

Received 27 July 2015 Accepted 15 August 2015

Edited by W. T. A. Harrison, University of Aberdeen, Scotland

+ These authors contributed equally.

Keywords: crystal structures; bromine... bromine contact; bromine...fluorine contact; *N*-aryl-tribromoacetamides

CCDC references: 1064065; 1419188; 1419189 Supporting information: this article has

supporting information at journals.iucr.org/e

OPEN d ACCESS

Crystal structures of three *N*-aryl-2,2,2-tribromoacetamides

S. Sreenivasa,^a S. Naveen,^b \ddagger N. K. Lokanath,^c \ddagger G. M. Supriya,^d H. N. Lakshmikantha^d and P. A. Suchetan^e* \ddagger

^aDepartment of Studies and Research in Chemistry, Tumkur University, Tumakuru, India, ^bInstitution of Excellence, University of Mysore, Mysuru-6, India, ^cDepartment of Physics, University of Mysore, Mysuru-6, India, ^dUniversity College of Science, Tumakuru, India, and ^eDepartment of Chemistry, University College of Science, Tumkur University, Tumakuru 572013, India. *Correspondence e-mail: pasuchetan@yahoo.co.in

Three N-aryl-2,2,2-tribromoacetamides, namely, 2,2,2-tribromo-N-(2-fluorophenyl)acetamide, C₈H₅Br₃FNO, (I), 2,2,2-tribromo-N-[3-(trifluoromethyl)phenyl]acetamide, $C_0H_5Br_3F_3NO$, (II) and 2,2,2-tribromo-N-(4-fluorophenyl)acetamide, $C_8H_5Br_3FNO$, (III) were synthesized and their crystal structures were analysed. In the crystal structure of (I), C-Br $\cdot \cdot \cdot \pi_{arvl}$ interactions connect the molecules into dimers, which in turn are connected via $Br \cdots Br$ contacts [3.6519 (12) Å], leading to the formation of a onedimensional ladder-type architecture. The crystal structure of (II) features chains linked by N-H···O and C-H···O hydrogen bonds. Two such chains are interlinked to form ribbons through $Br \cdots Br$ [3.6589 (1) Å] and $Br \cdots F$ [3.0290 (1) Å] interactions. C-Br $\cdot \cdot \pi_{aryl}$ and C-F $\cdot \cdot \pi_{aryl}$ interactions between the ribbons extend the supramolecular architecture of (II) from one dimension to two. In (III), the molecules are connected into $R_2^2(8)$ dimers via pairs of C- $H \cdots F$ interactions and these dimers form ribbons through $Br \cdots Br$ [3.5253 (1) Å] contacts. The ribbons are further interlinked into columns via $C-Br \cdots O = C$ contacts, forming a two-dimensional architecture.

1. Chemical context

N-Aryl-haloamides show a broad spectrum of pharmacological properties, including antibacterial (Manojkumar *et al.*, 2013*a*), antitumor (Abdou *et al.*, 2004), anti-oxidant, analgesic and antiviral activity (Manojkumar *et al.*, 2013*b*). Keeping this in mind, and as a part of our ongoing efforts to understand the effect of the ring substituents on the molecular and crystal structures of *N*-aryl-2,2,2-tribromoacetamides Suchetan *et al.*, 2010) and also to study the role of different halogen interactions in solid-state structures, the crystal structures of three *N*-aryl-2,2,2-tribromoacetamides, namely, 2,2,2-tribromo-*N*-(2-fluorophenyl)acetamide, (II), 2,2,2-tribromo-*N*-[3-(trifluoromethyl)phenyl]acetamide, (II) and 2,2,2-tribromo-*N*-(4-fluorophenyl)acetamide, (III), are discussed here.

2. Structural commentary

The molecular structures of (I), (II) and (III) are shown in Figs. 1, 2 and 3, respectively.

Figure 1

A view of (I), with displacement ellipsoids drawn at the 50% probability level.

Figure 2

A view of (II), with displacement ellipsoids drawn at the 50% probability level.

A view of (III), with displacement ellipsoids drawn at the 50% probability level.

In (I), the conformation of the N-H bond is *syn* to the 2-fluoro substituent in the benzene ring, similar to that observed in the crystal structures of other *ortho* substituted compounds (see database survey). Contrast to the above, in (II), the conformation of the N-H bond is *anti* to the 3-CF₃ substituent.

Table 1 Hydrogen-bond geometry (Å, °) for (I).

$D - H \cdot \cdot \cdot A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$N1-H1\cdots Br3$	0.86	2.56	3.056 (4)	118
$N1-H1\cdots F1$	0.86	2.26	2.646 (6)	107
$C6-H6\cdots O1$	0.93	2.32	2.896 (7)	120

Table 2Hydrogen-bond geometry (Å, $^{\circ}$) for (II).

$D - H \cdot \cdot \cdot A$	$D-{\rm H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
N1-H1···Br1	0.86	2.78	3.144 (4)	108
$C2-H2 \cdot \cdot \cdot O2$	0.93	2.34	2.893 (6)	118
$N1 - H1 \cdots O2^{i}$	0.86	2.24	3.072 (5)	161
$C6-H6\cdots O2^i$	0.93	2.58	3.357 (5)	142

Symmetry code: (i) $-x + \frac{3}{2}, y + \frac{1}{2}, z$.

T.I.I. 3

Hydrogen-bond	l geometry (Å,	$^{\circ})$ for (III).	
$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdot \cdot \cdot A$
$N1 - H1 \cdots Br1$ $C2 - H2 \cdots O1$ $C3 - H3 \cdots F1^{i}$	0.86 0.93 0.93	2.49 2.35 2.46	3.051 (5) 2.912 (8) 3.308 (8)	124 118 151

Symmetry code: (i) -x + 2, -y, -z + 1.

In (I), the dihedral angle between the benzene ring and the C1–N1–C7(O)–C8 segment is 4.2 (3)°, and, the various torsion angles defining the conformation between the benzene ring and the side chain have values closer to either 0 or 180° : C1–N1–C7–O1 = 0.2 (9), C1–N1–C7–C8 = 179.3 (5), C2–C1–N1–C7 = 175.8 (5) and C6–C1–N1–C7 = -4.0 (8)°. The molecule (excluding three bromine atoms) is close to planar, the r.m.s. deviation (excluding H and Br atoms) being 0.031 (1) Å. The planarity is consolidated by three kinds of intramolecular hydrogen bonds, namely, N1–H1···Br3, N1–H1···F1 and C6–H6···O1 (Fig. 1, Table 1).

The dihedral angle between the benzene ring and the C1–N1–C7(O)–C8 segment in (II) is 19.29 (1)°. The torsion angles are C1-N1-C7-O2 = -0.8 (7), C1-N1-C7-C8 = -177.3 (4), C2-C1-N1-C7 = -20.8 (7) and C6-C1-N1-C7 = 161.6 (4)°. These values deviate slightly from 0 or 180°, and thus molecular planarity (excluding three bromine atoms) is not observed, the r.m.s. deviation (excluding H and Br atoms) being 0.159 (1) Å. The structure of (II) features two intramolecular hydrogen bonds, namely, $N1-H1\cdots$ Br1 and $C2-H2\cdots$ O2 (Fig. 2, Table 2).

The dihedral angle between the benzene ring and the C1–N1–C7(O)–C8 segment in (III) is highest among the three compounds, it being 22.5 (3)°. Similar to (II), the molecular structure of (III) features two intramolecular hydrogen bonds, namely, N1–H1···Br1 and C2–H2···O1 (Fig. 3, Table 3). Further, the various torsion angles defining the conformation between the benzene ring and the side chain show that the two are not in a single plane: C1–N1–C7–O1 = 4.2 (9), C1–N1–C7–C8 = -172.4 (5), C2–C1–N1–C7 = 19.8 (9) and C6–C1–N1–C7 = -164.0 (6)°.

research communications

Figure 4

Crystal packing of (I), displaying $C-Br\cdots\pi$ and $Br\cdots Br$ contacts. H atoms are omitted for clarity.

Figure 5

Crystal packing of (II), displaying various interactions of the types N- $H \cdots O, C - H \cdots O, C - Br \cdots \pi$ and $Br \cdots Br$.

Crystal packing of (II), displaying $C-F \cdots \pi$ interactions.

Table 4

Halogen contacts in (I).

Cg is the centroid of the C1-C6 aromatic ring.

$C - X \cdots Y$	$X \cdots Y$	$C - X \cdots Y$
$C8-Br2\cdots Cg^{i}$	3.426 (3)	174.52 (15)
$C8-Br1\cdots Br1^{ii}$	3.6519 (12)	141.04 (14)

Symmetry codes: (i) 2 - x, 1 - y, 1 - z; 2 - x, 2 - y, -z.

Table 5

Halogen contacts in (II).

Cg is the centroid of the C1-C6 aromatic ring.

$C - X \cdots Y$	$X \cdots Y$	$C - X \cdots Y$
$C8-Br1\cdots Cg^{i}$ $C9-F2\cdots Cg^{ii}$ $C8-Br1\cdots Br3^{iii}$	3.7543 (18) 3.195 (4) 3.6589 (6)	119.96 (13) 109.5 (3) 113.06 (2)
$C8-Br2\cdots F2^{iv}$	3.0290 (6)	1769.9 (2)

Symmetry codes: (i) $\frac{1}{2} + x$, y, $\frac{1}{2} - z$; (ii) -x, 1 - y, -z; (iii) 1 - x, $-\frac{1}{2} + y$, $\frac{1}{2} - z$; (iv) $\frac{1}{2} - x$, $-\frac{1}{2} + y, z.$

Table 6	
Halogen contacts in	(III)

$C - X \cdots Y$	$X \cdots Y$	$C - X \cdots Y$
$C8-Br2\cdots Br1^{i}$	3.5254 (9)	158.87 (16)
$C8-Br2\cdots O1^{ii}$	3.0623 (4)	160.06 (18)

Symmetry codes: (i) x, 1 + y, z; x, $-\frac{1}{2} - y$, $\frac{1}{2} + z$.

3. Supramolecular features

In the crystal structure of (I), C8-Br2··· π_{aryl} interactions (Table 4) connect the molecules into dimers and these dimers are in turn connected via Br1...Br1 contacts [3.6519 (12) Å] along the diagonal of the bc plane, leading to the formation of a one-dimensional ladder-type architecture (Fig. 4, Table 4). The $Br1 \cdot \cdot \cdot Br1$ contact has a type I trans geometry (Dikundwar *et al.*, 2012) with $\theta_1 = \theta_2 = 141.04 (14)^\circ$. The crystal structure of (I) does not feature the strong $N-H\cdots O$ hydrogen bonds which are generally observed in amides.

The crystal structure of (II) features molecular chains along [010] formed by N1-H1···O2 and C6-H6···O2 hydrogen bonds (Fig. 5 and Table 2). Two such chains are interlinked to form ribbons through Br1...Br3 [3.6589 (1) Å] and Br2...F2 [3.0290 (1) Å] interactions (Fig. 6, Table 5). C8–Br1 $\cdots \pi_{arvl}$ and C9-F2... π_{aryl} interactions between the ribbons extend the supramolecular architecture of (II) from one dimension to two (Fig. 6, Table 5). The Br · · · Br contact in (II) is close to a type II halogen ··· halogen contact (Dikundwar et al., 2012), while, $Br \cdot \cdot F$ is a type I *cis* contact.

Quite different to the packing in (I) and (II), the molecules in (III) are connected via pairs of C3-H3···F1 interactions (Fig. 7 and Table 3), forming $R_2^2(8)$ dimers. Further, these dimers are connected through Br1...Br2 contacts [3.5253 (1) Å] along the b axis, forming ribbons. These ribbons are further interlinked into columns via C8-Br2···O1=C7 contacts (Table 6), forming a two-dimensional architecture

Parameters	Н	2-F	2-Cl	2-CH ₃	3-CF ₃	3-Cl	3-CH ₃	4-F	4-Cl	4-CH ₃
Crystal system Z'	orthorhombic 1	triclinic 1	orthorhombic 1	monoclinic 2	orthorhombic 1	orthorhombic 1	monoclinic 2	monoclinic 1	orthorhombic 1	monoclinic 2
Intramolecular hydrogen bonds	$N - H \cdots Br$	$N-H\cdots Br,$ $N-H\cdots F,$ $C-H\cdots O$	$N-H\cdots Br,$ $N-H\cdots Cl$	N−H···Br	$N-H\cdots Br, C-H\cdots O$	$N - H \cdots Br$	N−H···Br	$N-H\cdots Br,$ $C-H\cdots O$	$N - H \cdots Br$	N−H···Br
Orientation of the substituent to the N-H bond	-	syn	syn	syn	anti	anti	anti	-	-	-
Dihedral angle between the benzene ring and the central chain	38.1 (10)	4.2 (3)	40.5 (3)	67.7 (5), 87.2 (5)	19.29 (1)	32.0 (6)	36.2 (5), 52.9 (6)	22.5 (3)	35.1 (5)	22.5 (5), 48.4 (5)
Intermolecular interactions	N−H···O	Br \cdots Br, C-Br \cdots π	-	N−H···O	$\begin{array}{c} N-H\cdots O,\\ C-H\cdots O,\\ Br\cdots Br,\\ Br\cdots F,\\ C-Br\cdots \pi,\\ C-F\cdots \pi\end{array}$	N−H···O	N−H···O	$\begin{array}{c} C-H\cdots F,\\ Br\cdots Br,\\ Br\cdots O\end{array}$	N−H···O	N-H···O
Supramolecular architecture	1D chains	1D chains	0D	1D chains	2D	1D chains	1D chains	2D	1D chains	1D chains

 Table 7

 Comparison of various parameters in the crystal structures of N-(aryl)-2,2,2-tribromoacetamides.

(Fig. 8). The packing in (III) does not features conventional $N-H\cdots O$ hydrogen bonds, similar to (I).

4. Database survey

Seven N-aryl-2,2,2-tribromoacetamides, namely, 2,2,2-tribromo-*N*-phenylacetamide, 2,2,2-tribromo-N-(2/3/4-chlorophenyl)acetamides 2,2,2-tribromo-N-(2/3/4-methyland phenyl)acetamides have been previously reported. Comparison of the crystal systems of these series of compounds show that all the chloro-substituted compounds crystallize in the orthorhombic crystal system, while the methyl-substituted compounds crystallize in the monoclinic system (Table 7). However, such trends are not observed in fluoro-substituted compounds *i.e.* (I) and (III). Further, the asymmetric units of the fluoro- and chloro-substituted compounds contain one molecule, whereas the asymmetric units of the methylsubstituted tribromoacetamides contain two molecules.

In (I), the conformation of the N-H bond is syn to the 2-fluoro substituent in the benzene ring, similar to that observed in the crystal structures of 2,2,2-tribromo-N-(2chlorophenyl)acetamide (Ia) (Gowda et al., 2010a) and 2,2,2tribromo-N-(2-methylphenyl)acetamide (Ib) (Gowda et al., 2010b). In contrast to the above, in (II) the conformation of the N-H bond is anti to the 3-CF₃ substituent, as observed in the other meta-substituted compounds i.e. 2,2,2-tribromo-N-(3-chlorophenyl)acetamide (Ia) (Suchetan et al., 2010) and 2.2.2-tribromo-N-(3-methylphenyl)acetamide (Ib) (Gowda et al., 2009c). Further, it can be observed that the molecular structure of each of the compounds features intramolecular N-H···Br hydrogen bonds, while the 2-fluoro and 2-chloro derivatives feature additional N-H \cdots X (X = F or Cl) intramolecular hydrogen bonds. Further, compounds (I), (II) and (III) exhibit $C-H \cdots O$ intramolecular hydrogen bonds which are not displayed in the structures reported in the literature.

Figure 7 Formation of $R_2^2(8)$ dimers *via* C-H···F interactions in (III).

Column-like architecture displayed in (III) via $Br \cdots Br$ and $Br \cdots O$ contacts.

research communications

 Table 8

 Experimental details.

	(I)	(II)	(III)
Crystal data			
Chemical formula	C _e H ₅ Br ₂ FNO	C ₀ H ₅ Br ₂ F ₂ NO	C _e H ₅ Br ₂ FNO
	389.86	439.87	389.86
Crystal system, space group	Triclinic. $P\overline{1}$	Orthorhombic, <i>Pbca</i>	Monoclinic, $P2_1/c$
Temperature (K)	296	100	100
a, b, c (Å)	6.1825 (13), 8.929 (2), 9.971 (2)	11.3441 (6), 10.3047 (6), 20.6397 (11)	16.9830 (9), 6.1095 (3), 10.1508 (6)
α, β, γ (°)	85.858 (8), 87.966 (8), 78.919 (8)	90, 90, 90	90, 100.485 (1), 90
$V(Å^3)$	538.6 (2)	2412.7 (2)	1035.64 (10)
Z	2	8	4
Radiation type	Cu Kα	Cu Ka	Cu Ka
$\mu (\text{mm}^{-1})$	13.77	12.66	14.33
Crystal size (mm)	$0.28 \times 0.24 \times 0.22$	$0.30 \times 0.27 \times 0.25$	$0.31 \times 0.26 \times 0.22$
Data collection			
Diffractometer	Bruker APEXII	Bruker APEXII	Bruker APEXII
Absorption correction	Multi-scan (SADABS; Bruker, 2009)	Multi-scan (SADABS; Bruker, 2009)	Multi-scan (<i>SADABS</i> ; Bruker, 2009)
T_{\min}, T_{\max}	0.048, 0.053	0.116, 0.144	0.029, 0.043
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	4683, 1549, 1485	11524, 1978, 1967	6934, 1674, 1664
R _{int}	0.051	0.054	0.054
θ_{\max} (°)	60.0	64.5	64.3
$(\sin\theta/\lambda)_{\rm max}$ (Å ⁻¹)	0.562	0.585	0.584
Refinement			
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.045, 0.120, 1.10	0.040, 0.102, 1.22	0.047, 0.128, 1.19
No. of reflections	1549	1978	1674
No. of parameters	128	154	127
H-atom treatment	H-atom parameters constrained	H-atom parameters constrained	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ ({ m e} \ { m \AA}^{-3})$	0.96, -0.60	0.96, -0.81	1.48, -1.01

Computer programs: APEX2, SAINT-Plus and XPREP (Bruker, 2009), SHELXS97 and SHELXL97 (Sheldrick, 2008) and Mercury (Macrae et al., 2008).

A comparison of the dihedral angle between the benzene ring and the C1–N1–C7(O)–C8 segment in all of the compounds shows that the dihedral angles in the fluoro-substituted compounds are smaller than those observed in chloro-substituted ones, which in turn have smaller values than the methyl-substituted tribromoacetamides (Table 7). The dihedral angle in the parent (*i.e.* unsubstituted) compound is closer to those of chloro-substituted ones, thus the order is $F < Cl(=H) < CH_3$.

The crystal structures of all of the seven compounds [except (Ia)] reported in the literature feature strong N-H···O hydrogen bonds leading into C(4) chains forming a onedimensional architecture. Compound (Ia) (2-chloro derivative) does not exhibit any conventional intermolecular interactions and therefore exhibits a zero-dimensional supramolecular architecture. However, the packing of molecules in the three structures reported here are very different and are controlled by interactions mainly involving the halogen atoms.

5. Synthesis and crystallization

All three compounds were prepared according to a literature method (Gowda *et al.*, 2003). The purity of the compounds was checked by determining the melting points. Single crystals of all the compounds used for X-ray diffraction studies were

obtained by slow evaporation of an ethanolic solutions of the compound at room temperature.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 8. H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C-H = 0.93 Å and N-H = 0.86 Å, and with $U_{iso}(H) = 1.2U_{eq}(C,N)$.

Acknowledgements

The authors are thankful to the Institution of Excellence, Vijnana Bhavana, University of Mysore, Mysuru, for providing the single-crystal X-ray diffraction facility.

References

- Abdou, I. M., Saleh, A. M. & Zohdi, H. F. (2004). *Molecules*, 9, 109–116.
- Bruker (2009). APEX2, SADABS, SAINT-Plus and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.
- Dikundwar, A. G. & Guru Row, T. N. (2012). *Cryst. Growth Des.* **12**, 1713–1716.
- Gowda, B. T., Usha, K. M. & Jayalakshmi, K. L. (2003). Z. Naturforsch. Teil A, 58, 801–806.
- Gowda, B. T., Foro, S., Suchetan, P. A. & Fuess, H. (2009c). Acta Cryst. E65, 03242.

- Gowda, B. T., Foro, S., Suchetan, P. A. & Fuess, H. (2010a). Acta Cryst. E66, 0386.
- Gowda, B. T., Foro, S., Suchetan, P. A. & Fuess, H. (2010b). Acta Cryst. E66, 0884.
- Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
- Manojkumar, K. E., Sreenivasa, S., Mohan, N. R., Madhuchakrapani Rao, T. & Harikrishna, T. (2013*a*). J. Appl. Chem. **2**, 730–737.
- Manojkumar, K. E., Sreenivasa, S., Shivaraja, G. & Madhuchakrapani Rao, T. (2013b). *Molbank*, pp. M803 doi: 10.3390/M803.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Suchetan, P. A., Gowda, B. T., Foro, S. & Fuess, H. (2010). Acta Cryst. E66, 01140.

supporting information

Acta Cryst. (2015). E71, 1048-1053 [doi:10.1107/S2056989015015248]

Crystal structures of three N-aryl-2,2,2-tribromoacetamides

S. Sreenivasa, S. Naveen, N. K. Lokanath, G. M. Supriya, H. N. Lakshmikantha and P. A. Suchetan

Computing details

For all compounds, data collection: *APEX2* (Bruker, 2009); cell refinement: *APEX2* and *SAINT-Plus* (Bruker, 2009); data reduction: *SAINT-Plus* and *XPREP* (Bruker, 2009); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *Mercury* (Macrae *et al.*, 2008); software used to prepare material for publication: *SHELXL97* (Sheldrick, 2008).

(I) 2,2,2-Tribromo-N-(2-fluorophenyl)acetamide

Crystal data C₈H₅Br₃FNO $M_r = 389.86$ Triclinic, *P*I Hall symbol: -P 1 a = 6.1825 (13) Å b = 8.929 (2) Å c = 9.971 (2) Å $a = 85.858 (8)^{\circ}$ $\beta = 87.966 (8)^{\circ}$ $\gamma = 78.919 (8)^{\circ}$ $V = 538.6 (2) \text{ Å}^{3}$ Z = 2Data collection

Bruker APEXII diffractometer Radiation source: fine-focus sealed tube Graphite monochromator phi and φ scans Absorption correction: multi-scan (*SADABS*; Bruker, 2009) $T_{\min} = 0.048, T_{\max} = 0.053$ 4683 measured reflections

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.045$ $wR(F^2) = 0.120$ S = 1.101549 reflections F(000) = 364Prism $D_x = 2.404 \text{ Mg m}^{-3}$ Melting point: 403 K Cu Ka radiation, $\lambda = 1.54178 \text{ Å}$ Cell parameters from 123 reflections $\theta = 7.3-60.0^{\circ}$ $\mu = 13.77 \text{ mm}^{-1}$ T = 296 KPrism, colourless $0.28 \times 0.24 \times 0.22 \text{ mm}$

1549 independent reflections 1485 reflections with $I > 2\sigma(I)$ $R_{int} = 0.051$ $\theta_{max} = 60.0^{\circ}, \ \theta_{min} = 7.3^{\circ}$ $h = -6 \rightarrow 6$ $k = -10 \rightarrow 10$ $I = -11 \rightarrow 10$ 1 standard reflections every 1 reflections intensity decay: 0.1%

128 parameters0 restraintsPrimary atom site location: structure-invariant direct methodsSecondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.073P)^2 + 0.4735P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$

Special details

 $\begin{aligned} &\Delta \rho_{\text{max}} = 0.96 \text{ e } \text{\AA}^{-3} \\ &\Delta \rho_{\text{min}} = -0.60 \text{ e } \text{\AA}^{-3} \\ &\text{Extinction correction: } SHELXL, \\ &\text{Fc}^* = \text{kFc}[1 + 0.001 \text{xFc}^2 \lambda^3 / \sin(2\theta)]^{-1/4} \\ &\text{Extinction coefficient: } 0.0074 (12) \end{aligned}$

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > 2\sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	X	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
F1	0.3498 (7)	0.6456 (4)	0.5450 (4)	0.0760 (11)	
C2	0.4528 (10)	0.7432 (6)	0.6065 (5)	0.0501 (12)	
C1	0.6308 (9)	0.7870 (5)	0.5395 (5)	0.0429 (11)	
C6	0.7390 (10)	0.8852 (6)	0.6027 (5)	0.0536 (13)	
H6	0.8603	0.9181	0.5613	0.064*	
C5	0.6636 (11)	0.9331 (6)	0.7277 (5)	0.0569 (14)	
Н5	0.7358	0.9984	0.7698	0.068*	
C4	0.4852 (11)	0.8866 (7)	0.7908 (6)	0.0607 (14)	
H4	0.4378	0.9204	0.8748	0.073*	
C3	0.3764 (11)	0.7905 (7)	0.7305 (6)	0.0614 (15)	
Н3	0.2547	0.7583	0.7722	0.074*	
N1	0.6900 (8)	0.7303 (5)	0.4129 (4)	0.0487 (10)	
H1	0.6157	0.6658	0.3871	0.058*	
C7	0.8475 (8)	0.7644 (5)	0.3276 (5)	0.0430 (11)	
01	0.9690 (8)	0.8512 (5)	0.3453 (4)	0.0735 (14)	
C8	0.8737 (8)	0.6801 (5)	0.1956 (5)	0.0410 (11)	
Br1	0.99546 (11)	0.80114 (7)	0.05528 (5)	0.0602 (3)	
Br2	1.07967 (10)	0.48905 (6)	0.23436 (7)	0.0669 (3)	
Br3	0.60118 (10)	0.63535 (7)	0.13471 (6)	0.0600 (3)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
F1	0.073 (2)	0.089 (2)	0.081 (2)	-0.049 (2)	0.0223 (19)	-0.0244 (19)
C2	0.054 (3)	0.045 (3)	0.055 (3)	-0.019 (2)	0.003 (2)	-0.003 (2)
C1	0.047 (3)	0.041 (2)	0.040(2)	-0.010 (2)	0.001 (2)	0.0047 (19)
C6	0.065 (4)	0.053 (3)	0.047 (3)	-0.023 (3)	0.004 (2)	0.001 (2)
C5	0.070 (4)	0.053 (3)	0.050 (3)	-0.018 (3)	-0.008 (3)	-0.005 (2)
C4	0.073 (4)	0.057 (3)	0.051 (3)	-0.011 (3)	0.009 (3)	-0.005 (2)
C3	0.063 (4)	0.058 (3)	0.061 (3)	-0.012 (3)	0.023 (3)	-0.003 (3)

supporting information

N1	0.057 (3)	0.048 (2)	0.048 (2)	-0.026 (2)	0.009 (2)	-0.0048 (17)
C7	0.041 (3)	0.042 (3)	0.046 (2)	-0.012 (2)	0.000 (2)	0.0031 (19)
01	0.078 (3)	0.096 (3)	0.064 (2)	-0.060 (3)	0.017 (2)	-0.022 (2)
C8	0.033 (2)	0.046 (3)	0.046 (2)	-0.0129 (19)	0.0032 (19)	-0.001 (2)
Br1	0.0689 (5)	0.0687 (5)	0.0477 (4)	-0.0297 (3)	0.0123 (3)	0.0032 (3)
Br2	0.0537 (5)	0.0484 (5)	0.0950 (6)	-0.0024 (3)	-0.0021 (3)	-0.0005 (3)
Br3	0.0455 (5)	0.0839 (5)	0.0573 (5)	-0.0263 (3)	-0.0035 (3)	-0.0095 (3)

Geometric parameters (Å, °)

F1—C2	1.363 (6)	C4—H4	0.9300	
C2—C3	1.374 (8)	С3—Н3	0.9300	
C2—C1	1.373 (8)	N1—C7	1.334 (6)	
C1—C6	1.396 (7)	N1—H1	0.8600	
C1—N1	1.405 (6)	C7—O1	1.204 (6)	
C6—C5	1.382 (8)	C7—C8	1.551 (7)	
С6—Н6	0.9300	C8—Br1	1.927 (4)	
C5—C4	1.369 (9)	C8—Br3	1.932 (5)	
С5—Н5	0.9300	C8—Br2	1.946 (5)	
C4—C3	1.370 (9)			
F1—C2—C3	119.2 (5)	C2—C3—C4	117.8 (6)	
F1C2C1	116.9 (5)	С2—С3—Н3	121.1	
C3—C2—C1	123.9 (5)	С4—С3—Н3	121.1	
C2—C1—C6	117.3 (5)	C7—N1—C1	127.9 (4)	
C2—C1—N1	117.8 (5)	C7—N1—H1	116.1	
C6—C1—N1	124.9 (5)	C1—N1—H1	116.1	
C5—C6—C1	119.2 (5)	O1—C7—N1	126.1 (5)	
С5—С6—Н6	120.4	O1—C7—C8	118.7 (4)	
С1—С6—Н6	120.4	N1—C7—C8	115.3 (4)	
C4—C5—C6	121.5 (5)	C7—C8—Br1	109.6 (3)	
C4—C5—H5	119.2	C7—C8—Br3	113.7 (3)	
С6—С5—Н5	119.2	Br1—C8—Br3	108.8 (2)	
C5—C4—C3	120.2 (5)	C7—C8—Br2	105.9 (3)	
C5—C4—H4	119.9	Br1—C8—Br2	109.6 (2)	
C3—C4—H4	119.9	Br3—C8—Br2	109.1 (2)	
F1-C2-C1-C6	-179.1 (5)	C2-C1-N1-C7	175.8 (5)	
C3—C2—C1—C6	0.1 (8)	C6-C1-N1-C7	-4.0 (8)	
F1-C2-C1-N1	1.0 (7)	C1—N1—C7—O1	0.2 (9)	
C3—C2—C1—N1	-179.7 (5)	C1—N1—C7—C8	179.3 (5)	
C2-C1-C6-C5	0.0 (8)	O1—C7—C8—Br1	-27.4 (6)	
N1—C1—C6—C5	179.8 (5)	N1-C7-C8-Br1	153.5 (4)	
C1C6C5C4	-0.1 (9)	O1—C7—C8—Br3	-149.4 (5)	
C6—C5—C4—C3	0.0 (9)	N1—C7—C8—Br3	31.5 (5)	
F1—C2—C3—C4	179.0 (6)	O1—C7—C8—Br2	90.8 (5)	
C1—C2—C3—C4	-0.2 (9)	N1—C7—C8—Br2	-88.3 (4)	
C5—C4—C3—C2	0.2 (9)			

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	<i>D</i> —H… <i>A</i>
N1—H1···Br3	0.86	2.56	3.056 (4)	118
N1—H1…F1	0.86	2.26	2.646 (6)	107
С6—Н6…О1	0.93	2.32	2.896 (7)	120

Prism

 $D_{\rm x} = 2.422 {\rm Mg} {\rm m}^{-3}$

 $\theta = 5.8 - 64.5^{\circ}$

 $\mu = 12.66 \text{ mm}^{-1}$ T = 100 K

Prism, colourless

 $0.30 \times 0.27 \times 0.25$ mm

Melting point: 425 K

Cu *K* α radiation, $\lambda = 1.54178$ Å

Cell parameters from 145 reflections

Hydrogen-bond geometry (Å, °)

(II) 2,2,2-Tribromo-N-[3-(trifluoromethyl)phenyl]acetamide

Crystal data C₉H₅Br₃F₃NO $M_r = 439.87$ Orthorhombic, *Pbca* Hall symbol: -P 2ac 2ab a = 11.3441 (6) Å b = 10.3047 (6) Å c = 20.6397 (11) Å V = 2412.7 (2) Å³ Z = 8F(000) = 1648

Data collection

Bruker APEXII	1978 independent reflections
diffractometer	1967 reflections with $I > 2\sigma(I)$
Radiation source: fine-focus sealed tube	$R_{\rm int} = 0.054$
Graphite monochromator	$\theta_{\max} = 64.5^{\circ}, \ \theta_{\min} = 5.8^{\circ}$
phi and φ scans	$h = -13 \rightarrow 13$
Absorption correction: multi-scan	$k = -11 \rightarrow 6$
(SADABS; Bruker, 2009)	$l = -23 \rightarrow 24$
$T_{\min} = 0.116, \ T_{\max} = 0.144$	1 standard reflections every 1 reflections
11524 measured reflections	intensity decay: 0.1%

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.040$	Hydrogen site location: inferred from
$wR(F^2) = 0.102$	neighbouring sites
S = 1.22	H-atom parameters constrained
1978 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0569P)^2 + 5.8187P]$
154 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} = 0.001$
Primary atom site location: structure-invariant	$\Delta ho_{ m max} = 0.96 \ { m e} \ { m \AA}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.81 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > 2\sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Br1	0.82269 (4)	0.22572 (4)	0.72340 (2)	0.01621 (19)	
Br2	0.97513 (4)	0.19720 (5)	0.85195 (2)	0.0197 (2)	
Br3	0.93377 (4)	-0.04340 (4)	0.76175 (2)	0.0208 (2)	
F1	0.2435 (3)	-0.0016 (4)	0.89656 (15)	0.0418 (9)	
F2	0.3744 (3)	-0.1282 (3)	0.93617 (17)	0.0340 (8)	
F3	0.2658 (2)	-0.0138 (3)	0.99878 (14)	0.0237 (6)	
N1	0.6923 (3)	0.1851 (4)	0.85629 (17)	0.0120 (8)	
H1	0.7205	0.2589	0.8445	0.014*	
O2	0.7243 (3)	-0.0319 (3)	0.84716 (15)	0.0149 (7)	
C4	0.3873 (4)	0.2127 (4)	0.9709 (2)	0.0172 (10)	
H4	0.3194	0.2210	0.9959	0.021*	
C3	0.4123 (4)	0.0974 (4)	0.9396 (2)	0.0131 (9)	
C2	0.5142 (4)	0.0835 (4)	0.9018 (2)	0.0118 (8)	
H2	0.5306	0.0054	0.8811	0.014*	
C1	0.5903 (4)	0.1887 (4)	0.8958 (2)	0.0113 (8)	
C7	0.7500 (4)	0.0795 (4)	0.83513 (19)	0.0102 (8)	
C8	0.8624 (4)	0.1125 (4)	0.7951 (2)	0.0120 (8)	
C9	0.3251 (4)	-0.0103 (5)	0.9422 (2)	0.0160 (9)	
C5	0.4656 (4)	0.3166 (5)	0.9645 (2)	0.0169 (9)	
H5	0.4501	0.3945	0.9856	0.020*	
C6	0.5654 (4)	0.3043 (4)	0.9272 (2)	0.0150 (9)	
H6	0.6167	0.3742	0.9231	0.018*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Br1	0.0198 (3)	0.0158 (3)	0.0130 (3)	0.00137 (17)	0.00429 (17)	0.00239 (17)
Br2	0.0118 (3)	0.0246 (3)	0.0226 (3)	-0.00234 (18)	-0.00244 (17)	-0.00310 (19)
Br3	0.0237 (3)	0.0121 (3)	0.0265 (3)	0.00441 (18)	0.0140 (2)	-0.00061 (18)
F1	0.0314 (17)	0.062 (2)	0.0323 (17)	-0.0301 (16)	-0.0199 (14)	0.0239 (17)
F2	0.0258 (16)	0.0208 (16)	0.055 (2)	-0.0061 (12)	0.0192 (14)	-0.0077 (14)
F3	0.0226 (14)	0.0253 (15)	0.0230 (14)	-0.0085 (12)	0.0105 (12)	-0.0016 (11)
N1	0.0119 (18)	0.0095 (18)	0.0147 (18)	-0.0009 (14)	0.0072 (14)	-0.0002 (14)
O2	0.0131 (16)	0.0123 (17)	0.0194 (15)	-0.0004 (12)	0.0038 (12)	0.0026 (12)
C4	0.015 (2)	0.019 (2)	0.018 (2)	0.0045 (18)	0.0053 (18)	-0.0009 (18)
C3	0.011 (2)	0.015 (2)	0.014 (2)	0.0036 (17)	-0.0014 (16)	0.0017 (17)
C2	0.011 (2)	0.012 (2)	0.013 (2)	0.0016 (16)	-0.0032 (16)	0.0004 (17)
C1	0.0088 (19)	0.013 (2)	0.012 (2)	0.0034 (16)	-0.0024 (17)	0.0012 (16)
C7	0.010 (2)	0.010(2)	0.0104 (19)	-0.0016 (16)	-0.0014 (16)	-0.0004 (16)
C8	0.013 (2)	0.009 (2)	0.0146 (19)	0.0019 (17)	0.0038 (17)	0.0000 (17)
C9	0.015 (2)	0.019 (2)	0.015 (2)	0.0023 (18)	0.0028 (17)	-0.0012 (18)
C5	0.013 (2)	0.015 (2)	0.023 (2)	0.0031 (18)	0.0032 (18)	-0.0044 (19)
C6	0.013 (2)	0.012 (2)	0.020 (2)	0.0017 (16)	0.0001 (18)	0.0004 (18)

Geometric parameters (Å, °)

Br1—C8	1.938 (4)	C4—C5	1.397 (7)
Br2—C8	1.943 (4)	C4—H4	0.9300
Br3—C8	1.926 (4)	C3—C2	1.402 (6)
F1—C9	1.324 (5)	С3—С9	1.488 (7)
F2—C9	1.343 (6)	C2—C1	1.391 (6)
F3—C9	1.348 (5)	С2—Н2	0.9300
N1—C7	1.343 (6)	C1—C6	1.386 (6)
N1—C1	1.416 (6)	С7—С8	1.557 (6)
N1—H1	0.8600	C5—C6	1.376 (7)
O2—C7	1.211 (5)	С5—Н5	0.9300
C4—C3	1.383 (7)	С6—Н6	0.9300
C7—N1—C1	127.3 (4)	C7—C8—Br3	110.6 (3)
C7—N1—H1	116.3	C7—C8—Br1	110.2 (3)
C1—N1—H1	116.3	Br3—C8—Br1	109.1 (2)
C3—C4—C5	118.9 (4)	C7—C8—Br2	108.5 (3)
C3—C4—H4	120.5	Br3—C8—Br2	108.3 (2)
С5—С4—Н4	120.5	Br1—C8—Br2	110.1 (2)
C4—C3—C2	121.2 (4)	F1—C9—F2	106.6 (4)
C4—C3—C9	119.2 (4)	F1—C9—F3	105.6 (3)
C2—C3—C9	119.5 (4)	F2—C9—F3	105.3 (4)
C1—C2—C3	118.8 (4)	F1—C9—C3	112.8 (4)
С1—С2—Н2	120.6	F2—C9—C3	113.2 (4)
С3—С2—Н2	120.6	F3—C9—C3	112.5 (4)
C6—C1—C2	120.1 (4)	C6—C5—C4	120.4 (4)
C6—C1—N1	117.3 (4)	С6—С5—Н5	119.8
C2-C1-N1	122.6 (4)	С4—С5—Н5	119.8
O2—C7—N1	125.8 (4)	C5—C6—C1	120.6 (4)
O2—C7—C8	120.8 (4)	С5—С6—Н6	119.7
N1—C7—C8	113.3 (4)	С1—С6—Н6	119.7
C5—C4—C3—C2	-0.1 (7)	N1—C7—C8—Br1	-55.4 (4)
C5—C4—C3—C9	-175.5 (4)	O2—C7—C8—Br2	-111.5 (4)
C4—C3—C2—C1	-0.4 (6)	N1—C7—C8—Br2	65.2 (4)
C9—C3—C2—C1	175.1 (4)	C4—C3—C9—F1	85.9 (5)
C3—C2—C1—C6	0.5 (6)	C2—C3—C9—F1	-89.7 (5)
C3—C2—C1—N1	-177.1 (4)	C4—C3—C9—F2	-152.9 (4)
C7—N1—C1—C6	161.6 (4)	C2—C3—C9—F2	31.6 (6)
C7—N1—C1—C2	-20.8 (7)	C4—C3—C9—F3	-33.6 (6)
C1—N1—C7—O2	-0.8 (7)	C2—C3—C9—F3	150.9 (4)
C1—N1—C7—C8	-177.3 (4)	C3—C4—C5—C6	0.5 (7)
O2—C7—C8—Br3	7.2 (5)	C4—C5—C6—C1	-0.4 (7)
N1—C7—C8—Br3	-176.1 (3)	C2-C1-C6-C5	-0.1 (7)
O2—C7—C8—Br1	127.9 (4)	N1—C1—C6—C5	177.6 (4)

D—H···A	<i>D</i> —Н	$H \cdots A$	D··· A	D—H··· A
N1—H1···Br1	0.86	2.78	3.144 (4)	108
С2—Н2…О2	0.93	2.34	2.893 (6)	118
N1—H1···O2 ⁱ	0.86	2.24	3.072 (5)	161
C6—H6…O2 ⁱ	0.93	2.58	3.357 (5)	142

Prism

Hydrogen-bond geometry (Å, °)

Symmetry code: (i) -x+3/2, y+1/2, z.

(III) 2,2,2-Tribromo-N-(4-fluorophenyl)acetamide

Crystal data

C₈H₅Br₃FNO $M_r = 389.86$ Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc a = 16.9830 (9) Å b = 6.1095 (3) Å c = 10.1508 (6) Å $\beta = 100.485$ (1)° V = 1035.64 (10) Å³ Z = 4F(000) = 728

Data collection

Bruker APEXII diffractometer Radiation source: fine-focus sealed tube Graphite monochromator phi and φ scans Absorption correction: multi-scan (*SADABS*; Bruker, 2009) $T_{\min} = 0.029, T_{\max} = 0.043$ 6934 measured reflections

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.047$ $wR(F^2) = 0.128$ S = 1.191674 reflections 127 parameters 0 restraints Primary atom site location: structure-invariant direct methods

$D_x = 2.500 \text{ Mg m}^{-3}$ Melting point: 434 K Cu *Ka* radiation, $\lambda = 1.54178 \text{ Å}$ Cell parameters from 133 reflections $\theta = 5.3-64.3^{\circ}$ $\mu = 14.33 \text{ mm}^{-1}$ T = 100 KPrism, colourless $0.31 \times 0.26 \times 0.22 \text{ mm}$

1674 independent reflections 1664 reflections with $I > 2\sigma(I)$ $R_{int} = 0.054$ $\theta_{max} = 64.3^{\circ}, \ \theta_{min} = 5.3^{\circ}$ $h = -19 \rightarrow 19$ $k = -4 \rightarrow 7$ $I = -11 \rightarrow 11$ 1 standard reflections every 1 reflections intensity decay: 0.1%

Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0755P)^2 + 4.744P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 1.48$ e Å⁻³ $\Delta\rho_{min} = -1.01$ e Å⁻³

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > 2\sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

	x	у	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$
C1	0.8156 (3)	0.2042 (11)	0.7648 (6)	0.0142 (12)
C2	0.8352 (4)	0.0287 (10)	0.6916 (6)	0.0152 (12)
H2	0.8084	-0.1037	0.6933	0.018*
C3	0.8953 (4)	0.0494 (11)	0.6151 (7)	0.0219 (14)
Н3	0.9094	-0.0684	0.5662	0.026*
C4	0.9331 (4)	0.2482 (12)	0.6135 (6)	0.0218 (14)
C5	0.9147 (4)	0.4249 (11)	0.6834 (7)	0.0199 (14)
Н5	0.9414	0.5570	0.6801	0.024*
C6	0.8548 (4)	0.4041 (11)	0.7601 (6)	0.0174 (13)
H6	0.8409	0.5233	0.8081	0.021*
C7	0.7195 (3)	0.0190 (10)	0.8844 (6)	0.0127 (12)
C8	0.6445 (3)	0.0612 (9)	0.9497 (6)	0.0116 (12)
N1	0.7536 (3)	0.1979 (9)	0.8401 (5)	0.0138 (10)
H1	0.7353	0.3224	0.8602	0.017*
O1	0.7404 (3)	-0.1693 (7)	0.8719 (4)	0.0183 (9)
F1	0.9926 (2)	0.2668 (7)	0.5404 (4)	0.0319 (10)
Br1	0.62345 (4)	0.36497 (10)	0.98592 (6)	0.0175 (3)
Br2	0.65806 (4)	-0.10117 (10)	1.11533 (6)	0.0141 (3)
Br3	0.55374 (3)	-0.05639 (11)	0.82576 (6)	0.0182 (3)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.010 (3)	0.022 (3)	0.012 (3)	0.001 (2)	0.005 (2)	0.003 (3)
C2	0.014 (3)	0.011 (3)	0.022 (3)	0.001 (2)	0.009 (2)	0.003 (3)
C3	0.023 (3)	0.021 (4)	0.026 (3)	0.004 (3)	0.016 (3)	0.001 (3)
C4	0.015 (3)	0.028 (4)	0.027 (3)	0.007 (3)	0.014 (3)	0.008 (3)
C5	0.016 (3)	0.017 (3)	0.029 (4)	-0.003(2)	0.008 (3)	0.006 (3)
C6	0.017 (3)	0.019 (3)	0.018 (3)	-0.002(2)	0.007 (2)	-0.005 (2)
C7	0.010 (3)	0.016 (3)	0.014 (3)	0.000 (2)	0.008 (2)	0.001 (2)
C8	0.009 (3)	0.008 (3)	0.020 (3)	0.003 (2)	0.008 (2)	0.001 (2)
N1	0.014 (2)	0.010 (3)	0.021 (3)	0.0011 (19)	0.011 (2)	0.003 (2)
01	0.022 (2)	0.008 (2)	0.029 (2)	0.0023 (17)	0.0151 (18)	-0.0017 (18)
F1	0.027 (2)	0.032 (2)	0.045 (2)	0.0015 (17)	0.0296 (18)	0.008 (2)
Br1	0.0218 (4)	0.0085 (4)	0.0261 (4)	0.0034 (2)	0.0147 (3)	0.0002 (2)
Br2	0.0184 (4)	0.0110 (4)	0.0144 (4)	0.0008 (2)	0.0073 (3)	0.0016 (2)
Br3	0.0118 (4)	0.0235 (4)	0.0193 (4)	0.0000(2)	0.0027(3)	-0.0035(3)

Geometric parameters (Å, °)

C1—C2	1.379 (9)	С5—Н5	0.9300
C1—C6	1.396 (9)	С6—Н6	0.9300
C1—N1	1.410 (7)	C7—O1	1.218 (8)
C2—C3	1.397 (9)	C7—N1	1.352 (8)
С2—Н2	0.9300	C7—C8	1.560 (7)
C3—C4	1.375 (10)	C8—Br2	1.929 (6)
С3—Н3	0.9300	C8—Br1	1.938 (6)
C4—C5	1.359 (10)	C8—Br3	1.942 (6)
C4—F1	1.363 (7)	N1—H1	0.8600
C5—C6	1.395 (9)		
C2—C1—C6	119.9 (5)	C5—C6—C1	119.9 (6)
C2-C1-N1	123.3 (6)	С5—С6—Н6	120.0
C6-C1-N1	116.7 (5)	C1—C6—H6	120.0
C1—C2—C3	120.1 (6)	O1—C7—N1	125.4 (5)
C1—C2—H2	119.9	O1—C7—C8	118.5 (5)
С3—С2—Н2	119.9	N1—C7—C8	116.1 (5)
C4—C3—C2	118.4 (6)	C7—C8—Br2	107.9 (4)
С4—С3—Н3	120.8	C7—C8—Br1	115.6 (4)
С2—С3—Н3	120.8	Br2—C8—Br1	108.9 (3)
C5-C4-F1	118.8 (6)	C7—C8—Br3	106.1 (4)
C5—C4—C3	122.9 (6)	Br2—C8—Br3	109.2 (3)
F1—C4—C3	118.3 (6)	Br1—C8—Br3	109.0 (3)
C4—C5—C6	118.7 (6)	C7—N1—C1	127.6 (5)
С4—С5—Н5	120.7	C7—N1—H1	116.2
С6—С5—Н5	120.7	C1—N1—H1	116.2
C6—C1—C2—C3	1.3 (9)	O1—C7—C8—Br2	50.5 (6)
N1-C1-C2-C3	177.4 (6)	N1—C7—C8—Br2	-132.8 (4)
C1—C2—C3—C4	-0.8 (10)	O1—C7—C8—Br1	172.6 (4)
C2—C3—C4—C5	0.1 (10)	N1	-10.6 (7)
C2-C3-C4-F1	179.0 (6)	O1—C7—C8—Br3	-66.5 (6)
F1-C4-C5-C6	-178.8 (6)	N1—C7—C8—Br3	110.3 (5)
C3—C4—C5—C6	0.0 (10)	O1—C7—N1—C1	4.2 (9)
C4—C5—C6—C1	0.5 (10)	C8—C7—N1—C1	-172.4 (5)
C2—C1—C6—C5	-1.2 (9)	C2—C1—N1—C7	19.8 (9)
N1—C1—C6—C5	-177.5 (6)	C6—C1—N1—C7	-164.0 (6)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D···A	D—H···A
N1—H1···Br1	0.86	2.49	3.051 (5)	124
С2—Н2…О1	0.93	2.35	2.912 (8)	118
C3— $H3$ ···F1 ⁱ	0.93	2.46	3.308 (8)	151

Symmetry code: (i) -x+2, -y, -z+1.