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Abstract

We determine the optimal parameters (scan velocities) for measuring the lumines-

cence lifetime on the microsecond scale using the recently introduced method

based on scanning the excitation beam across the sample. Using simulations, we

evaluate the standard deviation and bias of the luminescence decay rate deter-

mined by scanning with two different velocities. The analysis is performed for

Poisson- and normal-distributed signals, representing different types of detection

techniques. We also show that a weak uncorrected background induces a bias in

the obtained decay rate, and take this effect into account when choosing optimal

measurement parameters. For comparison, the analysis is additionally performed

for two conventional gating schemes for lifetime measurement. The variable-

velocity scanning method is found to be more robust to the effect of the back-

ground signal than the gating schemes.
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1 | INTRODUCTION

The luminescence lifetime is an important parameter often employed

for sensing the environment and the interactions of the emitting mol-

ecules, or simply for distinguishing between dyes of similar spectral

properties (Lakowicz, 2006; Meyer-Almes, 2017; Suhling, French, &

Phillips, 2005; Valeur, 2001). The independence of lifetime on the

excitation intensity and on the dye concentration within a broad

experimental range is a major advantage over measurements based

only on emission intensity, and a reason for the many applications of

time-resolved fluorescence (Bolivar, Consolati, Mayr, &

Nidetzky, 2013; Gruber, Marques, Szita, & Mayr, 2017; Wang &

Wolfbeis, 2014). However, the experimental determination of lumi-

nescence lifetime typically requires complex equipment, involving

pulsed excitation and time-resolved detection. Furthermore, analytics

based on lifetime generally necessitates a higher signal-to-noise ratio

than methods using solely emission intensity. This is especially rele-

vant in microscopy applications, where the single volumes within

which the measurements are performed (pixels, voxels) are small, and

the signals are limited. The particular choice of experimental parame-

ters can, therefore, have profound effects on the quality of the results,

quantified by the standard deviation and bias of the determined life-

time or decay rate.

For these reasons, the question of the optimal choice of parame-

ters in different methods of lifetime measurement has been addressed

in the past (Ballew & Demas, 1989, Ballew & Demas, 1991; Hall &

Selinger, 1981; Good, Kallir, & Wild, 1984; Heeg, 2013, 2014;

Köllner & Wolfrum, 1992; Moore, Chan, Demas, & DeGraff, 2004;

Peng, Liu, Zhao, & Kim, 2016; Santra et al., 2016; Tellinghuisen &

Wilkerson, 1993; Xu, Qiao, Nie, & Zhang, 2016). Theoretical studies

of time-domain methods, where the sample is excited by a short pulse

and the decay subsequently detected in a variable number of time
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channels (gates), have focused on various aspects of the detection

scheme: the number of time channels and their widths (Hall &

Selinger, 1981; Köllner & Wolfrum, 1992; Moore et al., 2004), the

channel overlap (Chan, Fuller, Demas, & DeGraff, 2001; Heeg, 2014;

Moore et al., 2004), the effect of different noise distributions

(Heeg, 2013, 2014; Tellinghuisen & Wilkerson, 1993), the effect of

background (Ballew & Demas, 1991; Köllner & Wolfrum, 1992; Moore

et al., 2004; Soper & Legendre, 1994), etc., and have identified the

optimal parameters and quantified the expected errors.

We have recently introduced an alternative method for the mea-

surement of luminescence lifetimes on the microsecond scale based on

scanning the beam across the sample with different velocities and

simultaneously detecting the emitted signal (Petrášek, Bolivar, &

Nidetzky, 2016). The technique does not require pulsed excitation and

relies on the excitation-time dependence on the scan velocity. Different

scan velocities result in different luminescence signals, and measure-

ments at as few as two velocities are sufficient to determine the lumi-

nescence lifetime. The precision of the lifetime measured in this way

depends on the choice of the two scan velocities. As the principle of

the variable-velocity scanning method differs from the conventional

time-gating approach, the existing studies dealing with optimal parame-

ter choice do not apply here. In this work, we used simulations and ana-

lytical calculations to determine the optimal scan speeds that minimize

the standard deviation of the decay rate for the measurement scheme

employing two velocities. We take into account the effect of small

uncorrected background that can bias the resulting decay rate. For

comparison, the analysis is performed also for two conventional gating

schemes with generally unequal time gates, one with non-overlapping

consecutive gates and the other one with fully overlapping gates. The

presented analysis and results are going to facilitate the implementation

and application of the variable-velocity scanning method, particularly in

combination with confocal laser scanning microscopy.

2 | THEORY

2.1 | Lifetime measurement with the variable-
velocity scanning method

The measurement of the luminescence lifetime by employing different

scan velocities takes advantage of the finite time needed to populate

the excited state in an ensemble of molecules from the start of the

excitation (Petrášek et al., 2016). This time is determined predomi-

nantly by the luminescence decay rate. The scan velocity of the exci-

tation beam determines the duration of excitation at any point within

the sample. At fast scan speeds, resulting in an excitation period that

is short compared to the luminescence lifetime, the excited state will

not have reached its steady-state population and the emitted signal

will be relatively low. At slower scan speeds, where the population of

the excited state gets closer to the steady-state, the emitted signal

will be on average higher (Figure 1). The luminescence lifetime can be

determined from the intensities measured at least two different scan

speeds.

We have previously shown that the dependence on the scan

velocity v of the luminescence intensity, f, can be expressed as

(Petrášek et al., 2016):

f vð Þ= f0 1−
v
αk

1−e−αk=v
� �� �

, ð1Þ

where k is the decay rate (the inverse of the luminescence lifetime τ:

τ = 1/k), and α is a factor nominally equal to the linear size of the illu-

minated area, typically a focused laser beam in a confocal laser scan-

ning microscope. In practice, α is determined by calibration with a dye

of a known luminescence lifetime. The emission intensity increases

with decreasing scan velocity, and in the limit of very low velocity

approaches the steady-state value f0.

When scanning with velocity v, any position within the sample is

illuminated for time t = α/v. Employing two different scan speeds

gives two illumination times t1 and t2. In the Results section, we deter-

mine the optimal times t1 and t2, from which the scan velocities v1

and v2 can be calculated (Figure 2).

In order to obtain the signals F1 and F2, the luminescence inten-

sity is integrated for times t10 and t20. In a confocal laser scanning

microscope, these times correspond to the time per pixel ti 0 = d/vi,

where d is the pixel size. It follows from Equation (1) (substituting

ti = α/vi):

F1 = f v1ð Þt1 0 = f0 1−
1−e−kt1

kt1

� �
t1

0, F2 = f v2ð Þt2 0 = f0 1−
1−e−kt2

kt2

� �
t2

0:

ð2Þ

The integration times t10 and t20 are generally different from the

illumination times t1 and t2, in the same way as the size d of an image

pixel is usually not the same as the size α of the focused laser spot in

the sample. Substituting ti 0 = (d/α)ti in Equation (2) introduces a con-

stant factor d/α, which, however, cancels out in the calculation of k

because only the ratios of intensities Fi are used, as explained in detail

F IGURE 1 The principle of the variable-velocity scanning
method: the detection area of the size α where the molecules are
excited moves across the sample (dimension x). The detected signal Fi
(integrated over the area α) depends on the scan velocity vi; this
dependence is used to determine the luminescence lifetime. The
vertical axis represents the emission intensity
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below. Therefore, without a loss of generality, we will assume in the

following that these times are the same: t1 0 = t1, t2 0 = t2. The two

equations above (Equation (2)) can then be used to calculate the decay

rate k from the measured signals F1 and F2 and the known times t1

and t2. In the following text, this measurement method will be den-

oted as the Scheme S (“scanning”).

2.2 | Conventional gating schemes

We compare the scanning method (Scheme S) with the commonly

employed time-gating method, which relies on pulsed excitation and

time-resolved detection of the subsequent light emission in several

time windows (Suhling et al., 2005; Webb et al., 2002).

Two gating schemes are considered here, each with two-time chan-

nels (Figure 2). In both cases, the first gate starts at time zero, immedi-

ately after the pulsed excitation. In the scheme denoted G1 ('gating') the

second gate starts immediately after the end of the first gate; the gates

generally have different widths: t1 and t2 − t1. In the second scheme,

denoted G2, the second gate also starts at time zero, so both gates are

fully overlapped, and the unequal gate widths in this case are t1 and t2.

Assuming a mono-exponential luminescence decay f(t):

f tð Þ= f0e−kt, ð3Þ

the intensities F1 and F2 detected in the two-time windows in the G1

scheme are:

F1 =
f0
k

1−e−kt1
� �

, F2 =
f0
k

e−kt1 −e−kt2
� �

, ð4Þ

and in the G2 scheme:

F1 =
f0
k

1−e−kt1
� �

, F2 =
f0
k

1−e−kt2
� �

: ð5Þ

2.3 | Calculation of the decay rate k

The experimentally measured or simulated signals in the two-time

windows in any of the three measurement schemes are denoted N1

and N2. These values are subject to experimental noise, and therefore

in practice differ from the theoretical values F1 and F2. The signals N1

and N2 may be photon counts, in case of photon-counting detection

typically used with weak signals (confocal microscope), or real num-

bers resulting from an analog-to-digital conversion of an analog detec-

tor signal. In this study, we consider two possible statistical

distributions of the values N1 and N2: Poisson and normal (Gaussian),

both with their means equal to F1 and F2. While the Poisson distribu-

tion describes photon-counting detection, we use the normal distribu-

tion with the variance proportional to the detection time window Δt

(Figure 2) to approximate detection with additional sources of noise,

such as noise related to the background.

For both distributions the maximum-likelihood criterion (Bajzer,

Therneau, Sharp, & Prendergast, 1991; Tellinghuisen & Wilkerson,

1993) for parameter estimation leads to the following equations, from

which the unknown parameters f0 and k can be determined:

N1 = F1, N2 = F2: ð6Þ

Since we are interested only in the decay rate k, it is practical to

calculate the following ratio r from the experimental data:

r =
N1

N1 +N2
: ð7Þ

Using Equation (6) for all three measurement schemes, we obtain

the equation, from which the decay rate k can be calculated numeri-

cally: the Scheme S:

r = 1 +
1−e−kt2 −kt2
1−e−kt1 −kt1

� �−1

, ð8Þ

F IGURE 2 The three
measurement schemes analyzed in
this work. S: the scanning method
employing two different scan
velocities; G1, G2: time-gating
methods using pulsed excitation at
time t = 0 and detection in two-
time windows. In the Scheme G1,
the second time window begins

immediately after the first one
(no overlap); in the Scheme G2 both
windows start at the time t = 0 (full
overlap)
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the Scheme G1:

r =
1−e−kt1

1−e−kt2
, ð9Þ

and the Scheme G2:

r = 1+
1−e−kt2

1−e−kt1

� �−1

: ð10Þ

The signal strength in the three measurement schemes is

expressed by the parameter f0 (Equations (1) and (3)). It is convenient

to substitute f0 = nk in the equations defining F1 and F2 (Equations (2),

(4), and (5)), where the new parameter n replaces f0, and can be inter-

preted as the number of photon counts if photon-counting detection

is used, or as a time-integrated signal in general. In Scheme S, the

parameter n represents the signal detected by integration over the

time t 0 = 1/k equal to the luminescence lifetime in the steady-state

regime (kti � 1, Equation (2)). In the Schemes G1 and G2, n is the total

signal detected after one excitation pulse.

The numerical values of the times t1 and t2 in the simulation

results, in figures, and in-text are given in relative units of 1/k.

2.4 | The effect of the background

The presence of a constant background signal influences the mea-

sured decay rate k. If the background is not taken into account during

the analysis, it biases the calculated value of k. Even if included in the

fitting model as an unknown parameter, the background affects the

precision with which k is determined, and also influences the optimal

experimental parameters (t1, t2). It has been shown that even if the

correct background is subtracted, the noise associated with the back-

ground negatively influences the precision with which the decay rate

can be determined (Heeg, 2013; Köllner & Wolfrum, 1992).

The background effect has been described for the gating Schemes

(G1) several times in the past (Ballew & Demas, 1991; Heeg, 2013,

2014; Köllner & Wolfrum, 1992; Moore et al., 2004). The best prac-

tice is to determine the background independently, and include it in

the analysis as a known parameter. This is, however, not always possi-

ble or cannot be done exactly. Consequently, a small contribution of

the background still remains in the signal. Here, we analyze the bias in

k when the background is not corrected for, or when the residual

background remains, and show that the impact of background differs

widely among the considered measurement schemes. Even at low

background levels, its effect has to be taken into account when

choosing t1 and t2.

The background intensity B is assumed to be constant in time,

and we express it relatively to the luminescence amplitude f0 in Equa-

tions (1) and (3): B = bf0. If b = 1, the background is comparable to the

luminescence signal; we are, however, interested in the case of low

background: b < 1. The background intensity B multiplied by the

corresponding gate time width then represents the contribution of

background to the signals Fi. Adding the background to the signals F1

and F2 results in background-affected signals F10 and F20 and their

ratio r0:

F1
0 = F1 +Bt1, F2

0 = F2 +Bt2, ð11Þ

r0 = 1+
1−e−kt2 −k 1+ bð Þt2
1−e−kt1 −k 1+ bð Þt1

� �−1

ð12Þ

for the Scheme S (where F1 and F2 are taken from Equations (2)), and:

F1
0 = F1 +Bt1, F2

0 = F2 +B t2−t1ð Þ, ð13Þ

r0 =
1−e−kt1 + bkt1
1−e−kt2 + bkt2

ð14Þ

for the Scheme G1 (where F1 and F2 are taken from Equations (4)).

The bias of k as a result of background in the measurement Scheme

G2 is the same as in the Scheme G1, therefore, it is not shown it

explicitly here.

In order to calculate the biased decay rate k0 , the ratio r0 is calcu-

lated from the equations above (Equations (12) and (14)), substituted

to the equation for unbiased r (r = r0) without any background

(Equations (8) and (9)), and subsequently the biased k0 is calculated

from r.

3 | METHODS

For all the measurement schemes (Figure 2) the noisy experimental sig-

nals N1 and N2 were simulated (Monte Carlo) and analyzed to obtain

the decay rate k, in the following way. The signals N1 and N2 were gen-

erated as random numbers with Poisson or normal (Gaussian) distribu-

tion, with the mean given by F1 and F2 in Equations (2), (4), and (5), and

the variance (normal distribution) equal to nΔt, where Δt is the width of

the time window (Δt = t1, Δt = t2 or Δt = t2 − t1 depending on the mea-

surement scheme; see Figure 2). Then, the ratio r (Equation (7)) was cal-

culated from N1 and N2, and subsequently the estimate of the decay

rate k was calculated from r by numerically inverting Equations (8), (9),

or (10), depending on the measurement scheme.

The simulations were performed for ten different signal levels n,

ranging from 100 to 105. The simulation was repeated 10,000 times

for every set of parameters, the obtained rates k were averaged and

their standard deviation σk and bias relative to the true value k0 were

calculated. All simulations were done in Matlab (The MathWorks,

Natick, MA).

The standard deviation σk of the decay rate k was also estimated

analytically using the standard error propagation method. The σk is

related to the standard deviation σFi of the signals Fi as follows:

σ2k =
∂k
∂F1

� �2

σ2F1 +
∂k
∂F2

� �2

σ2F2 =
∂k
∂r

� �2 ∂r
∂F1

� �2

σ2F1 +
∂r
∂F2

� �2

σ2F2

" #

ð15Þ
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The derivatives in Equation (15) were determined from Equa-

tions (6) to (10). The analytical calculations of error propagation were

done in Mathematica (Wolfram Research Inc., Champaign, IL).

4 | RESULTS AND DISCUSSION

4.1 | The standard deviation of the decay rate

In order to determine the optimal time windows t1 and t2 for all three

measurement schemes, we simulated the measurement signals N1 and

N2 for a range of values of t1 and t2 and calculated the decay rate k

using Equations (8)–(10). The presence of noise, the level of which is

determined by the parameter n, means that the calculated rate k was

distributed around the true value k0. By repeating the simulations

many times, we could evaluate the mean value of k, its bias from the

true value k0, and the standard deviation σk.

The standard deviation σk of the decay rate k depends on the

number of counts n as follows (Figure 3):

σk
k0

=
σ�ffiffiffi
n

p ð16Þ

where the parameter σ* differs among the considered measurement

schemes, and is a measure of the precision of the method. The signal

strength n was found to have no influence on σ*, meaning that the

optimal parameters determined below are independent of the signal

intensity.

The position of the minimum of σ* indicates the optimal times t1

and t2 (Figure 4). The value of σ* for the scanning method (Scheme S)

decreases steadily with increasing time t2, however, from t2 � 8, this

decrease is not significant. The optimal time t1 then lies between

2 and 2.5 for the Poisson noise, depending on the particular value of

t2, but with a rather weak sensitivity to its exact value. The situation

is very similar in the case of the Gaussian noise, with the optimal value

of t1 between 2 and 3.2.

Similarly, in the two gating Schemes G1 and G2 with Poisson

noise the relative standard deviation σ* steadily decreases with t2,

with little significant decrease above t2 = 4. The optimal value of t1 is

different for each scheme: it lies between 1.3 and 1.6 for the G1

scheme, and is approximately equal to 0.5 for the G2 scheme.

Contrary to the other cases, the gating Schemes G1 and G2 with

normally-distributed signals exhibit a well-defined minimum of σ*: at

t2 = 3.80, t1 = 0.44 for the G1 scheme, and at t2 = 4.46, t1 = 0.31 for

the G2 scheme. The existence of the minimum can be understood by

realizing that extending the gate width beyond the times when the

luminescence has decayed only adds more noise but no signal, thus

decreasing the signal-to-noise ratio.

For comparison with previously published results, we also looked

for the optimum gate width in the Scheme G1 in the situation where

the widths of both gates are equal (t2 = 2t1). This is equivalent to find-

ing the minimum of σ* along the line t2 = 2t1 in the corresponding plot

in Figure 4 (dash-dotted line). The optimal gate width in this situation

is t1 = 2.43, in agreement with previous results (Ballew &

Demas, 1989; Chan et al., 2001; Köllner & Wolfrum, 1992).

The standard deviation obtained from simulations (Figure 4)

agrees with analytical calculations using standard error propagation

method. The minimum of σ* (Equation (16)) found in simulations coin-

cides with (Schemes G1, G2) or is slightly larger (Scheme S) than the

value found analytically. The reason for the small difference is the lim-

ited range of t1 and t2 explored in the simulations. Using analytical cal-

culations we could find the asymptotic values for t2 ! ∞. The

positions of the minima and the analytical values of σ* at the minima

are summarized in Table 1.

In addition to the standard deviation, the simulations allowed us

to evaluate the bias of the calculated decay rate k. For this purpose,

we define the relative bias Δrk as a difference between the calculated

(k) and true (k0) decay rate relative to the true decay rate:

Δrk� k−k0ð Þ=k0 ð17Þ

The bias was found to decrease with the number of counts n in

the following way (Figure 3):

Δrk =
γ

n
ð18Þ

The bias parameter γ (Equation (18)) was determined from simula-

tions with a range of n at the position of the minimum of standard

deviation within the range of tested times t1 and t2, and is listed in

Table 1.

The bias turns out to be positive and rather small compared to

the expected error expressed by the standard deviation (Figure 3).

Even at the smallest considered signal n (n = 100), where the bias is

strongest, it is about one order of magnitude smaller than the stan-

dard deviation. This means that this bias can be usually ignored, or, at

F IGURE 3 The dependence of the relative standard deviation σk/
k0 and the relative bias Δrk on the signal strength n as determined
from simulations. The plotted values are taken at t1 and t2, for which
the minimum of σk was found within the tested range (Figure 4). The
results are shown for the three measurement Schemes (S, G1, and G2)
with either Poisson (p) or normal-distributed (n) signal
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the weakest signal levels on the order of 100 counts per decay,

corrected for by using the curves in Figure 3.

Table 1 summarizes the position (t1 and t2) of the minimum of the

standard deviation σ* for the considered measurement schemes,

together with the standard deviation (σ*) and bias (γ) parameters at

this minimum. As mentioned above, in the absence of a localized mini-

mum for finite t2, there is a value of t2, beyond which the standard

deviation does not significantly decrease, and further extension of t2

does not make a practical difference. These results, however, apply to

an idealized situation, and as we show in the next section, the pres-

ence of even a small background influences the choice of the optimal

t1 and t2 in a more realistic setting.

The value of the parameter σ* in Table 1, together with Equa-

tion (16) can be used to estimate the signal needed to reach a required

measurement error. For example, if a relative error of 10% is tolerable

(σk/k0 = 0.1), the signal n detectable over the lifetime 1/k should be at

least 313 counts per luminescence lifetime in the reaction Scheme S

with Poisson noise. For an exemplary lifetime of 4 μs this corresponds

to a detection rate of �7.8 × 107 counts per second. Since such a

detection rate is rather high, the same signal level can be effectively

achieved by either repeating the measurement more times (for exam-

ple, 20× if the rate is �4 × 106 counts per second), by binning neigh-

boring pixels in an image or by a combination of both approaches. For

comparison, under the same conditions the gating Scheme G1

requires a signal level of n = 154 counts per luminescence lifetime that

is approximately one half.

4.2 | The effect of uncorrected background

When the detected signal contains a constant background in addition

to the luminescence, failure to fully account for the background in

analysis leads to an additional bias in the measured luminescence

decay rate.

The sensitivity of the relative bias Δrk (Equation (17)) to the back-

ground depends on the chosen values of t1, t2. Figure 5a shows how

the bias depends on the background level for the two measurement

Schemes S and G1, with t1, t2 chosen so that the standard deviation

of k is near its minimum for each measurement scheme. The presence

of background leads to overestimated values of k in the measurement

Scheme S (positive bias), and to lower k (longer lifetime) in the mea-

surement Scheme G1 (negative bias).

Since we are interested in the effects of a weak background

(small b), we can approximate the bias of the rate k for a low back-

ground b by a linear function with a slope β:

TABLE 1 The positions and values of the minima of normalized
standard deviation and bias of the decay rate k expressed by σ*

(Equation (16)) and γ (Equation (18)) for several measurement
schemes and noise distributions (p: Poisson, n: normal)

Scheme t1 t2 σ* γ

G1p 1.59 ∞ 1.24 1.17

G2p 0.51 ∞ 2.44 2.48

Sp 2.48 ∞ 1.77 3.02

G1n 0.44 3.80 3.13 4.33

G2n 0.31 4.46 3.73 5.28

Sn 3.21 ∞ 2.16 6.27

F IGURE 4 The dependence of the parameter σ*, describing the relative standard deviation σk/k0 (Equation (16)) of the decay rate k, on the
times t1 and t2. The three columns correspond to the measurement Schemes S (left), G1 (middle), and G2 (right). The data in the first row were
Poisson-distributed, in the second row normal-distributed. The solid lines indicate the minimum of σ* for a given value of t2. If an absolute
minimum is present, it is indicated by a black dot. The bottom row shows the minimum values of σ* for a given t2 (solid lines: Poisson-distributed
data, dashed lines: normal-distributed data). The dash-dotted line in Scheme G1 Poisson (middle top) describes the situation when the two gates
are equal (t2 = 2t1); the minimum of σ* in this case is indicated by a dot-dashed line and an empty symbol in the bottom middle graph. The times t1
and t2 are given in relative units of 1/k [Color figure can be viewed at wileyonlinelibrary.com]
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Δrk = βb ð19Þ

The parameter β is then a dimensionless number expressing the

sensitivity of k to the background that has not been accounted for. A

comparison of β values (the ratio of their absolute values) of the two

schemes shows that, for the t1 and t2 values chosen in Figure 5a, the

gating Scheme G1 is about 3.4× more sensitive to the low background

than the Scheme S.

The bias of k, as expressed by the sensitivity to background β,

depends on the times t1 and t2. We have calculated β as explained

above for the same range of t1 and t2 as the standard deviation σ*

(Figure 4), and show its absolute value in Figure 5b,c. These results

reveal a substantial difference in the sensitivity to the background

between the two considered schemes.

In the Scheme S, β decreases with increasing t1 and t2 (Figure 5b).

This means that in order to minimize the background effects, it is

favorable to choose a rather long time t2. This is the same conclusion

as that reached by observing the dependence of the standard devia-

tion σ* of the decay rate on t2 (Figure 4, Table 1). For t2 larger than

approximately eight, the decrease in σ* and β is not particularly strong,

therefore, any value above eight is close to optimal.

Contrary to this, in the Scheme G1, jβj increases with increasing

t1 and t2 (Figure 5c). Comparing this with the dependence of the stan-

dard deviation σ* on t2 (Figure 4) means that a compromise has to be

found, where t2 is high enough to keep σ* small and at the same time

sufficiently low to minimize the bias due to the background. The final

choice of t1 and t2 will depend on the particular circumstances of the

experiment: the tolerable standard deviation of k, the actual expected

background level, and the maximum acceptable bias due to the

background.

These observations allow us to make the following suggestions

for the choice of the times t1 and t2 (all expressed in relative units of

1/k). The optimal t2 for the Scheme S is any value larger than approxi-

mately eight, as there is no significant decrease of σ* beyond this

value. The optimal t1 lies between 2 and 3.2, depending on the chosen

t2, and on whether the noise character is closer to the Poisson or the

normal distribution (Figure 4, Table 1).

The optimal t2 for the Schemes G1 and G2 will typically be

around t2 = 4, since higher t2 leads to a minimal decrease of σ* but a

considerable increase of bias due to a possible background. The pres-

ence of the background will eventually influence the choice of t2, as

discussed above. The optimal t1 is then determined by the Scheme

(G1 or G2) and the type of noise, as shown in Table 1. It is minimally

dependent on the chosen t2, with the exception of the G1 scheme

with Poisson noise, where it varies between 1 and 1.6 depending on

t2, as can be seen in Figure 4.

5 | CONCLUSIONS

The presented analysis allowed us to find the optimal experimental

parameters t1 and t2 for the recently introduced variable-velocity

scanning method for lifetime determination. The optimal parameter

values were found to be independent of the signal intensity and were

determined by the decay rate k. The range of optimal t2 is relatively

broad, with t2 being sufficiently high so that the conditions are close

to the steady-state regime. The value of t1 is chosen accordingly, but

the precise choice is not critical, as the standard variation of the decay

rate is only weakly sensitive to t1 variation around its minimum

(Figure 4). If a broad range of decay rates is measured, as may often

be the case in lifetime imaging with a considerable spatial lifetime var-

iation, the values at the lower end of the expected range of k (longer

lifetimes) should be used to determine the optimal times t1 and t2.

Importantly, in the scanning scheme, high t2 assures both minimal

standard deviation and minimal bias due to background, simplifying

the choice of t1 and t2.

(a)

(b)

(c)

F IGURE 5 A: the bias Δrk of the decay rate k in dependence of
the background level b for the two measurement schemes: S (solid

line) and G1 (dashed line). The bias is calculated for the following
choice of the times t1 and t2: Scheme S: t1 = 2.0, t2 = 8.0; Scheme G1:
t1 = 1.3, t2 = 4.0. The gray lines indicate the linear slopes in the limit
of low background (b ! 0). B, C: The dependence of the absolute
value of the bias slope jβj (Equation (19)) on the times t1 and t2 for the
Schemes S (B) and G1 (C). The solid line indicates the minimum of the
standard deviation of k for a given value of t2 [Color figure can be
viewed at wileyonlinelibrary.com]
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Contrary to the scanning Scheme S, compromise has to be sought

for the gating Schemes G1 and G2 when considering both standard

deviation and bias due to background: while the criterion of minimum

standard deviation favors larger t2, minimizing the effects of back-

ground on the bias of k calls for smaller t2.

Furthermore, the sensitivity to the background-induced bias,

quantified by jβj, is stronger for the gating Schemes G1, G2 than for

S. The higher robustness of the scanning Scheme S compared to the

gating schemes constitutes a clear advantage in practical applications.

In this work, we have considered measurements using two scan

velocities, which is the minimum required to determine the lumines-

cence lifetime. Employing more than two scan velocities is expected

to expand the possibilities of the scanning method, similarly to using

more gates in the time-gating approaches. More scan velocities would

mean that a broader range of lifetimes could be optimally measured

within one experiment. Furthermore, non-exponential kinetics could

be detected, and more advanced analysis methods analogous to those

used with conventional lifetime imaging, either on a pixel-by-pixel

basis or as global image analysis, could be applied.
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