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Abstract

A methodology to cluster proteins based on their dynamics’ similarity is presented. For each

pair of proteins from a dataset, the structures are superimposed, and the Anisotropic Net-

work Model modes of motions are calculated. The twelve slowest modes from each protein

are matched using a local mode alignment algorithm based on the local sequence alignment

algorithm of Smith–Waterman. The dynamical similarity distance matrix is calculated based

on the top scoring matches of each pair and the proteins are clustered using a hierarchical

clustering algorithm. The utility of this method is exemplified on a dataset of protein chains

from the globin family and a dataset of tetrameric hemoglobins. The results demonstrate the

effect of the quaternary structure of globin members on their intrinsic dynamics and show

good ability to distinguish between different states of hemoglobin, revealing the dynamical

relations between them.

Introduction

Protein structures are dynamic rather than static, and it is protein dynamics that play a key

role in executing their functions [1–9]. Understanding the relation between protein function

and dynamics is fundamental for comprehending the protein structure–dynamics–function

relationship. Such an understanding can stem from a comparison of the dynamics of related

proteins or the same protein in different states. Comparison of sequences and structures is a

common approach in the study of proteins. BLAST [10] is by far the most widely used software

for sequence similarity detection, and structure based comparison and classification algo-

rithms like CATH [11], SCOP [12], and DALI [13] provide a good overview of the entire pro-

tein structure universe. In recent years, several tools and techniques have been developed for

comparison of protein dynamics and contributed to the development of the field of compara-

tive dynamics [14–16].

Many of the tools and techniques for dynamical comparison rely on analysis of low-fre-

quency normal modes from coarse-grained elastic network models (ENM) or principal com-

ponents analysis of biomolecular structures and dynamic simulation. These studies have

proven useful in unraveling the collective modes and, in particular, those at the low frequency

end of the mode spectrum that underlie protein equilibrium dynamics [17]. Simple and com-

putationally efficient normal mode models were developed to study protein dynamics [18, 19].
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A detailed structure of a protein is not necessary to obtain the global dynamics, rather the

shape of the molecule plays a predominant role in determining the eigenvectors [20]. Even

low-resolution on-lattice models can provide insights into functionally important global

dynamics [21]. Low-frequency normal modes from coarse-grained ENMs have been shown to

match experimentally observed conformational changes [22, 23]. Recently, using Anton super-

computing technology [24, 25], a comparison was made between PCA modes obtained from

micro- to milli-second full atomic MD simulations and modes obtained from the Anisotropic

Network Model (ANM) [26, 27]. Close overlap was found between the principal modes of

these two techniques, reinforcing normal mode analysis as a tool for exploring protein dynam-

ics [28].

Clustering algorithms rely on similarity (or distance) scores to identify closely related pro-

teins. Sequence clustering algorithms used percentage sequence identity of aligned proteins to

measure sequence similarity. In order to reduce computational cost, short word filtering of

non-relevant sequences may precede the alignment step such as in BLAST [10] or CD-HIT

[29]. Structure clustering algorithms use structural similarity scores such as the Root Mean

Squares positional Deviation (RMSD) or TM-score [30, 31]; for comprehensive review see

[32]. For example, the DALI server optimizes a structural alignment; that is, a sequential set of

one-to-one correspondences between Cα atoms [33]. Similarly, there is a need to develop

dynamical similarity scores; such scores can enable us to classify proteins according to their

dynamics. Previously, Zen et al. developed a method to align proteins based on their equilib-

rium dynamics inferred from ENM [34]. Munts et al. showed that dynamics similarity can be

measured by comparing Dynamic Fingerprint Matrix [35]. We previously showed that the

similarity of normal modes of motion can be measured using alignment algorithms [36, 37]

based on the global sequence alignment algorithm of Needleman-Wunsch [38]. The optimal

way of comparing complex molecular motions is, however, far from trivial and no efficient

methods were developed so far for large scale dynamics-based clustering of proteins.

A new dynamics similarity score (DSS) based on local alignment of ANM modes of motion

is presented here. The algorithm is based on the local sequence alignment algorithms of

Smith-Waterman [39]. Its ability and usefulness to measure dynamics similarity is demon-

strated on the globin family of proteins. Globins are globular proteins comprising 6–8 α-heli-

ces (labelled A–H), with members distributed across all three domains of life: bacteria, archaea

and eukaryotes. Each globin polypeptide binds a single molecule of iron-protoporphyrin-IX

(Heme B) that can bind diatomic gaseous ligands such as O2, CO, NO, and other small ligands

[40]. In mammals, hemoglobin (Hb) acts as an O2 carrier to transport O2 from lungs to tissues,

while myoglobin (Mb) is responsible for intracellular O2 storage in muscles and its transport

from the plasma membrane to mitochondria. The heteromeric quaternary structure provides

the hemoglobin a mechanism for cooperative oxygen-binding and allosteric regulatory control

[41], so the protein switches between two forms: tense (T) low-affinity state and relaxed (R)

high-affinity state upon ligand binding [42]. There are two classical models proposed for

describing the allosteric mechanism of Hb: the Monod, Wyman, and Changeux (MWC) con-

certed model [43] and the Koshland, Nemethy, and Filmer (KNF) sequential model [44]. After

solving the R conformation the R2 conformation was discovered, this conformation more

accurately represents the liganded Hb end state [45]. Two different structural sub-classes of

the globin fold are recognized. The 3-on-3 fold is the canonical Hb fold, exemplified by Mb.

The ‘3-on-3’ designation refers to the α-helical ‘sandwich’ formed by the A-G-H and B-E-F

helices [46]. Members of this class include, for example: Hb, Mb, non-symbiotic Hb and proto-

globin. The second structural class is the truncated Hb (trHb) class, also called ‘2-on-2’ Hbs,

based on the arrangement of the B–E and G–H helical pairs [47].

Dynamics based clustering of globin family members
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The three-dimensional (3-D) structure of globins is well preserved, but their sequences are

very different [48]. However, it was possible to identify, from a set of aligned protein struc-

tures, a core set of residues that are located at relatively invariant 3-D positions [49]. Maguid

et al. [50] showed that two slowest Gaussian network model (GNM) normal modes of motions

are conserved within this family, indicating common dynamics within the globin family. The

present study demonstrates that the DSS can be used to cluster proteins based on their dynam-

ics similarity. The DSS score matrix is calculated based on the top scoring matches of each pair

of globin members and the proteins are clustered using a hierarchical clustering algorithm.

The utility of this method is exemplified on a dataset for protein chains from the globin family

and a dataset of tetrameric hemoglobins. The results demonstrate the effect of the quaternary

structure of globin members on their intrinsic dynamics and the dynamical relations between

different available Hb structures.

Materials and methods

Globin datasets

A list of protein structures was compiled based on the globins Superfamily (1.10.490.10) of the

CATH database [11, 51]. Protein structures were downloaded from the Protein Data Bank

(PDB) [52] and a total of 1030 structures and 1289 unique chains were obtained. Two datasets

were created; the first (dataset1) contains 117 randomly selected globin chains. The second

dataset (dataset2) consists of all 320 tetrameric Hb excluding three structures 1ITH, 4HRR and

4HRT that have a unique quaternary structure and do not superimpose with other Hbs. The

PDB codes of two datasets are listed in S1 and S2 Tables (Supporting Information).

ANM calculation

The ANM modes of motion of the superimposed structures were calculated as previously

reported [27, 53, 54]. Each residue was represented by a single node positioned at its Cα atom and

a cutoff distance of 15Å was used. Heme groups were represented as four nodes corresponding to

CHA, CHB, CHC and CHD atoms. ANM modes were calculated to the biological unit. In the

case when only a single chain was compared, and the chain was a part of the biological unit, only

the part of the modes that corresponds to this chain was used in the alignment. Every pair of com-

pared structures was superposed using the TM-align software [30, 31] prior to ANM calculations.

Calculating ANM modes of motion to a large dataset, especially when some of the structures are

large, is very time consuming. Therefore, fast ANM calculations of only the slowest 40 modes

were performed using the Spectra library for large scale eigenvalue problems [55]. This library is a

C++ implementation of ARPACK [56] and uses the Lanczos algorithm [57].

Anisotropic network model modes local alignment

The commonly used Smith–Waterman [39] local sequence alignment algorithm was modified

to align ANM modes with few modifications. ANM mode analysis results in a set of vectors

fU!g describing the deformation of residues from their equilibrium position (native structure)

in the Cartesian space. Let Uk
i

�!
be the deformation vector of residue i in mode k of one protein

and Vl
j

�!
the deformation vector of residue j in mode l of another protein. The score for resi-

dues i and j upon alignment of modes k and l is defined as:

Sij ¼
U!k

i � V
!l

j

jU!k
i jjV
!l

jj
� C where 0 � C � 1 ð1Þ
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Sij will be positive if their cosine value is greater than C that is the two deformation vectors

pointing in the same direction and negative if their cosine is smaller than C. Here we used

C = 0.7 radians (~40˚) to define the threshold for vector similarity. In case of alignment of

homologous or identical proteins, it is possible to guide the algorithm to prefer the matching

of spatially close residues by applying distance constraints. Distance constraints were applied

in the present work by modifying the alignment score Sij as follows:

Sij ¼

U!k
i � V
!l

j

jU!k
i jjV
!l

jj
� C; rij � Rc

� 1 ; rij > Rc

ð2Þ

8
>><

>>:

where rij is the Cα distance between residues i and j and Rc is the cutoff distance set here to

10Å. Since the sign of the fluctuations in each mode is arbitrary, the alignment of two modes,

a and b, is done twice. Once between the two original modes (a and b) and once between

mode a and the negative of the second mode–b, with the best alignment (highest total score)

being used.

For each pair from the n slowest aligned modes, an alignment matrix is created and the best

non-overlapping (up to 200) gapless matches with minimal length of seven residues (gapless

alignment of a single mode pair) are kept. The top 2n matches (best scores) are selected and

best Sij is kept, for residues i and j of the first and second aligned proteins, for each mode com-

bination. The final residue dynamical similarity score of each residue is the sum of all its best

(kept) Sij. The sum of the average residue dynamical similarity score of both proteins divided

by two is defined as their DSS. The ability of the current algorithm to identify local dynamics

similarity is demonstrated in a recent paper [58] where we show a detailed dynamical compari-

son between myoglobin and hemoglobin.

Clustering and principal component analysis

Clustering calculations were performed in R environment for statistical computing and graph-

ics [59]. Clustering was performed using the hierarchical clustering function hclust with

default parameters after converting the DSS matrix into a distance matrix. Preliminary calcula-

tion showed that both hclust and agnes functions give similar results. Principal Component

Analysis was performed using the R package Bio3D [60] in combination with the MUSCLE

program for multiple sequence alignment [61].

Results

In order to determine the optimal number of slow modes to use for comparing the

dynamics of globin family members, the DSSs between all chains in dataset1 were calcu-

lated using a series of slow nodes (n = 2,4,6, . . . 20). The correlation coefficient was calcu-

lated between successive DSSs and the results are depicted in Fig 1. The first data point

marks the correlation coefficients between DSSs, calculated using the 2 and 4 slowest

modes. The second between DSSs calculated using the 4 and 6 slowest modes, and so on.

The more slow modes being used, the higher the correlation coefficient until it reaches a

plateau around the 12 slowest modes. Therefore, the 12 slowest modes were used in the

following calculations. The results also indicate that the algorithm is not very sensitive to

the exact number of top 2n matches (see Methods) that are used to calculate the DSSs.

Dynamics based clustering of globin family members
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Clustering chains of globin members

Clustering of dataset1 was performed by using the DSS scores matrix and the dendrogram is

depicted in Fig 2, with the number of chains in each biological assembly indicated in blue next

to each structure. Overall, the dendrogram classification follows the number of chains in the

biological assembly, indicating the strong effect of the quaternary structure on the dynamics of

its subunits. The globin chains are divided into three major groups: Hb-α chains, Hb-β chains,

and Mb and another small group of dimeric Hbs. There are three noticeable outliers

(highlighted in maroon). The PDB code 3ZJM [62] (Fig 2 top) is dimeric protoglobin from

Methanosarcina acetivorans, a strictly anaerobic methanogenic Archaea, whose biological role

is still unknown. Protoglobin is the first globin identified in Archaea [63]. Another two notice-

able outliers are the PDB codes 1MWB [64] and 2BKM [65] (Fig 2 middle); both these struc-

tures belong to the truncated hemoglobin family.

The fact that Hb α and β chains are clustered in different groups indicates that there is a dif-

ference in the dynamics of the two chains. The first mode of motion of Hb describes the R2 to

T transition [66]. Fig 3 depicts this motion for the liganded human Hb 1BBB [67] using a por-

cupine plot from the viewpoint of the α (top) and β (bottom) chains. There are seven helices in

α subunit of Hb and eight in β subunit, with the difference between them in the region that

connects helices B and E in the α subunits. This region is composed of one short helix and a

large loop in α subunit and a short helix-loop-short helix in β subunit; therefore, helix D is

missing in the α chain. The 1BBB is presented using α- and β- subunits viewpoint with similar

orientation of the helix E. The circular motion of α subunit is in approximately 30˚ off the

helix E direction while the circular motion of β chain is parallel to helix E direction. That is,

the two chains have distinguishable motion of the slowest mode and the difference increases

with the second and third modes.

Clustering tetrameric hemoglobins

The vast majority of the Hb proteins are tetrameric. These globin members were clustered sep-

arately in order to obtain a better understanding of their dynamical relations. A set of 320
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tetrameric Hb structures were compiled (dataset2) from the CATH globin family and they are

listed in S2 Table. PDB entries 1A3N (T) [68] and 1BBB (R2) [67] were used to represent

human Hb in the unbound and bound states, respectively. The intact protein structures were

superimposed prior to the ANM mode calculations, then the DSS scores matrix was calculated,

and the proteins were clustered as before. The complete dendrogram is presented in S1 Fig.

The resulting dendrogram divides the Hbs into two main groups, one includes the T-state and

the other includes the R2-state structure. The nearest neighbors of the T and R2 state, they are

highlighted in blue and maroon, respectively, and are listed in Table 1. For the majority of the

proteins listed in the table, we were able to verify from the literature that they are indeed T-

and R2 state structures. Two structures are distinguished as outliers in the dendrogram 3AT6

[69] and 2M6Z [70]. 3AT6 is the yellow-spotted river turtles (Podocnemis unifilis, Pleurodira,

Chelonia, REPTILIA) adult Hb-A and the first refined model for reptilian adult Hb A struc-

ture. 2M6Z is an NMR solution structure of HbCO with overall quaternary structure more

similar to the X-ray R structure of HbCO A than to the R2 structure. The authors concluded

that it is a dynamic intermediate between the R and R2 forms. The dynamical comparison

shows that this structure has unique dynamics distinct from the T and R2 states and is slightly

closer to the T rather than R2 state (R state is referred below).

Dynamics based 2-D mapping of the tetrameric Hbs was carried out by calculating

their average DSS from the T and R2 representatives (Table 1), with the results depicted in

Fig 4. The R2 structure 1BBB has a high average R2-DSS and a low T-DSS, as expected.

The two proteins that show the highest average R2-DSS are Hb-E structures 1YVQ and

1NQP [71]. The two structures are in the bound state, the former binds to CO and the lat-

ter to CN and was also reported to represent the R2 state. As expected, these proteins also

have a low average T-DSS. The T structure 1A3N has a high average T-DSS and low aver-

age R2-DSS. The structure 1Y7D [72] has the highest average T-DSS and lowest average

R2-DSS. This structure represents transitions referred to as T-to-THigh transitions

between the quaternary-T structure of wild-type deoxyhemoglobin and an ensemble of

related T-like quaternary structures that are induced by some mutations in the Trp37β
cluster. The R-state structure 3OO4 [73] is located between the R2 and T state with aver-

age R2-DSS greater than the average T-DSS. The map shows a continuous path from the

R2 to R to T states. The two outliers 3AT6 and 2M6Z show low average T- and R2- DSS,

another such structure is 1CG8 [74]. 1CG8 is an Hb structure from Dasyatis akajei, a

stingray that is one of the most distantly related vertebrate Hbs to human HbA. Larger

structural deviations between Dasyatis akajei Hb and human HbA are observed in various

parts of the molecule, even in the E and F helices. The average T- and R2- DSSs for all Hbs

in dataset2 is provided in the S3 Table.

PCA analysis is a common method for 2-D mapping of the structural space. The result-

ing principal components (orthogonal eigenvectors) describe the axes of maximal vari-

ance of the distribution of structures. The 2D map of the tetrameric Hbs along the first

two principal components is presented in Fig 5. Similarly, to the dynamics based 2-D

mapping, the R2-state (1BBB) and T state are on opposite sides of the map and the R state

is located closer to the R2 state than the T state. The main difference between the two

maps is the clear gap between the cluster of structures that are at the vicinity of the T state

and the rest of the structures. While, the dynamic based 2-D map shows intermediate

states linking the two states.

Fig 2. Globin chains (dataset1) dynamics similarity dendrogram. The number of chains in each biological assembly

are indicated in blue next to each structure. Three outliers are highlighted in maroon.

https://doi.org/10.1371/journal.pone.0208465.g002
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Dynamics similarity versus structural similarity

ANM normal modes are derived from the protein structure. Hence, there is an expected rela-

tion between DSSs and structural similarity scores such as the TM-score obtained here during

structural superposing of the Hb pairs. Fig 6 presents the DSSs as a function of the TM-score.

The figure shows that Hb pairs with high DSS also have a high TM-score. However, the oppo-

site is not always true: Protein pairs with high TM-score may have high or low DSS scores.

One example is the 1CG8 structure; many Hb pairs, which include this structure, have a high

TM-score and low DSS. Although the global 1CG8 structure is very close to other Hb struc-

tures, significant mutations and/or conformational changes are observed between this struc-

ture and HbA around the hemes, in the C-terminal region of the β-subunit, in the α1β2

interface, and in the organic phosphate-binding site of HbA [74]. These changes affect the DSS

more than the TM-score.

Another way to compare between the DSS and the TM-score is a comparison of the derived

dendrograms, the TM-score based dendrogram of dataset2 is presented in S2 Fig. Similarly, to

the DSS-based dendrogram, the Hbs are divided into two major groups, one includes the T-

state and the other include the R2-state. Branching of the major groups is different. The near-

est neighbors of the T and R2 state according to the TM-score based dendrogram are listed in

Table 2. The overlap with the DSS based nearest neighbors (Table 1) of the R2-state is higher

than the T-state as the non-overlapping structures 1NQP and 1YVQ are in a close branch of

the DSS-based dendrogram. Thus, the different scores resulting in differences in the

dendrograms.

Discussion and conclusion

A novel methodology for dynamics-based clustering of proteins is presented here. The method

performs local ANM mode alignments of n slowest modes, using an algorithm based on the

local sequence alignment algorithms of Smith-Waterman [39]. Dynamical comparison of the

globin members is challenging since the proteins are in different multimeric states ranging

from monomers to 24-mers. Hence, some of the modes were inter-subunits and others intra-

subunit motions. Despite this difficulty, we were able to develop a fully automated procedure

that identifies the best matches between the slowest n modes of each protein without the need

to select reference modes. Recently, Ponzoni et al. classified the LeuT-fold superfamily of

Fig 3. Porcupine plot of the first mode of motions of liganded Hb 1BBB[67]. The mode is depicted using the

viewpoint of the α (top) and β (bottom) chains. The chains are colored green (α1), cyan (β1), white (α2, β2).

https://doi.org/10.1371/journal.pone.0208465.g003

Table 1. DSS based nearest neighbors of hemoglobin T- and R2- state structures.

T state R2 state

1Y4V 3B75

3HXN 1G0A

1XZ7 1SI4

1XY0 1M9P

1Y0C 1QXD

1Y35 1BBB

1Y85 3IC0

1DKE 1QXE

1A3N 3R5I

2D60

https://doi.org/10.1371/journal.pone.0208465.t001
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secondary active transporters using the three slowest ANM modes calculated for the mono-

mers/protomers [75]. This methodology necessitates the choice of a reference state and is

harder to implement when the protomer in its multimeric state has significantly different

dynamics.
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Fig 5. Hemoglobin principal component analysis. The abscissa and the ordinate represent the two main principal

components with their variance written in parenthesis.

https://doi.org/10.1371/journal.pone.0208465.g005

Dynamics based clustering of globin family members

PLOS ONE | https://doi.org/10.1371/journal.pone.0208465 December 4, 2018 10 / 16

https://doi.org/10.1371/journal.pone.0208465.g004
https://doi.org/10.1371/journal.pone.0208465.g005
https://doi.org/10.1371/journal.pone.0208465


Clustering of globin chains shows that Mb, Hb-α and Hb-β are clustered in different

groups, indicating the unique dynamics of each group within the globin family. The dynamical

difference between Mb and Hb subunits is expected as there is a functional difference between

the two proteins; Mb has a higher affinity for oxygen than Hb and lacks allosteric and coopera-

tive function. The distinguishable dynamics between α and β subunits of Hb indicate that the

two subunits have an asymmetric role in agreement with the following studies. PELE molecu-

lar dynamics simulations of Hb showed that the ligand exit paths for the β-subunit are consid-

erably different from those for the α-subunit [76]. Experimentally, geminate ligand

recombination reaction studies showed dissimilar behavior of these two subunits, pointing to

their nonequivalent role [77–79].

The clustering results of the globin chains reflect the quaternary structure of the chains.

However, even clustering of tetrameric Hb, i.e. globins with the same quaternary structure,

results in a meaningful dendrogram and a 2D dynamic similarity map of the different struc-

tures of Hb. The gap in Fig 4. of the dynamical based 2-D map between the T and R2 states

suggests that there is an indirect path from the R2 to T states through the R, with the R state

closer to R2. The map reflects the ability of the DSS to distinguish between the different Hb

structures and correctly classify them. In the case of a compact molecular structure such as
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Fig 6. DSS as a function of the TM-score. The TM-scores (abscissa) versus the DSSs (ordinate) for all hemoglobin

structures in dataset2 depicted using point plot.

https://doi.org/10.1371/journal.pone.0208465.g006

Table 2. TM-score based nearest neighbors of hemoglobin T- and R2- state structures.

T state R2 state

3WCP 1SI4

1A3O 3B75

1A3N 1BBB

2D60 1NQP

2HHE 1YVQ

2D5Z

4L7Y

Overlapping DSS- and TM-score nearest neighbors are marked in bold.

https://doi.org/10.1371/journal.pone.0208465.t002
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that of a globular protein, the shape of the molecule plays a predominant role in determining

the eigenvectors of low-frequency normal modes [20, 21]. Therefore, the use of only one or

two slow modes for calculating DSS can affect the ability of the algorithm to distinguish

between similar structures. Based on the correlation analysis of DSSs calculated using different

number of slow modes (Fig 1), the number n = 12 of slowest modes was chosen as the optimal

one. This number is in agreement with the algorithm of Zen et al. [34] for dynamics-based

alignment of proteins, which uses the 10 slowest modes.

Although elastic network model normal modes of motion are derived from protein struc-

tures, dynamics-based clustering is different from structure-based clustering. This is due to the

fact that the modes of motions are calculated for the entire biological assembly even when we

compare only a single chain. Therefore, we can take into account the effect of the quaternary

structure on the intrinsic dynamics of the examined chain. In addition, as shown in Fig 6, pro-

teins with high DSS have a high TM-score; however, proteins with a high TM-score may have

high or low DSS. The present methodology has few limitations, first, it can only be used with

structurally similarity proteins, since structural superimposing is necessary prior to ANM

mode calculation. Second, normal mode analysis assumes a harmonic potential, but not all

protein motions can be correctly described by harmonic potentials [80]. Thereby, the dynam-

ics here only describe protein behaviors near the energy minimum. Proteins with moderate

structural conservation can be compared by increasing Rc. Dynamics comparison of structur-

ally dissimilar proteins can be performed by comparing GNM modes since these modes do

not depend on the specific pose of a structure in cartesian space [36, 81]. The information

embedded in the GNM modes is more limited than ANM modes, hence, comparison of GNM

vs. ANM modes can be viewed as low vs. high resolution dynamical comparisons [58]. Combi-

nation of the two methods will be necessary to achieve a broader applicability of this approach.

As proteins depend on their dynamics to execute their function, dynamics-based alignment

and clustering algorithms are expected to deepen the understanding of the structure-dynam-

ics-function relation of proteins.
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