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Abstract: To the on-site nursing staff or field management in prehospital emergency care, it seems
baffling to conduct more targeted checklist tests for a specific disease. To address this problem,
we proposed a decision support method for prehospital emergency care based on ranking the
importance of physiological variables. We used multiple logistic regression models to explore the
effects of various physiological variables on diseases based on the area under the curve (AUC) value.
We implemented the method on the intensive care database (i.e., the Medical Information Mart for
Intensive Care (MIMIC-III) database) and explored the importance of 17 physiological variables for
24 diseases, both chronic and acute. We included 33,798 adult patients, using the full physiological
dataset as experiment data. We ranked the importance of the physiological variables related to the
diseases according to the experiments’ AUC value. We discussed which physiological variables should
be considered more important in adult intensive care units (ICUs) for prehospital emergency care
conditions. We also discussed the relationships among the diseases based on ranking the importance
of physiological variables. We used large-scale ICU patient data to obtain a cohort of physiological
variables related to specific diseases. Ranking a cohort of physiological variables is a cost-effective
means of reducing morbidity and mortality under prehospital emergency care conditions.
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1. Introduction

Improving the quality and performance of prehospital emergency care (PEC) is a cost-effective way
of reducing morbidity and mortality under emergency conditions [1,2]. Some studies are beginning to
investigate the feasibility of checklists in improving prehospital emergency care [3,4]. For instance,
Kang et al. proposed an artificial intelligence (AI) algorithm based on deep learning to predict the
severity of a patient’s medical condition in emergency medical services (EMSs) [5]. However, obtaining
the checklists for emergency conditions using AI is still a big problem.

To address this problem, data-driven analytical approaches played an increasingly important
role in clinical practice and research in the application of the rapidly developing medical database.
As such, there are opportunities to transform healthcare using “big clinical data” [6]. Using clinical
data to explore the relationships between physiological variables (PVs) and diseases was an essential
topic in clinical research. For diseases in intensive care units (ICUs), it is necessary to understand
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the importance of PVs in the disease process. For PEC, our work can help to more comprehensively
understand the PVs related to diseases. Then, a checklist can be constructed during PEC using
our method. Moreover, based on the influence of PVs on a disease, associations among diseases can
be found, promoting the disease research process.

Many machine learning studies have been carried out in recent years using clinical databases.
Most research has focused on the application of the electronic health record (EHR), which can be
used to predict discharge medications at admission time based on a convolutional neural network
(CNN) model [7]. Of course, there are also a few studies aimed at PVs and diseases, for example,
using 13 frequently employed clinical measurements based on long short-term memory networks
(LSTMs) to classify diagnoses in pediatric intensive care unit (PICU) [8]. However, research in this
field is scarce, even though there are many records in clinical data, including electronic health records,
disease diagnoses, and the monitoring of PVs. PVs are temporal series representing the evolution of
a physical variable related to a patient’s physio-pathological state. Generally, a disease is related to
multiple PVs. In addition to the lack of research in this field, there are few methods to explore the
knowledge gap between multiple PVs and diseases.

In ICUs, the useful analysis of the effects of multiple PVs on a disease can help to provide better
care for patients with a specific disease and to promote the disease research process. In medical data,
PVs are well documented and reflect the evolution of a patient’s condition. Therefore, among the many
PVs recorded, a comprehensive understanding of the importance of each PV to a disease can improve
the quality of care. Moreover, if different diseases are associated with multiple identical PVs, it will
provide a point of contact for disease research. Both obesity and hypertension are closely related to
body weight, and obese people often have high blood pressure. Therefore, based on the relationship
between PVs and diseases, PVs may be a bridge in the study of disease relationships (i.e., subtypes of
the disease and complications).

The main contributions of this paper are summarized below. First, we proposed a decision support
method for prehospital emergency care based on ranking the importance of PVs. The most important
multiple PVs precisely reflect the conditions of patients and differ from the results provided by a single
PV for a disease. We proposed a method using machine learning to explore the relationship between
multiple PVs and a specific disease using large-scale data. We found that in ICUs, a cohort of PVs
related to a specific disease is sufficient to understand the disease and take care of the patient. Then, we
proposed PVs that should be given the most attention in adult ICUs for common conditions, including
critical diseases and chronic diseases. In real PEC, the ranked PVs can be referenced as a potential
PV checklist for a specific disease. It also can offer easy-to-follow instructions, reduce diagnostic and
therapeutic errors, and change incorrect behaviors. Finally, we were able to find links between the
sets of two diseases based on PVs. For example, the PVs ranked results show that the top three PVs
are the same between ‘conduction disorder’ and ‘coronary atherosclerosis and other heart diseases’.
It is verified that conduction disorder is usually a complication of coronary atherosclerosis and other
heart diseases. Another example shows that the second and third PVs are different between ‘diabetes
mellitus with complications’ and ‘diabetes mellitus without complications.’ It is known that diabetes
mellitus with complications and diabetes mellitus without complications are different subtypes of
the same disease. Therefore, more important PVs, including PV(Glucose), should be monitored to
distinguish different subtypes of diabetes mellitus.

2. Related Work

The burden on EMSs has increased considerably in many countries [9]. For example, in the last
ten years, prehospital EMS demand and emergency response times in Beijing have increased [10],
and therefore, more resources and effort should be devoted to PEC. The Danish prehospital EMS care
system has received major changes [11], and other national organizations have identified a need to
incorporate more evidence-based medicine in PEC [12]. For example, physician-manned prehospital
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EMSs have become widespread in Japan, leading to improved outcomes for patients who are likely to
require critical care in the prehospital phase [13].

The quality and performance of PEC are essential for saving more people in EMSs [1,2]. For instance,
the PEC systems in the defense medical services have been proven to save lives [14]. Indeed, PEC enables
the patient to be transported on the right platform, with the right medical team, to the right place.
In Swedish PEC, the majority of adverse events originate as a result of deviations from the normal
standard of care and incomplete documentation [15]. In EMSs, accurately predicting the severity of
a patient’s medical condition with an AI algorithm could overcome the limitations of conventional
statistical methods and have recently achieved state-of-the-art performance [5]. Decisions made by
paramedics during PEC have the potential to impact patient health outcomes and represent both
a professional risk for individual staff members, and a reputational risk to with regards to patient
trust [16]. In PEC, clinical decision support systems are not designed to replace humans, but can
help healthcare providers to remember relevant diagnostics and checklists (i.e., treatment options)
to improve the quality of PEC [17]. The checklists for PEC may help to improve adherence to
treatment guidelines [3], although the optimal PEC management is still under study [12]. For example,
EMS care for acute stroke varies widely across the United States; however, EMSs need more uniformed
high-quality care and specific standards for evaluating PEC [4]. Historically, performance within
the PEC setting has been assessed primarily based on response times. For instance, in South Africa,
more PEC-specific quality indicators, including response time, have improved PEC performance [18].

There is an extensive body of research on using the clinical database. Still, most studies have
explored the relationship between a single indicator and a single disease using small-scale data.
In medical research, an increasing number of studies are exploring the relationships between PVs and
diseases [19]. For example, the clinical control method has been applied to explore the relationship
between acute myocardial infarction (AMI) and glucose [20]. Meanwhile, Isabel et al. [21] found
an abnormal partial discharge of electroencephalography in Parkinson’s patients. The relationship
between the glycemic index and diseases, such as obesity, diabetes mellitus, and cardiovascular disease,
were explored in the works of Vega-López and Mårtensson et al. [22,23]. Many factors have been shown
to be associated with renal failure, such as high human body temperature and hypocomplementemia.
The results provided by DeQuattro et al. [24] suggest that there is a close relationship between human
body temperature and renal failure. Additionally, in the work of Tumer et al. [25], it was found that
pH levels could affect the probability of perioperative complications (e.g., cardiac surgery-associated
acute kidney injury).

Machine learning methods have been used to explore relationships between PVs and diseases.
In the work of Fan et al. [26], a constraint-based causality discovery method was proposed to obtain
more stable causal relationships. In the work of Jin et al. [27], the random forest (RF), linear discriminant
analysis (LDA), and support vector machine (SVM) methods were used to explore the relationship
between PVs (i.e., airflow and oxygen saturation signals) and chronic obstructive pulmonary disease.

3. Methods

Most previous studies have focused on the relationship between a single indicator and a
single disease, and most were based on small datasets (i.e., hundreds of patients). Here, we present
a decision support method for PEC based on ranking the importance of PVs. Our research aims to
explore the relationships between multiple PVs and a specific disease using large-scale clinical data.
As shown in Figure 1, the architecture of our method includes the ICU patients database and data
preprocessing, PV set design, and multi-nominal logistic regression models [28].
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Figure 1. A decision support method for prehospital emergency care based on ranking the importance
of physiological variables (PVs). AUC-ROC, area under the receiver operator characteristic curve;
ICU, intensive care unit; MIMIC-III, Medical Information Mart for Intensive Care; SpO2, oxygen
saturation; CRR, capillary refill rate; DPB, diastolic blood pressure.

3.1. ICU Patient Database and Data Preprocessing

3.1.1. ICU Database and Data Preprocessing

In Figure 2, our study data were derived from MIMIC-III [29], a real-world database. It is a
publicly available critical care database, and online courses and tests must be passed to gain access.
MIMIC-III contains data associated with 53,423 distinct hospital admissions for adult patients (aged
16 years or above) admitted to critical care units between 2001 and 2012, as well as 7870 neonates
admitted between 2001 and 2008; in total, it contains data associated with 61,293 distinct hospital
admissions, covering 38,597 distinct adult patients and 49,785 hospital admissions. Given the data
richness and authenticity of MIMIC-III, we chose it as our data source for this research. One of the
significant challenges facing machine learning in medicine is the lack of recognized benchmarks.
Previous studies have proposed a public benchmark for four different clinical tasks, supported by the
MIMIC-III database [30]. Therefore, our research inherits some ideas from this benchmark.
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Figure 2. The cohort selection, data extraction, and data-cleaning process of the experimental dataset.

3.1.2. Cohort Selection

First, due to the physiological differences between children and adults, we selected patients who
were over 16 years at the time of ICU admission. Second, each patient had one or more admission records
for one or more hospitals. During a single admission, as the patient’s condition changes, the patient
may be hospitalized one or more times and may even enter the ICU. The clinical events recorded on
each admission are individual measurements, observations, or treatments. With the development of
the patient’s disease, patients may be transferred from one department to another, or even from one
hospital to another, and the patient’s medical information records will be discontinuous during the
transfer. Thus, we only used their single admissions without complex and transferred information for
each patient to prevent possible information interference in the analysis.

3.1.3. Data Extraction

MIMIC-III records a large amount of medical data from patients. These data include the entire
diagnosis and treatment process of patients from admission to discharge, and the data types include
text records and digital medical data. In our study, we chose to focus on the PV monitoring data and
disease diagnosis record. Therefore, we identified the table that recorded the relevant information
and then selected the required data. These tables were: ADMISSIONS; PATIENTS; ICUSTAYS;
D_ICD_DIAGNOSES; DIAGNOSES_ICD; CHARTEVENTS; LAB EVENTS; and OUTPUTEVENTS.

In the selection process of PVs and diseases, as there are many complicated diseases in the records,
we focused on the impact of PVs on the 24 diseases shown in Table 1. These 24 diseases included
acute illnesses, chronic diseases, and some diseases with periodic attacks. In the raw spreadsheets,
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there was a series of measurements taken in the emergency department throughout the patient’s
hospital admissions. There were upwards of hundreds of surveillance records, and more than 40 in the
Physionet/CinC Challenge 2012 alone [31]. We chose 17 essential PVs because these are ubiquitous in
each patient in the ICU and have extensive research applicability. The details of each PV are provided
in Table 2.

Table 1. The 24 diseases focused on in this study.

No. Disease Name No. Disease Name

D1 Acute and unspecified renal
failure D13 Disorders of lipid metabolism

D2 Acute cerebrovascular disease D14 Essential hypertension

D3 Acute myocardial infarction D15 Hypertension with complications
and secondary hypertension

D4 Cardiac dysrhythmias D16 Fluid and electrolyte disorders

D5 Chronic kidney disease D17 Gastrointestinal hemorrhage

D6 Congestive heart failure;
non-hypertensive D18 Other liver diseases

D7 Chronic obstructive pulmonary
disease and bronchiectasis D19 Other lower respiratory diseases

D8 Complications of surgical
procedures or medical care D20 Other upper respiratory diseases

D9 Conduction disorder D21 Pleurisy; pneumothorax;
pulmonary collapse

D10 Coronary atherosclerosis and
other heart diseases D22

Pneumonia (except that caused by
tuberculosis or sexually

transmitted diseases)

D11 Diabetes mellitus with
complications D23 Respiratory failure; insufficiency;

arrest (adult)

D12 Diabetes mellitus without
complications D24 Septicemia (except in labor)

Table 2. The 17 PVs analyzed in this study.

No. PV Name (Abbreviation) No. PV Name (Abbreviation)

PV1 Oxygen saturation (SpO2) PV10 Temperature (TEMP)
PV2 Capillary refill rate (CRR) PV11 Systolic blood pressure (SBP)
PV3 Fraction inspired oxygen (FiO2) PV12 Respiratory rate (RR)
PV4 Glasgow coma scale total (GCST) PV13 Mean blood pressure (MBP)
PV5 Glasgow coma scale eye opening (GCSE) PV14 Height (Ht)
PV6 Glasgow coma scale motor response (GCSM) PV15 Heart rate (HR)
PV7 Glasgow coma scale verbal response (GCSV) PV16 Glucose (Glu)
PV8 pH (PH) PV17 Diastolic blood pressure (DBP)
PV9 Weight (Wt)

3.1.4. Data Cleaning

To obtain the final experimental data, we cleaned the data, including the correction and deletion of
some values. Data extracted from the MIMIC-III database have many erroneous entries, including noise,
missing values, outliers, and measurement unit errors. During this step, we obtained the records of
PVs and diseases, and the resulting data included around 30,000,000 events.
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3.2. PV Set Design

Sensitivity analysis is a method of studying and analyzing the sensitivity of changes in the state
or output of a system (or model) to changes in the system parameters or surrounding conditions.
Sensitivity analysis can determine which parameters have a more significant impact on the system
or model and is a guide for evaluating scientific models in practice [32]. Inspired by sensitivity
analysis methods, we explored which PVs have a more significant impact on diseases.

If there are n PVs considered, we will design n + 1 PV sets. The first one (all PV sets) includes
all PVs. All PVs except the SpO2 set include all PVs other than SpO2. We obtain n − 1 PVs sets with n
− 1 PVs in the same way. The PV sets are input for multi-disease predictions based on the multinomial
logistic regression model. For specific diseases, different AUC values can be obtained for various PV
set inputs. Based on these values, we ranked the importance of the PVs for the disease.

3.3. Multinomial Logistic Regression Model

In Figure 3, multinomial logistic regression is a classification model expressed by conditional
probability distribution P(Y|X). Assuming that the range of the discrete random variable Y is {1,2, . . ., K},
the multinomial logistic regression model is:

P(Y = k|x ) =
exp(wk·x)

1 +
∑K−1

k=1 exp(wk·x)
(1)

P(Y = K|x ) =
1

1 +
∑K−1

k=1 exp(wk·x)
(2)

where x ∈ Rn+1, wk ∈ Rn+1, k = 1, 2, . . . , K − 1.
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3.3.1. Parameter Estimation

Maximum likelihood estimation (MLE) can be used to estimate the model parameters when
training the multinomial logistic regression model. In this way, the problem becomes an optimization
problem with the logarithmic likelihood function as the objective function:

P(Y = k|x ) = π(x) (3)

P(Y = K|x ) = 1− π(x) (4)
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Likelihood function:
N∏

i=1

[π(xi)]
yi [1− π(xi)]

1−yi (5)

Logarithmic likelihood function:

L(w) =
N∑

i=1

[yi(w·xi) − log(1 + exp(w·xi))] (6)

We found the maximum value of L(w) and obtained the estimated value of w.

3.3.2. Feature Extraction

The details of feature extraction are shown in Figure 4. In this step, we inherited the
hand-engineered features of each physiological value presented in the work of Harutyunyan et al. [30].
To enhance the data, we computed six different sample statistic features on seven distinct sub-sequences
of a given time series. First, a given time series of a PV was used to calculate seven different features,
which were sub-sequences of the full time series: the first 10% of the time, the first 25% of the time,
the first 50% of the time, the last 50% of the time, the last 25% of the time, and last 10% of the time.
Second, each sub-sequence was used to compute six different sample statistic features, which included
the minimum, maximum, mean, standard deviation, skewness, and number of measurements. Finally,
each PV value was processed to obtain 42 (7 × 6) features.
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4. Experiment and Results

4.1. Experimental Dataset

In the classification and extraction of patients, it is necessary to extract relevant data from the
original MIMIC-III tables and to organize them by patients. The experimental dataset was processed as
shown in Figure 2. There were 46,476 patients (including 38,597 distinct adult patients), 61,293 distinct
hospital admissions, and 61,532 distinct ICU stays in MIMIC-III. First, during the cohort selection,
data with any patient hospitalizations that involved multiple stays in the ICU or transfers between
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different ICU units or wards were excluded in order to reduce the ambiguity of the results related to
hospitalization rather than ICU hospitalization. Moreover, due to the significant differences between
adult and pediatric physiology, all ICU hospitalization groups with patients under the age of 16
were excluded, and all records without a patient identifier were removed. During data extraction and
cleaning, only the events related to PVs were extracted, and events without an ICU stay identifier
were removed. A final total of 33,798 patients were selected, involving 42,276 ICU stays and more than
31 million clinical events.

4.2. Experimental Design

For the 24 diseases, we determined which PVs were most important for disease prediction based
on the idea of phenotypic classification. We performed 18 experiments based on a polynomial logistic
regression model, and we designed 18 PV sets as the input for multi-disease prediction based on a
multinomial logistic regression model. The all PVs experiment with 17 PVs was the essential reference
experiment for each disease. In each subsequent test, we retained 16 PVs and excluded the other PV.
Finally, we obtained AUC values for each disease. For specific diseases, different AUC values can be
obtained under various combinations of PVs. Based on these values, we obtained a cohort of PVs that
were the strongest predictors of disease in the ICU.

If the AUC value of the disease is significantly reduced because of the absence of a PV in
one experiment, the disease is assumed to be significantly associated with this PV, and therefore,
more attention should be paid to this PV for patients with this disease. Moreover, if two diseases
are associated with the same PVs, there may be a close link between the two diseases—for example,
similar diseases, complications, and different subtypes of the same disease.

4.3. Results

In the experiments, we obtained a series of AUC values. According to our original records, we got
a cohort of PVs related to different diseases. To validate our experimental results, we compared the
results with existing knowledge. For example, pH, temperature, and glucose were the top three PVs
for acute and unspecified renal failure, in accordance with previous studies [24]. Acute myocardial
infarction is also related to glucose [20], and glucose was ranked highly for acute myocardial infarction,
stroke, and heart failure. In Table 3, examples of ranking the importance of PVs are shown. Based on
existing knowledge, we know that high blood pressure is closely related to blood pressure, and diabetes
is closely related to glucose, and these relationships were reflected in our experimental results (shown
in Table 3). In summary, for specific diseases in ICUs, we should focus on the top-ranked PVs for
each disease.

In our method, we found that two different diseases may be related to the same PV. For example,
Figure 5 shows that conduction disorder, coronary atherosclerosis, and other heart diseases are
linked by the same three PVs—oxygen saturation, capillary filling rate, and heart rate. This suggests
a potential link between the diseases. As per confirmation, conduction disorders are usually the
clinical complications of coronary atherosclerosis and other heart diseases [33]. Figure 6 shows that
diabetes mellitus with complications is closely related to diabetes mellitus without complications.
Some top-ranked PVs are important predictors for them—such as glucose, systolic blood pressure,
and mean blood pressure. However, the second and third PVs are different between them. It is known
that diabetes mellitus with complications and diabetes mellitus without complications are different
subtypes of the same disease. Thus, we should monitor more important PVs including PV(Glucose) to
distinguish different subtypes of diabetes mellitus.
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Table 3. Examples of ranking the importance of PVs for different diseases.

Rank Conduction
Disorder

Coronary Atherosclerosis
and Other Heart Disease

Diabetes Mellitus with
Complications

Diabetes Mellitus without
Complications

1 HR 1 HR Glu Glu
2 CRR CRR SBP Weight
3 SpO2 SpO2 RR SBP
4 RR GCSM MBP MBP
5 GCST Glu HR TEMP
6 TEMP RR PH HR
7 GCSV TEMP Ht GCSE
8 DBP SBP GCSE SpO2
9 GCSE MBP GCST CRR

10 Glu DBP TEMP Ht
11 GCSM GCST DBP DBP
12 PH GCSE GCSM PH
13 Ht PH FiO2 GCST
14 SBP GCSV GCSV RR
15 MBP FiO2 Weight GCSM
16 FiO2 Ht SpO2 GCSV
17 Weight Weight CRR FiO2

1 PV abbreviation of heart rate. All the PVs have been defined in Table 2.
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The results are extensive, and since full validation was not possible, we validated only a subset of
the results, which proved that our method can adequately reflect the effects of multiple PVs on specific
diseases in ICUs, despite only using a subset. Moreover, correlations between diseases can be captured
based on PVs.

5. Discussion

The AUC values for coronary atherosclerosis and other heart disease predictions were higher
than the AUC values for conduction disorder predictions with the same PV set. This indicates that
coronary atherosclerosis and other heart diseases are more sensitive to PVs. Heart rate (HR) was the
most sensitive PV for both conditions [33]. However, the AUC values of the conduction disorder
prediction decreased more than for coronary atherosclerosis, meaning that the conduction disorder is
more sensitive to HR. Similarly, in Figure 6, the AUC values for the diabetes mellitus with predicted
complications were all higher than those for diabetes mellitus without predicted complications with the
same PV set, indicating that diabetes mellitus with complications is more sensitive to PVs. Glucose was
the most sensitive PV for them both. However, the AUC values of diabetes mellitus with complications
prediction decreased more than that of diabetes mellitus without complications. Diabetes mellitus with
complications is a more serious and a worse condition than diabetes mellitus without complications.
In Table 3, systolic blood pressure (SBP) is the second most important PV predictor of diabetes mellitus
with complications, which was verified based on hypertension being the most common complication
of diabetes mellitus [20].

In practice, the most important PVs that predict various diseases should be monitored. In PEC,
the more important PVs of ICU patients should be tested with skilled training. The ranked PVs can
be referenced as a potential PVs checklist for a specific disease, offering easy-to-follow instructions,
reducing diagnostic and therapeutic errors, and altering incorrect behaviors. This can help to improve
the quality of PEC and to save more patients.

5.1. Comparison to Other Methods

We compared the long short-term memory (LSTM), bi-directional long short-term memory
(Bi-LSTM) [15], and multinomial logistic regression (LR) models in Figure 7. The reason why we chose
the multinomial logistic regression model was because, for the three models compared, the conclusions
of all PVs related to diseases were consistent, but the multinomial logistic regression model required
the least processing time. Thus, we selected the multinomial logistic regression model.
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5.2. Limitations and Future Research

In this study, we demonstrated how the methods to rank PVs to support PEC can work using
the MIMIC-III database. However, changes in the disease spectrum and differences between regions
were not considered. In fact, for different regions, the PVs should be ranked with our method by
using real clinic datasets. Then, the PV checklist should be fitted to improve the quality of PEC
specific to the region. This will be the topic of our next study. Furthermore, we must try to reduce the
essential PVs as much as possible for disease prediction, without the need for complicated and costly
instruments. This could help provide intelligent decision support to save more lives during PEC.

6. Conclusions

In this paper, we proposed a decision support method for PEC based on ranking the importance
of PVs. We used large-scale ICU patient data to explore the relationships between multiple PVs and
specific diseases. For certain diseases, we found the importance of related PVs and determined a cohort
of PVs that should be monitored in ICU patients for PEC. Considering the richness and authenticity of
the data, our results are credible. Furthermore, in EMSs, this cohort of PVs will guide paramedics to
care for patients more effectively. Although a specific task inspired our solution, it has the potential to
be generalized to other clinical duties; for example, by switching target tags from PVs and diseases to
other biomedical entities, it could be used to explore new relationships.
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