
UniProt/Swiss-Prot17 and STRING databases18, as well as gene ontology terms from Refs.19,20, miRNA annotation 
downloaded from mirBase21 and miRNA target interaction predictions from miRDB22 (Fig. 1a). Human and 
mouse transcription factor annotation was obtained from Refs.23,24, respectively. All operations were supported 
by in-house developed R/bash scripts and the use of GEOquery25 and biomaRt26 Bioconductor packages.

Conclusively, Fibromine is an ab initio created IPF-oriented database that interlinks a great volume of DEA 
results with rich out-sourced annotation. In addition, it is worth mentioning that Fibromine is the first lung 
fibrosis database that encompasses multi-omics and multi-species data, thus offering a great starting line for 
comparative meta-analyses.

http://www.fibromine.com/Fibromine
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Fibromine datasets benchmarking.  As meta-analytic collections are prone to factors introducing bio-
logical/technical heterogeneity and IPF is a highly heterogeneous pathology, Fibromine’s controlled vocabulary 

Figure 1.   Fibromine database creation workflow and homonymous web server map. (a) Fibromine included 
datasets were discovered via literature, https://​www.​omics​di.​org/ and http://​www.​regeo.​org/ scrutiny prior 
to specific criteria-based selection. Transcriptomic datasets were re-analysed and manually curated, while 
differentially expressed proteins were gleaned from respective publications. Differential expression was 
performed in a collection of three integrated scRNA-seq datasets. Annotation was sourced from various open-
access resources. (b) Fibromine web interface is Shiny-powered. It is made out of three main explorers Dataset, 
Gene and Protein explorer and several smaller ones, while Datasets benchmarking tab provides a metrics-based 
system of datasets accreditation. Single cell data tab provides a list of relative published studies along with DEA 
results from three integrated datasets. The user can also map a gene directly to several single cell datasets via 
Gene explorer. MDS: multi-dimensional scaling, PCA: principal component analysis. Annotation sources: 
https://​string-​db.​org/, https://​ensem​bl.​org/, https://​mirba​se.​org/, http://​geneo​ntolo​gy.​org/, https://​unipr​ot.​org/, 
http://​bioin​fo.​life.​hust.​edu.​cn/​Anima​lTFDB/, http://​mirdb.​org/. Figure was created using https://​www.​google.​
com/​slides/​about/.

https://www.omicsdi.org/
http://www.regeo.org/
https://string-db.org/
https://ensembl.org/
https://mirbase.org/
http://geneontology.org/
https://uniprot.org/
http://bioinfo.life.hust.edu.cn/AnimalTFDB/
http://mirdb.org/
https://www.google.com/slides/about/
https://www.google.com/slides/about/
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may be up to a certain point capable of standardizing the DE comparisons included, but definitively cannot assess 
datasets underlying biological and technical differences that may affect any downstream integration attempt. For 
this reason, as well as the fact that most datasets’ meta-data do not comprehensively describe crucial informa-
tion that would assist in a variability reduction endeavour, instead of directly dealing with data variability we 
next set to offer a thorough means of datasets evaluation, easily interpretable by all users. For such a purpose, 
we designed a dataset assessment system, which we implemented on dataset/DEA groupings (Fig. 2a) in order 
to distinguish and accredit the most similar datasets within certain groups shaped using experimentally-based 
criteria. Our strategy is currently based on seven broadly used metrics: (i) the number of detected and (ii) dif-
ferentially expressed genes, (iii) the representation of known pro-fibrotic genes among each dataset’s Differen-
tially Expressed (DE) genes, (iv) the number of genes with low {x, 1.2 < x < 2)}, intermediate {x, 2 ≤ x < 5} or high 
{x, 5 ≤ x} absolute fold change, (v) the ratio of up- to down-regulated genes, as well as the area under their (vi) 
nominal and (vii) adjusted p-value distributions. Human pro-fibrotic genes already known to be implicated in 
pulmonary fibrosis were collected both from Ref.3 and from our lab’s multi-year observations, while their homo-
logue counterparts, as reported in Ensembl database, were used for murine datasets assessment.

More specifically, we separated all bulk transcriptomic data by technology, platform, species, dataset and DEA 
comparison and then calculated the aforementioned metrics (Fig. 2a,b). Afterwards, data were grouped per spe-
cies/technology and metric-specific distributions were constructed (Fig. 2c,d). Last, datasets/DEA comparisons 
were accredited a star for every calculated value of a metric lying within a pre-specified distribution interval 
(7 stars at maximum) (Fig. 2e,f, Supplementary Fig. S3). All benchmarking results are recorded at Dataset and 
Gene explorer matrices, while an analytical description of the process along with intermediate products can be 
found at Datasets benchmarking tab of Fibromine. Datasets/DEA comparisons with more stars are most similar 
to each other relative to the rest of the group. Datasets investigating exclusively non-coding genes were processed 
separately using the same workflow. Finally, because our database addresses a wide variety of experimental con-
ditions which are expected to affect benchmarking results when assessed simultaneously, we have repeated the 

Figure 2.   Fibromine transcriptomic datasets benchmarking workflow. In order to reveal the most 
homogeneous transcriptomic datasets of Fibromine, seven metrics were calculated (b) post to data separation 
(a). Subsequently, transcriptomic data were grouped per species and technology (c) and seven metric-specific 
distributions were shaped for each of the dataset groups (d). Finally, every dataset/DEA comparison was 
evaluated relative to the rest of its grouping and assigned a star if the calculated criterion value lied within a pre-
specified interval of the respective distribution (e). Each dataset received 7 stars to the maximum and none to 
the minimum. Datasets with many stars are more closely related to each other than to the rest of the group. (f) A 
real example of stars assignment: red dots are datasets/DEA comparisons assigned a star for the Number of pro-
fibrotic genes criterion. Datasets investigating exclusively non-protein coding genes were processed separately 
using the same workflow. Boxplots depict the interquartile range and median of the data; whiskers extend no 
longer than 1.5 times the length of the boxplot. DEGs: differentially expressed genes, FC: fold change, AUC: area 
under the curve. Figure was created using https://​ggplo​t2.​tidyv​erse.​org/ v3.5.5 and https://​www.​google.​com/​
slides/​about/.

https://ggplot2.tidyverse.org/
https://www.google.com/slides/about/
https://www.google.com/slides/about/
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aforementioned process exclusively for datasets belonging to important Fibromine comparisons (IPF_vs_Ctrl 
and BleomD14_vs_Ctrl on lung tissue) (Supplementary Fig. S4).

To conclude with, although not completely treating data variability, the realized datasets benchmarking 
strategy provides an extra layer of datasets comparative information, not readily available neither from raw, 
publicly available data, nor directly extractable from respective publications, based on which the most interest-
ing/ “homogeneous” datasets can be picked for integration and/or mining.

Fibromine online interface: a web tool for IPF data integration and mining.  A central pillar of 
the hereby described endeavour, is to facilitate data mining (mainly data summarization and aggregation) and 
comparative exploration of Fibromine data for the non-specialist user. For this reason, we have developed a 
Shiny-based online application that enables data access from three distinct but complementary points of obser-
vation: from a dataset (Dataset explorer), from a gene (Gene explorer; miRNA explorer) and from a protein level 
(Protein explorer). In addition to the aforementioned layers of information, Gene co-expression tab graphically 
displays significant modules of human and mouse lung-specific gene co-expression networks, while Single cell 
data > Search data tab presents in a tabular format DEA results for a great number of single cells.

Dataset explorer.  To begin with, Fibromine’s Dataset explorer is divided into two tabs responsible for bulk 
transcriptomic (Transcriptomic datasets) and proteomic datasets (Proteomic datasets) (Fig. 1b), each one organ-
ised around a central interactive table. The user’s input is minimized to the selection of one (exploration) or mul-
tiple datasets of interest (integration) and the subsequent press of a button. Particularly, as far as transcriptomic 
datasets integration is concerned, Fibromine initially detects between datasets cDEGs (Fig. 3, Supplementary 
Fig. S5). Subsequently, it examines the available proteomic datasets matching the selected datasets experimental 
parameters for any consensus differentially expressed protein (cDEP) coded by any of the cDEGs. Addedly, in 
order to facilitate biological interpretation of the cDEG list, the user can perform over-representation analysis 
based on five gene-term libraries, exploiting the Pathway analyses tool provided. Concerning proteomic datasets 
integration, cDEPs are identified using the same pipeline of cDEGs determination. For more technical details 
about cDEGs and cDEPs, please, refer to "Methods" section of the paper.

Understanding the limitations and subjective nature of adopting strict statistical thresholds for consensus 
differentially expressed features (cDEFs) definition (“Methods” section), we have enabled the user to adjust the 
default fold change and hypothesis testing constraints used during transcriptomics data integration. This feature 
is not available for proteomic datasets, because the original publication thresholds were considered as is for the 
identification and isolation of Fibromine-included DE proteins. Moreover, the user can further influence the 
strictness of cDEFs report via the Out of … Datasets column of Consensus DEGs/Consensus DEPs result tables, 
that controls the number of datasets out of the n user-selected ones where a feature’s expression has to be found 
consistently divergent, in order to be recognised as a cDEF (“Methods” section).

Last, as an extra means for transcriptomic datasets inspection, an interactive exploratory heatmap and volcano 
plot can be depicted upon demand at the Dataset plots tab of the explorer. There, the user can examine samples 
hierarchical clustering and create a volcano plot for each queried dataset. Selected markers of fibrosis are shown 
in the volcano plot providing a coarse-grained estimation of each dataset’s quality.

Gene explorer.  Being able to acquire differential gene expression data across a great number of samples 
and datasets in a targeted fashion, is a catalytic step towards supporting wet lab findings and fuelling novel 
hypotheses formation. To painlessly retrieve the aforementioned information from Fibromine, we have imple-
mented Gene explorer (Fig. 1b, Supplementary Fig. S6). Taking as input one or multiple genes of interest, Gene 
explorer displays the statistics (fold change, nominal and FDR adjusted p-value) of all their DE instances found 
in the database, along with information about their genomic position and biotype, related GO terms and RefSeq 
sequences. Moreover, as several miRNAs have been reported to be implicated in IPF pathology9, the display of 
miRDB-sourced mRNA-miRNA interactions relative to the queried protein-/miRNA-coding gene at the latest 
tab of the explorer can prove of extreme use. In parallel, the explorer displays data for any DEP coded by the 
queried genes. Last, in order to combine the better established methods of bulk DEA with the higher resolution 
of single cell data, Gene explorer maps each requested gene to single cell datasets of NU-Pulmonary cell browser 
in a species specific manner: human to Reyfman27 and murine to Joshi-Watanabe28 and Xie29 datasets. More 
details on published scRNA-seq pulmonary fibrosis datasets can be found in the Single cell data tab of our web 
server, along with DEA results of Mayr et al. dataset13 in a tabular format. Please, refer to "Single cell data" section 
of the paper for more details.

miRNA explorer.  Among the transcriptomic studies hosted by Fibromine, there are some having explicitly 
sequenced non-coding genes. Although these transcripts and their potential targets can be individually interro-
gated via Gene explorer, the latter does not simultaneously provide differential expression statistics for both cod-
ing and non-coding interactors. Thus, in order to accelerate the discovery of important regulatory interactions, 
we have created miRNA explorer (Supplementary Fig. S7). In more detail, we have integrated all IPF_vs_Ctrl lung 
non-coding array datasets and isolated the consensus differentially expressed miRNAs. Subsequently, we have 
performed likewise for their miRDB-sourced targets found at the bulk IPF_vs_Ctrl lung coding datasets. Both 
integrations were performed using the same pipeline applied to define cDEFs (“Methods” section) and |FC|> 1.2 
and FDR < 0.05 values were used as differential expression thresholds. As a result, the user can mine the most 
important regulatory pathways taking place during lung fibrosis by selecting any member of the deregulated 
miRNA list and automatically obtain all mRNA targets characterized by an opposite direction of expression.



6

Vol:.(1234567890)

Scientific Reports |        (2021) 11:21712  | https://doi.org/10.1038/s41598-021-01069-w

www.nature.com/scientificreports/

Protein explorer.  Although the IPF related proteomic datasets are significantly fewer than the respective 
transcriptomic ones14, the proteomic milieu may hold key leads for deciphering IPF progression. For this reason, 
we have equipped Fibromine with Protein explorer (Fig. 1b), a proteomic datasets accessor and protein–protein 
interaction network creation tool. Requiring as input only a protein’s coding gene name, the explorer initially 
presents some basic annotation for the queried protein, alongside the respective differential expression data, if 
any. Subsequently, aiming to inter-connect transcriptomic and proteomic expression data, the explorer hosts a 

Figure 3.   Same species datasets integration workflow. (a) Dataset explorer same species transcriptomic/
proteomic datasets integration workflow. Boxes of red correspond to front-end elements, while the rest account 
for back-end processes. Latin number elements are presented in (b). (b) Front end steps of transcriptomic 
datasets integration through Dataset explorer: (i) datasets selection, (ii) consensus DEGs table, (iii) consensus 
DEPs coded by any of the consensus DEGs and sharing the same direction of deregulation, (iv) analytical 
statistics table. Differential expression default parameters can be changed via a dedicated tuning panel (v). 
lof2FcAve column of (ii) holds the consensus direction of deregulation for each of the reported genes in a 
color coded fashion. Out of … Datasets column of the same table enables further tuning of consensus features 
identification procedure. cDEGs: consensus differentially expressed genes, cDEPs: consensus differentially 
expressed proteins. Figure was created using https://​www.​google.​com/​slides/​about/.

https://www.google.com/slides/about/
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condition-specific PPI network creation tool under the homonymous tab (Fig. 4). With the push of a button, 
the user can in real-time create a two-shell, high-confidence interactive network revolving around the queried 
protein and then automatically annotate it upon demand, based on the expression pattern of its nodes in any 
Fibromine-supported transcriptomic dataset/experimental comparison.

As far as network annotation is concerned, DE statistics for all genes coding for the UniProt/Swiss-Prot 
members of the network are initially isolated from the datasets corresponding to the experimental parameters 
selected by the user. Then, differential expression data are summarized for each of the genes into integration 

Figure 4.   Protein–protein interaction network creation and condition-specific annotation workflow. (a) Protein 
explorer back-end process for the creation and annotation of protein–protein interaction networks. Data on 
protein relationship and interactions confidence are retrieved from Fibromine included UniProt data. Boxed 
and Latin numbers in red correspond to front-end elements presented in (b). (b) The pipeline on the front-
end of Protein explorer: (i) specific protein query, (ii) selection of experimental parameters to consider, (iii) 
annotated network. Figure was created using https://​www.​google.​com/​slides/​about/.

https://www.google.com/slides/about/
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labels holding the consensus direction of deregulation: Non-DE, Up-regulated and Down-regulated. Genes coding 
for TrEMBL proteins are assigned the Unknown label as Fibromine does not currently support TrEMBL entries. 
The aforementioned labels are used to color-code network nodes and thus transfer all available transcriptomics 
information into the protein level. Analytical statistics of the data used to annotate the network can be inspected 
at the Data used tab of the explorer, while it is worth mentioning that the default DEA thresholds are easily tun-
able to meet all users’ expectations.

Gene co‑expression.  Gene co-expression analysis has been used successfully in the past for regulatory 
targets prediction in IPF9. Motivated by those previous attempts and in order to complement Fibromine’s PPI 
network creation tool, we have designed Gene co-expression tab to host a human (IPF_vs_Ctrl) and a mouse 
(BleomycinD14_vs_Ctrl) lung-specific gene co-expression network (GCN) (Supplementary Fig. S8). Through 
this tool, with only the selection of any, potentially, disease driving gene, as pinpointed via Weighted Gene Co-
expression Network Analysis (WGCNA), the user can plot interactive GCNs spanning any of the top fibrotic 
phenotype-related modules. Each network is built on the members of the module where the selected feature 
belongs. Network nodes represent genes with a module membership (MM) and gene significance (GS) above 
the 60th percentile of their respective module, while edges represent high confidence gene relationships, with a 
Topological Overlap Measure (TOM) above the 3rd quartile of the respective module’s distribution. The queried 
gene is marked in red and it is the only node allowed not to have any edge. Last, both MM and GS thresholds can 
be tuned via Fibromine to dynamically change the strictness of node selection.

Single cell data.  As mapping of genes at the single cell level through the Gene expression tab is limited to 
visual inspection of feature plots, we designed the Single cell data tab in order to provide detailed DEA statistical 
data from one of the biggest datasets regarding lung fibrosis13 (233,638 cells from 10 pulmonary diseases and 
control donor samples). More specifically, through Search data sub-tab the user can access DEA data of the top 
2000 most variable genes, examined for differentiating expression levels between each pathology and the control 
cells. These data are expected to increase resolution of the bulk sequencing data presented at the Gene explorer 
tab, as well as to generalize DEA findings to the greater niche of pulmonary pathologies.

Overall, Fibromine web server constitutes a data mining and integration portal suitable for all users irrespec-
tive their computational background. As far we are able to know, its highly-automated exploration features render 
Fibromine, the first IPF-revolving toolkit able to integrate data across species and experimental designs, map 
them to the single cell level in a visual and tabular format and to offer a quick and tangible way of transcriptomics 
data projection to an environment of proteomics intercommunication. Last but not least, two other prominent 
functionalities of Fibromine is mining and presentation of the most biologically promising lung fibrosis-specific 
miRNA-mRNA interactions and gene co-expression networks.

Usage of retrieved individual gene expression patterns for novel hypothesis formation.  Fibro-
mine’s Gene explorer enables interrogation of single/multiple gene expression motifs (consistently recurring 
DEA results across same/similar experimental conditions), a very useful feature to validate wet laboratory find-
ings and quickly deepen novel hypotheses formation. For example, following leads from cancer and inflamma-
tory diseases, our laboratory has used a primary version of Fibromine’s Gene explorer to discover that based on 
the three larger IPF_vs_Ctrl bulk lung datasets, MAP3K8 is down-regulated in IPF patients’ lungs30. In addition, 
inspecting MAP3K8 in higher resolution data via the explorer’s Map to single cell data feature instantly revealed 
an “enrichment” of gene’s expression in monocytic-lineage cells. These findings were further validated in the 
bleomycin-induced animal model of pulmonary fibrosis, where genetic deletion of MAP3K8 was shown to exac-
erbate the modeled disease30. All results impelling us to wet lab examination of MAP3K8 expression during lung 
fibrosis can be replicated using the Example button of Gene explorer and then filtering the DEG statistics table 
for lung tissue and IPF_vs_Ctrl comparisons (Supplementary Fig. S6).

Identification of “bona fide” differentially expressed genes in human and mice fibrotic 
lungs.  Another very useful function of Fibromine’s web server is its ability to encapsulate differential gene 
expression data from a great number of samples and datasets sharing similar experimental parameters. This 
feature is particularly important as it extends over the limited sample size of single datasets and yields results 
reported by several research efforts. IPF_vs_Ctrl and BleomycinD14_vs_Ctrl human and mouse lungs respec-
tively, constitute the two most numerous of the 42 unique differential expression comparisons available through 
Fibromine. To retrieve a list of potential fibrosis drivers for each of these experimental settings, we have initially 
pinpointed through Datasets benchmarking tab (Fig. 1b) those IPF_vs_Ctrl human lung datasets with at least 
4 stars (Fig. 5a) and the three top accredited BleomycinD14_vs_Ctrl lung murine datasets (Fig. 5b). Then, we 
integrated via Dataset explorer the human datasets retrieving a list of 2182 human cDEGs, prior to mouse data-
sets separate integration which displayed a longer collection of 3863 cDEGs. Both lists can be exported through 
Fibromine online application using the default thresholds (|FC|> 1.2 and p-value < 0.05) and requiring as input 
only the selection of the respective datasets from Transcriptomics datasets tab main interactive table. For more 
details on back-end processes, please, refer to respective sections of the publication.

Across‑species datasets integration.  Bleomycin-induced pulmonary fibrosis in mouse is a well-estab-
lished and broadly used model of pulmonary fibrosis31 and thus it is expected to bear common ground with 
the human disease. The aforementioned lists of consensus differentially expressed genomic features provide the 
opportunity for an inspection of model’s fitness to simulate human pathology, but such a comparative undertak-
ing surely requires extra manual processing. To avoid such a limitation, Fibromine enables automatic between 
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species integration of datasets upon their simultaneous selection through the explorer’s interactive table (Sup-
plementary Fig. S5). As can be seen from Fig. 5c, approximately one quarter of the initial 2182 human cDEGs 
were found to have a consistently deregulated mouse homologue, with their 1:1 across species homology being 
an extra factor advocating for a more probable cross-species direct relationship at the molecular level. Cross-
species cDEGs can be recreated through Fibromine via integration of the aforementioned datasets.

Discussion
As more and more omics datasets addressing divergence from steady state emerge and accrue to the existing ones, 
a big bet for the contemporary biomedical sciences is to be able to fruitfully mine latent information from these 
already available wealthy data sources in order to guide, accelerate and validate wet laboratory research. This 
strategy can prove extremely useful especially for rare diseases such as IPF, which logically attract less attention 
than more prevalent ones. Moreover, biomedical sciences have nowadays entered an era of single cell centred 
research, enabling pathologies exploration at an unprecedented level of resolution. Nevertheless, pulmonary 
fibrosis research still lacks a central resource that would help scientists to exploit the vast legacy of bulk omics 
and single cell datasets and their inherent characteristic such as a smaller drop-out effect32. Furthermore, as 
deconvolution methods have proven to be affected by data pre-processing33 steps, a comprehensive collection of 
consistently handled bulk data could also facilitate the verification of single cell level observations by providing 
the bulk sequencing material necessary for such analyses.

Taking all the above into consideration, we have developed Fibromine, a database of IPF omics datasets of 
both transcriptomic and proteomic nature, spanning human and murine research deliverables of various designs. 
For this purpose we initially manually selected, consistently re-analyzed and carefully curated a great number of 
bulk transcriptomic and proteomic datasets which consist the backbone of our database. The latter, also includes 
wealthy third-party annotation and dataset meta-data yielded from literature. Smooth access to Fibromine 
is ensured by a Shiny-powered web server that simultaneously examines data from multiple complementary 
perspectives: from a dataset, a single gene/protein, a gene co-expression and protein–protein interaction point-
of-view. Crucially, bulk sequencing resolution is increased via provision of in-house single cell level data organ-
ized in a tabular format and dynamical connection to external single cell data resources for visual examination. 
Last, for those users who wish to perform their own downstream analysis, our server supports download of all 
included data and integration/mining results.

One of the main assets of the hereby presented project is the freedom it provides to the user to fine-tune cru-
cial exploration and integration parameters. To begin with, the user can experiment changing the default DEA 
thresholds which in turn affect, amongst others, the features of dataset integration and PPI network annotation. 
In addition, by consulting the available datasets meta-data, the gene/protein annotation included, and more 
importantly our transcriptomic datasets accreditation system, the user has a quick and tangible means of shaping 
a well calculated decision regarding which data are contextually best to investigate. Most importantly, thanks to 

Figure 5.   IPF_vs_Ctrl lung and BleomycinD14_vs_Ctrl datasets integration. (a) Integration of the IPF_vs_Ctrl 
lung datasets with at least 4 accreditation stars. (b) Integration of the top 3 starred BleomycinD14_vs_Ctrl 
datasets. (c) Across-species integration of the (a,b) datasets. Selection of the top accredited human and mouse 
transcriptomics datasets for integration leads to the identification of 504 consensus DEGs. All intermediate and 
integration output lists can be retrieved through Fibromine. Integration was performed using default differential 
expression thresholds. cDEGs: consensus differentially expressed genes, DEA: differential expression analysis. 
Figure was created using https://​www.​google.​com/​slides/​about/.

https://www.google.com/slides/about/
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our datasets benchmarking system, the user has a tangible means of comparing transcriptomic datasets based 
on their otherwise not readily accessible characteristics.

Apart from the well-established data analysis methods used, the operation of Fibromine website is subject 
to certain assumptions. First, instead on inspecting corrected p-values for cDEG identification, Fibromine uses 
their nominal counterparts in order to avoid exclusion of borderline significant features, which may be however 
reported as deregulated using the looser uncorrected threshold in multiple of the user integrated datasets, thus 
indicating a latent biologically significant feature. In parallel, as multiple testing bias indisputably needs to be 
taken into consideration, corrected per-dataset statistics for the features reported are presented in the Transcrip-
tomics or Proteomics analytically tabs. We strongly encourage consultation of the latter prior to any wet or dry 
laboratory downstream procedure. Furthermore, although very informative, some of the metrics used during 
datasets benchmarking are based on some general assumptions, such as that the murine homologues of human 
pro-fibrotic genes exert the same effect in the mouse IPF model and thus, may require future fine-tuning. As far 
as PPI networks annotation is concerned, the decision of using transcriptomic instead of proteomic data was 
determined by: (i) the tremendously smaller number of supported DE proteins (693 unique ones) compared 
to the number of described DE genes (17,153 unique DE protein coding genes; |FC|≥ 1.2 and FDR corrected 
p-value < 0.05) and (ii) the currently limited number of included proteomic data experimental designs compared 
to those of transcriptomics nature. Therefore, use of the former instead of the latter would have surely limited PPI 
annotation options and would have led to the characterization of an excess of nodes as Non-DE, thus rendering 
the tool rather impractical.

Further work needs to be done for Fibromine’s active maintenance and expansion. Despite the careful litera-
ture inspection, some of the latest transcriptomic datasets may not have been included into our database and 
some minor DE comparisons supported by the currently included datasets have not yet been examined. On top 
of that, our database currently addresses an important yet incomplete portion of proteomic data (IPF_vs_Ctrl 
human datasets) which will also be expanded to include invaluable datasets such as Ref.34. Last but not least, 
enrichment of Fibromine with datasets from other omics technologies such as metabolomics, lipidomics and 
predominantly a greater number of single cell datasets are some of our top priorities.

Conclusively, this endeavour set out to implement from scratch a centralized web resource for the acceleration 
of IPF research. Through Fibromine, both computational and most importantly non-computational background 
supported biomedical scientists can quickly and effortlessly obtain, integrate and compare information regard-
ing DE events during a wide variety of IPF-related conditions. Hopefully, Fibromine will prove itself the driving 
force for novel hypothesis formation and new biomarkers discovery.

Methods
Datasets re‑analysis and curation.  Microarray datasets re-analysis was performed using ad hoc devel-
oped pipelines based on well-established tools and methods, while metaseqR2 Bioconductor package35 was used 
for the re-analysis of RNA-seq data.

For microarrays data processing, limma36, oligo37 and beadarray38 Bioconductor packages consisted the analy-
sis workhorses while arrayQualityMetrics package was utilized for quality control purposes39. More specifically, 
probe intensities were within-technology consistently background corrected, within- and across-technologies 
uniformly normalized using quantile normalization and then summarized to the gene level using a weighted 
average. Control sequences and probes mapping to multiple HGNC gene symbols were removed from further 
analysis. DEA was conducted for all datasets using the limma moderated t-test statistics method.

RNA-seq fastq files were mapped to GRCh38.p13 and GRCm38.p6 genomes using a two steps alignment 
pipeline that exploits HISAT240 and Bowtie241 aligners. Initially, HISAT2 was used to map reads in a splice aware 
fashion, while those failing to align were delivered to Bowtie2 for a second, more sensitive alignment round. 
Further processing was conducted using the Bioconductor package metaseqR235: raw counts files were quanti-
fied at the gene level, normalized with EDASeq42, filtered using default parameters and statistically analysed for 
DE using PANDORA algorithm. The latter combined the results of the well-known and broadly used DESeq43, 
DESeq244, edgeR45, limma-voom36 and ABSSeq46 DEA methods, leading to more precise lists of differentially 
expressed genomic features. More precisely, PANDORA combines individual DEA algorithms p-values in a 
weighted manner, with weights shaped according to each method’s performance during real-data based simula-
tions. As a result, among others, PANDORA achieves a better precision-recall trade-off and reduces the effects 
of gene length in downstream analyses, such as pathway analysis.

For microarray and RNA-seq datasets, sample outliers were identified prior to removal using PCA and MDS 
plots, respectively, as well as samples hierarchical clustering of log2-scaled normalized values of the thousand 
top DE genes. The later were defined using the thresholds of |FC|> 1.2 and a significant p-value at an FDR 
threshold of 5%.

Proteomics data were retrieved directly from published tables and DE thresholds were kept as is in each 
original publication. An exception was made for a single dataset47 due to the very limited number of DE proteins 
returned otherwise. Proteins quantified in mixtures/same aptamer were removed.

Identification of consensus differentially expressed features.  During same species datasets DEA 
results integration, a feature (either transcript or protein) is called consensus differentially expressed if it has 
been found consistently deregulated (in the same direction of deregulation) in at least half of the user-selected 
datasets and not significantly deregulated towards the opposite direction in any of the rest; Consensus DEGs/Con-
sensus DEPs tabs. According to those, we report as consensus direction of deregulation, the one most frequently 
encountered across them, while as consensus fold change the mean of their fold change values. When integrating 
datasets from multiple species, a feature is defined as consensus DE if it has 1:1 human:mouse homology (based 
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on Ensembl data) and has been found consistently deregulated in at least half of each species’ selected datasets. 
Datasets examining explicitly non-coding genes are not considered for across species integration. Consensus 
fold change is calculated as in the case of same species data. For reasons of clarity, only the human component 
of across species datasets integration is summarized in Datasets explorer’s Consensus DEG and Consensus DEPs 
coded tabs. In both the above cases, DEA thresholds are |FC|> 1.2 and p-value < 0.05 for genes and those applied 
during original analysis for proteins. For more on hypothesis testing thresholds selection, please, refer to “Dis-
cussion” section of the paper. All thresholds for DE genes identification are user-tunable from within Fibromine.

Pathway analysis.  Fibromine’s Dataset explorer supports pathway analysis of cDEGs. Specifically, enri-
chR package is used to connect with the Enrichr database and perform over-representation analysis for up and 
down regulated genomic features separately, based on five libraries: KEGG, BP GO, MF GO, BP GO and one of 
COVID-19-related associations. For more on current use and implementation of the aforementioned gene set 
libraries please refer to the latest Enrichr publication48.

Heatmap and volcano plot creation.  Dataset-specific Fibromine’s interactive heatmaps and volcano 
plots are crafted using heatmaply49 and plotly R package50, respectively. Clustering of each dataset’s samples is 
performed on z-score scaled log2-transformed normalized expression values of the top one thousand DE genes 
using Euclidean distance and complete linkage for clusters comparison. Volcano plots specify deregulated genes 
based on the thresholds of |FC|> 1.2 and p-value < 0.05. A significant, yet non-comprehensive list of genes known 
to be implicated in pulmonary fibrosis are indicated in every volcano plot.

Condition‑specific protein–protein interaction networks creation.  PPI networks are shaped 
according to Fibromine-incorporated STRING database18 data. More specifically, each network consists of two 
interaction shells, with the first including maximum nine, high confidence (interaction score > 700) proteins 
interacting with the queried one. For the determination of second shell elements, the two most confident inter-
actors for each of the first shell proteins are selected. Proteins already-considered for the first shell creation are 
not considered for the second one. All networks have a DrL layout with protein interaction scores used as edge 
weights.

For the condition-specific annotation of networks, genomic features coding for the network elements are 
identified and their differential gene expression statistics are recovered from the datasets corresponding to 
user-selected experimental parameters. From the aforementioned genes only those corresponding to UniProt/
Swiss-Prot members are retained and for the cases of 1:many UniProt/Swiss-Prot:gene entries the gene featured 
by UniProt as primary is utilized. Afterwards, each network node is assigned a label of a consensus direction of 
deregulation: “Unknown” if the gene product is not a Swiss-Prot member, “Non DE” if the corresponding gene 
is not DE and “Upregulated” or “Downregulated” for the deregulation cases. The latter two labels are shaped 
according to the following rules: if a gene is found DE in a single dataset or consistently deregulated in a couple 
of datasets, its direction of deregulation is kept as is; if a gene is found DE in a couple of datasets with an incon-
sistent direction of deregulation between the two, the biggest dataset’s direction of deregulation is maintained; 
if a gene is found DE in multiple datasets, then the most frequent direction is utilized. By default, DE genes are 
defined as those having an absolute fold change bigger than 1.2 and a p-value smaller than 0.05. Multiple testing 
corrected statistics are presented at the Data used tab of the explorer.

Gene co‑expression networks creation.  For the human network, IPF_vs_Ctrl lung tissue datasets with 
more than four stars assigned were selected (GSE10667, GSE24206, GSE48149, GSE47460_GPL6480, GSE53845, 
GSE83717, GSE99621), while the three most accredited BleomycinD14_vs_Ctrl were chosen for the mouse one 
(GSE18800, GSE40151, GSE34814). Normalized, z-transformed gene expression values were applied to deter-
mine the scale-free co-expression modules via WGCNA51. Biweight midcorrelation, a more robust alternative 
of Pearson coefficient, was used to create a signed network, while signed Topological Overlap Measure (TOM) 
was calculated by adjacency transformation to decrease noise. Network modules were identified using (1-TOM) 
as a distance metric and module eigengene (ME) was determined using default parameters. Closely clustered 
modules (0.25 and 0.40 distance determined by hierarchical clustering for human and mouse, respectively) were 
merged. MEs were correlated to the trait of interest (fibrotic/non-fibrotic tissue) and those with a significant 
Pearson correlation coefficient were maintained (|ρ|> 0.6; p-value < 0.05). Potential phenotype-drivers were pin-
pointed by intra-modular analysis having a statistically significant module membership and gene significance 
value (p-value < 0.05). Pearson co-efficient for the latter two metrics can be adjusted via Fibromine server for a 
more thorough and objective features selection.

For the creation of network visualisations, all features of the selected gene’s module with module membership 
and gene significance above the (default) 60th percentile are selected. Network edges represent correlations in the 
3rd quartile of the pre-calculated TOM and with the exception of the queried gene, all genes having a zero degree 
of connectivity are dropped prior to minimum spanning tree calculation and network visualization. Network 
layout is automatically chosen and the thresholds of module membership and gene significance are user tunable.

Single cell data analysis.  Seurat package v.4 was used for the analysis of single cell data found  here. In 
detail, “empty” cells, as annotated during original analysis, were removed prior to identification of the top 2000 
most variable genes using the vst method (FindVariableFeatures). Finally, Wilcoxon rank sum test was used for 
DEA of the above mentioned genes using default parameters (FindMarkers).

https://drive.google.com/uc?export=download&id=13vf6Fcy6cCJUuGvbnj5sQDhayLRq7op1
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Data availability
The data that support this study can be accessed freely via http://​www.​fibro​mine.​com/​Fibro​mine, a Shiny-based 
web tool.

Code availability
The code for the creation and operation of Fibromine web server is available via https://​github.​com/​dfani​dis/​
Fibro​mine.
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