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Many inflammatory cells are known to be home to inflamed temporomandibular joint (TMJ)
tissues by stimulation with cytokines and chemokines produced by inflammatory lesions in
the TMJ. However, how the inflammatory cells affect the progression of inflammation in TMJ
synovial tissues after their homing to inflamed TMJ site is still uncertain. Here, we isolated
and cultured TMJ synoviocyte-like cells (TMJSCs) from murine TMJ tissues. We demon-
strated that interleukin 1β (IL-1β) up-regulated expression of monocyte chemoattractant
protein 1 (MCP-1) in TMJSCs. In addition, we found that IL-1β-treated TMJSCs strongly pro-
moted migratory activity of mouse monocyte/macrophage RAW264.7 cells through secre-
tion of MCP-1. On the other hand, IL-1β up-regulated expression levels of intracellular ad-
hesion molecule 1 (ICAM-1), a leukocyte adhesion ligand in TMJSCs. In addition, IL-1β pro-
moted cell–cell adhesion between TMJSCs and RAW264.7 cells. Intriguingly, we also found
that cell–cell interactions mediated through soluble factors other than IL-1β and cell–cell
adhesion molecules between IL-1β-stimulated TMJSCs and RAW264.7 cells synergistically
augmented secretion of MCP-1 from these cells. Therefore, these results suggested that
the IL-1β-induced recruitment of monocyte/macrophage lineage cells to inflamed synovial
membranes in TMJ was further augmented by the cell–cell interaction-induced secretion of
MCP-1 from the inflammation site, possibly resulting in prolonged inflammatory responses
in TMJ synovial tissue.

Introduction
The temporomandibular joint (TMJ) is a synovial joint that is constituted between the mandibular fossa of
the temporal bone and mandibular condyle. The intra-articular structures of TMJ are covered by the syn-
ovial membrane except for the articular cartilage of the eminence and fossa, the mandibular condyle, and
the articular disc [1,2]. Temporomandibular disorders (TMD) are prevalent oral diseases, and the discom-
fort of TMJ pain, joint noise, and limitation to opening the mouth affect daily living, including eating and

c© 2018 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution
License 4.0 (CC BY).

1

mailto:aishisa@iwate-med.ac.jp


Bioscience Reports (2018) 38 BSR20171217
https://doi.org/10.1042/BSR20171217

speaking. Arthroscopic or histopathological findings in patients of internal derangement or osteoarthritis (OA) of
TMJ revealed synovitis, i.e. inflammation of the synovial membrane [3,4]. Furthermore, many proinflammatory cy-
tokines have been detected in the synovial fluid of patients with TMD [5].

Recently, it has been reported, through microarray analysis, that mRNAs of cell migration-inducible chemokines,
including monocyte chemoattractant protein 1 (MCP-1, also known as CCL2), are highly expressed in human TMJ
synoviocytes stimulated with interleukin 1β (IL-1β) or tumor necrosis factor-α (TNF-α) [6-8]. Previous studies have
also shown that inflammatory cells such as lymphocytes and macrophages infiltrate into the synovial lining in TMJ
patients [4,9]. Therefore, it is expected that there is a certain interaction between TMJ synoviocytes and inflammatory
cells that are home to the TMJ inflammation site for augmentation of local inflammation. However, the inflammatory
molecular mechanisms underlying interactions between the TMJ synovial cells and chemokine-homed immune cells
remain poorly understood.

To elucidate how the infiltrated inflammatory cells affect the condition of synovitis or its transition to chronic
inflammation in TMJ, we investigated the inflammatory interaction between IL-1β-stimulated TMJ synoviocyte-like
cells (TMJSCs) obtained from mouse TMJ and the murine macrophage cell line RAW264.7. Here, we report that IL-1β
stimulation of TMJSCs facilitated the adhesion of RAW264.7 cells on to TMJSCs. Furthermore, the direct contact
between IL-1β-stimulated TMJSCs and RAW264.7 cells promoted further production of MCP-1, which possibly
induced further infiltration of inflammatory cells to the inflamed synovial membrane in TMJ, resulting in chronic
inflammation.

Materials and methods
Mice
C57BL/6J EGFP transgenic mice were generated by a recombinase-mediated cassette exchange (RMCE) method [10].
Ten-week-old EGFP male mice was used in the present study. Nine-week-old C57BL/6J female mice was purchased
from Nihon Crea Co. (Tokyo). EGFP and C57BL/6J mice were maintained and studied at Iwate Medical University
under the guidelines and approved protocols of the Committee on Animal Experiments of Iwate Medical University,
Morioka, Japan.

Antibodies, cytokines, chemokines
Rat anti-mouse CD54 (intracellular adhesion molecule 1 (ICAM-1)) antibody (clone #: YN1/1.7.4, rat IgG2b, κ) was
purchased from BioLegend (San Diego, CA, U.S.A.). Rat anti-mouse CD45 (clone #: 30-F11) was obtained from BD
Biosciences Pharmingen (San Diego, CA, U.S.A.). Rabbit anti-GFP (ab6556) was purchased from Abcam (Cambridge,
MA, U.K.). Alexa Fluor R© 594 Donkey anti-Rat IgG, Alexa Fluor R©488 Donkey anti-Rabbit IgG and Alexa Fluor R©488
phalloidin were sourced from Molecular Probes (Invitrogen, U.S.A.). Recombinant mouse IL-1β and MCP-1 were
purchased from PROSPEC (East Brunswick, NJ, U.S.A.). Recombinant human fibroblast growth factor 2 (rhFGF-2)
was obtained from Miltenyi Biotec (Bergisch-Gladbach, Germany).

Cell preparation and culture
After EGFP mice were sacrificed under anesthesia, the tissue surrounding the TMJ was obtained and washed ex-
tensively with PBS (Nissui Pharmaceutical Co., Ltd., Tokyo, Japan), and then immersed in digestion solution com-
prising 0.21% collagenase (Wako Pure Chemical, Osaka, Japan) in Dulbecco’s modified Eagle’s medium (DMEM,
Sigma Chemicals, St. Louis, MO, U.S.A.) for 40 min at 37◦C with continuous vigorous rocking. Then, the digested
explants were cultured in DMEM supplemented with 20% FBS (PAA Laboratories Inc., Ontario, Canada) and an-
tibiotics (Gibco, Carlsbad, CA, U.S.A.) in a humidified atmosphere of 5% CO2 at 37◦C. The cells that had grown
out from the digested explants and reached subconfluence were detached from the surface of plastic tissue culture
plates with 0.25% trypsin and 0.02% EDTA (Gibco, Carlsbad, CA, U.S.A.). We termed these cells as TMJSCs. TMJSCs
were subcultured with 20% FBS in DMEM supplemented with rhFGF-2 (10 ng/ml) and antibiotics in a humidified
atmosphere of 5% CO2 at 37◦C. We observed cell morphology and obtained photomicrographs using an Olympus
IX70 fluorescence microscope equipped with a DP72 digital camera (Olympus Corp., Tokyo, Japan). The cells from
passages six to fifteen were used in the subsequent experiments.

Mouse embryonic fibroblast NIH3T3 cells and murine monocyte/macrophage cell line RAW264.7 cells were main-
tained in DMEM containing 10% FBS with antibiotics. For RNA isolation, these cells were grown to 80% confluence.

Total splenocytes were collected using 25G needles after spleen was harvested from C57BL/6J mouse. The spleno-
cytes were filtered through a 70-μm mesh to remove any connective tissue or large aggregates. Contaminating red
blood cells were removed using BD Pharm Lyse Lysing Buffer (BD Biosciences, San Jose, CA, U.S.A.) according to
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Figure 1. TMJSCs exhibit fibroblastic character but do not exhibit leukocyte character

(A) Morphology of cultured TMJSCs obtained from a 10-week-old EGFP mouse at passage 11 (phase contrast, left picture; EGFP,

right picture). After the soft tissues were collected from around male EGFP mouse TMJ, TMJSCs were obtained by the outgrowth

method, as described in ‘Materials and methods’ section. TMJSCs were cultured and passaged in 20% FBS in DMEM supple-

mented with rhFGF-2 (10 ng/ml). Scale bar, 200 μm. (B) Characterization of TMJSCs. TMJSCs, NIH3T3 cells, and RAW264.7 cells

were cultured and grown to 80% confluence, then total RNA was isolated from each culture. mRNA expression patterns of colIα1

and vimentin (mesenchymal cells markers) or CD45 (leukocyte common antigen) in cultured TMJSCs, NIH3T3 cells, and RAW264.7

cells were evaluated by RT-qPCR. The mRNA expression levels of these genes were normalized to those of 18S rRNA, and the

relative expression levels are shown as fold-increases or decreases relative to the level in NIH3T3 cells (colIα1 and vimentin) or

RAW264.7 cells (CD45).

the manufacturer’s instructions. Briefly, the cells obtained from C57BL/6J mouse spleen were treated with BD Pharm
Lyse Lysing Buffer for 3 min at 37◦C. Thereafter, the cells were washed in PBS, splenocytes were collected for RNA
isolation.

Resident peritoneal macrophages were isolated from the peritoneal cells obtained by flushing the peritoneal cavity
of 12-week-old female C57BL/6J mice with cold PBS (5 ml per mouse). At first, we collected peritoneal cells from
mouse peritoneal cavity. The peritoneal cells were centrifuged for 10 min at 4◦C, then seeded into culture dish and
preincubated in a humidified atmosphere of 5% CO2 at 37◦C for 2 h with RPMI 1640 (Sigma Chemicals, St. Louis,
MO, U.S.A.). After preincubation, the non-adherent cells were washed in RPMI 1640 medium or PBS several times.
We used the adherent cells as resident peritoneal macrophages.

RNA isolation and quantitative reverse transcriptase-PCR
Total RNA was isolated from cultured TMJSCs, NIH3T3 cells, RAW264.7 cells, and C57BL/6J mouse splenocytes, and
resident peritoneal macrophages using ISOGEN II reagent (Nippon Gene, Toyama, Japan) according to the manufac-
turer’s instructions. The cDNA was prepared using the PrimeScript RT Reagent Kit (Takara-Bio, Shiga, Japan). PCR
was performed on a Thermal Cycler Dice Real Time System (Takara-Bio, Shiga, Japan), using SYBR Premix Ex Taq
IITM (Takara-Bio, Shiga, Japan) with specific oligonucleotide primers (mouse α1 chain of collagen type I (colIα1),
5′-GCTCCTCTTAGGGGCCACT-3′ (forward) and 5′-CCACGTCTCACCATTGGGG-3′ (reverse); mouse vimentin,
5′-ACCGCTTTGCCAACTACAT-3′ (forward) and 5′-TTGTCCCGCTCCACCTC-3′ (reverse); mouse CD45,
5′-GAACATGCTGCCAATGGTTCT-3′ (forward) and 5′-TGTCCCACATGACTCCTTTCC-3′ (reverse); mouse
MCP-1, 5′-TTAAAAAACCTGGATCGGAACCAA-3′ (forward) and 5′-GCATTAGCTTCAGATTTACGGGT-3′

(reverse); mouse CC chemokine receptor 2 (CCR2), 5′- AGAGGTCTCGGTTGGGTTGT-3′ (forward) and
5′-CACTGTCTTTGAGGCTTGTTGC-3′ (reverse); mouse ICAM-1, 5′-GACAGCAGTCCGCTGTGCTT-3′ (for-
ward) and 5′-GAGGTCTCAGCTCCACACTC-3′ (reverse); mouse GAPDH, 5′-TGTGTCCGTCGTGGATCTG-3′

(forward) and 5′-TTGCTGTTGAAGTCGCAGGAG-3′ (reverse); and mouse 18S rRNA,
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5′-CGCCGCTAGAGGTGAAATTCT-3′ (forward) and 5′-CATTCTTGGCAAATGCTTTCG-3′ (reverse)). The
mRNA expression levels of MCP-1 and ICAM-1 were normalized to that of GAPDH (Figures 2 A and 3 C), and
those of other genes were normalized to 18S rRNA levels.

IL-1β stimulation of TMJSCs
TMJSCs were seeded in 24-well plates (Nunc; Thermo Fisher Scientific) at a density of 5.3 × 103 cells/well in 0.5-ml
DMEM containing 20% FBS and rhFGF-2 (10 ng/ml) for 3 days. Then, after the cells were serum-starved (cultured
in DMEM only) and incubated overnight (12–17 h), they were stimulated with a range of concentrations of IL-1β for
4 h (0.01–1 ng/ml; Figures 2A and 3C), 24 h (0.1 ng/ml; Figures 3A,B,D and 4 ), or 27 h (0.01 ng/ml; Figure 2B,E).

Cell migration assay
Cell migration assays were performed using Transwell R© membrane cell culture inserts (8 μm pore size; Corning, NY,
U.S.A.) according to the manufacturer’s instructions. Briefly, TMJSCs were incubated in individual wells of a 24-well
cell culture insert companion plate (Corning, NY, U.S.A.) in the same way as described in the ‘IL-1β stimulation of
TMJSCs’ section, and stimulated with 0.01 ng/ml IL-1β for 24–30 h. Before migration assay, TMJSCs stimulated with
0.01 ng/ml IL-1β were washed with DMEM once. With regard to cell migration in response to recombinant mouse
MCP-1 (rmMCP-1), DMEM containing 2% FBS and rmMCP-1 (100 ng/ml) was added to individual wells of a 24-well
cell culture insert companion plate. Some RAW264.7 cells were preincubated with 1 μM RS504393, a selective CCR2
chemokine receptor antagonist (Sigma–Aldrich, St. Louis, MO, U.S.A.) for 1 h before the experiment (Figure 2E).
Then, RAW264.7 cells were layered on the top of the membrane at 1 × 105 cells/300 μl/well with serum-free DMEM
and the transwell devices were inserted into the individual wells of the plates. Cells were allowed to migrate for 24 h
into the lower surface of the filters. After migration, RAW264.7 cells that had mobilized to the lower surface of the
filters were fixed in 3.7% formaldehyde (from 37% formaldehyde; Merck, Darmstadt, Germany) in PBS for 2 min and
in methanol (Wako Pure Chemical, Osaka, Japan) for 20 min, and stained with Giemsa’s stain solution (Nacalai Tesque
Inc., Kyoto, Japan) for 24 h at room temperature. RAW264.7 cells that had not migrated into the lower compartment
were removed from the upper surface of the filters, using cotton swabs. Then, the cells that had migrated into the lower
surface of the filters were observed and photographed using an OLYMPUS IX70 inverted fluorescence microscope
equipped with a DP72 digital camera. The cells stained with Giemsa’s stain solution were counted as the number of
migrated cells visualized on the photomicrographs.

Quantitation of MCP-1 and IL-1β by ELISA
To investigate MCP-1 production in culture medium, TMJSCs were stimulated with 0.01 ng/ml IL-1β for 27–28 h
(Figure 2B). Especially in Figure 4B, in order to investigate MCP-1 or IL-1β production in culture medium, TMJSCs
and RAW264.7 cells were cultured as described in ‘TMJSC and RAW264.7 cell co-culture’ section below. After the
culture, cells were centrifuged at 14600 rpm for 10 min, the supernatants were collected and stored at –80◦C until
subsequent measurement. Levels of MCP-1 and IL-1β protein were measured using Quantikine R© ELISA kits for
Mouse/Rat CCL2/JE/MCP-1 and Mouse IL-1β/IL-1F2 (R&D systems, Minneapolis, MN, U.S.A.) according to the
manufacturer’s instructions. Absorbance was recorded at 450 nm (570 nm as a reference wavelength) on an iMark
microplate reader (Bio-Rad, CA, U.S.A.).

Cell adhesion assay
TMJSCs (5.3 × 103) were seeded on a 12-mm round coverslip (Matsunami, Osaka, Japan) in 24-well plates and
incubated in 0.5-ml DMEM containing 20% FBS and rhFGF-2 (10 ng/ml) for 3 days. Then, after the cells were
serum-starved (cultured in DMEM without FBS) and incubated overnight (12–17 h), they were stimulated with
0.1 ng/ml IL-1β in DMEM without FBS for 24 h. Then, RAW264.7 cells (1 × 105 cells/well) were layered on to
IL-1β-stimulated TMJSCs monolayers and incubated for 30 min in a humidified atmosphere of 5% CO2 at 37◦C
to allow RAW264.7 cell–TMJSC adhesion. Next, the non-adhesive RAW264.7 cells were removed by twice washing
co-culture wells with culture medium. Then, the adherent RAW264.7 cells and TMJSCs were fixed and immunos-
tained with anti-CD45 and anti-GFP antibodies, respectively, and then both these cell types were stained with DAPI.
Finally, the cells that had adhered to the TMJSC monolayer were observed and microphotographed using a laser
confocal microscope (C1 si, Nikon, Tokyo, Japan). The adhesive RAW264.7 cells, which were immunostained by
anti-CD45, were counted on the images of the microphotographs.
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Figure 2. MCP-1 secreted from IL-1β-stimulated TMJSCs promotes migratory activity of RAW264.7 cells

(A) Dose-dependent response of MCP-1 mRNA expression by TMJSCs to IL-1β stimulation. TMJSCs were stimulated for 4 h with

0.01–1 ng/ml of IL-1β. The mRNA expression levels of MCP-1 were normalized to those of GAPDH and the relative expression

levels are shown as fold-increases or decreases relative to the level in controls. (B) MCP-1 production from IL-1β-stimulated

TMJSCs. TMJSCs were stimulated for 27 h with 0.01 ng/ml of IL-1β, and the conditioned medium was collected. The protein

level of MCP-1 in the conditioned medium was measured by ELISA, as described in the ‘Materials and methods’ section. The

relative production levels are shown as fold-increases or decreases relative to the level in controls. (A,B) Each value represents

the mean +− S.D. (n=4). Similar results were obtained in two independent experiments. *P<0.05, **P<0.01, and ****P<0.0001 were

considered significant compared with the control. (C) CCR2 mRNA expression in RAW264.7 cells and primary macrophages. The

mRNA expression levels of CCR2 in C57BL/6J mouse splenocytes, resident peritoneal macrophages, RAW264.7 cells, TMJSCs,

and NIH3T3 cells were evaluated by RT-qPCR. The levels were normalized to those of 18S rRNA and the relative expression

levels are shown as fold-increases or decreases relative to the levels in C57BL/6J mouse splenocytes (data from C57BL/6J mouse

splenocytes as a control were not shown). C57BL/6J mouse splenocytes and NIH3T3 cells were used as positive or negative

controls, respectively. (D) Chemotaxis assay of RAW264.7 cells in response to rmMCP-1, as described in ‘Materials and methods’

section. Seven or eight different fields with migrated cells were recorded as photomicrographs, and the migrated cell numbers were

counted for each field (n=8 for control; n=7 for rmMCP-1). Each value represents the mean +− S.D. Similar results were obtained

in two independent experiments. **P<0.01 was considered significant compared with the control. (E) Effects of CCR2 selective

antagonist, RS504393 on TMJSCs-secreted chemotactic factor-induced migration of RAW264.7 cells. This assay was carried out

using transwell cell culture inserts, as described in ‘Materials and methods’ section. Ten different fields with migrated cells were

recorded as photomicrographs, and the migrated cell numbers were counted for each field (n=10). Each value represents the mean
+− S.D. Values of ****P<0.0001 were considered to be statistically significant.
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Figure 3. IL-1β promotes adhesion of TMJSCs to RAW264.7 cells

(A) RAW264.7 cell adhesion assay for IL-1β-stimulated TMJSCs. RAW264.7 cells were layered over IL-1β-stimulated TMJSCs.

Unbound cells were removed and immunostained with anti-CD45, anti-GFP, phalloidin, and DAPI (red, anti-CD45; green, anti-GFP or

phalloidin; blue, DAPI). Scale bar, 50 μm. (B) Effect of IL-1β on the ability of TMJSCs to adhere to RAW264.7 cells. TMJSCs adhered

to not less than three CD45-positive cells, which localized on GFP and phalloidin-positive areas, was counted in eight different

fields. Each value represents the mean +− S.D. (n=8). Similar results were obtained in two independent experiments. **P<0.01

was considered significant compared with the control. (C) Dose-dependent response of mRNA expression of ICAM-1 in TMJSCs

to IL-1β stimulation. TMJSCs were seeded in each well of 24-well plates and stimulated for 4 h with 0.01–1 ng/ml of IL-1β. The

mRNA expression level of ICAM-1 was normalized to that of GAPDH. Each value represents the mean +− S.D. (n=4). ****P<0.0001

was considered significant compared with the control. (D) Immunostaining of ICAM-1 in TMJSCs stimulated with IL-1β. TMJSCs

were seeded on 12-mm round coverslips in 24-well plates for 3 days. Then, after TMJSCs were starved, the cells were stimulated

with 0.1 ng/ml IL-1β for 24 h. The cells were then fixed in methanol/acetone and immunostained with anti-ICAM-1 and anti-GFP

(red, anti-ICAM-1; green, anti-GFP; and blue, DAPI). Scale bar, 50 μm. (E) CD18 mRNA expression in RAW264.7 cells and primary

macrophages. The mRNA expression levels of CD18 in C57BL/6J mouse splenocytes, resident peritoneal macrophages, RAW264.7

cells, and NIH3T3 cells were evaluated by RT-qPCR. The levels were normalized to those of 18S rRNA and the relative expression

levels are shown as increases or decreases relative to the level in C57BL/6J mouse splenocytes (data from C57BL/6J mouse

splenocytes as a control were not shown). C57BL/6J mouse splenocytes and NIH3T3 cells were used as positive or negative

controls, respectively.

Immunofluorescence
The cells were fixed in methanol/acetone (1:1) for 3 min at −20◦C and subsequently washed three times with PBS.
Blocking of non-specific antibody binding to the fixed cells was performed with 1% BSA (Sigma–Aldrich, St. Louis,
MO, U.S.A.) in PBS overnight at 4◦C. The fixed samples were incubated with the primary antibodies described above
for 1 h at room temperature. Then, they were washed three times with PBS, followed by incubation for 30 min with
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Figure 4. Cell–cell interactions mediated through soluble factors and cell–cell adhesion molecules between

IL-1β-stimulated TMJSCs and RAW264.7 cells synergistically augment secretion of MCP-1 from these cells

(A) Schema of the direct or indirect co-culture system. (B) MCP-1 production in conditioned medium from monocultures and

direct or indirect co-cultures of IL-1β-stimulated TMJSCs and RAW264.7 cells. For preparation of the conditioned medium from

IL-1β-treated TMJSC monoculture, TMJSCs were first stimulated for 24 h with 0.1 ng/ml of IL-1β. The IL-1β-stimulated TMJSCs

were subsequently washed for the removal of IL-1β. Then, the fresh medium without IL-1β was added to each well to obtain

conditioned medium. Then, the transwell devices were inserted into the individual wells of the plates. And then, the fresh medium

without IL-1βwas added on to the top of the membranes without seeding any RAW264.7 cells on to the top of the membranes. Then,

the IL-1β-removed TMJSCs monoculture was maintained further for 24 h. On the other hand, for preparation of the conditioned

medium from RAW264.7 cells monoculture, fresh medium with 0.1 ng/ml of IL-1β was added into each well in 24-well cell culture

insert companion plates without seeding of any TMJSCs, and subsequently maintained for 24 h. After the washing of each well

of the culture plates, the fresh medium without IL-1β was added to the each well. Then, the transwell devices were inserted into

the individual wells of the plates. RAW264.7 cells (1 × 105 cells/well) were subsequently seeded on the top of the membranes

and cultured further for 24 h. For the preparation of conditioned medium from the co-culture between TMJSCs and RAW264.7

cells without cell–cell contact, TMJSCs were first stimulated for 24 h with 0.1 ng/ml of IL-1β. The IL-1β-stimulated TMJSCs were

subsequently washed for the removal of IL-1β. Then, the fresh medium without IL-1β was added to each well. Then, the transwell

devices were inserted into the individual wells of the plates. RAW264.7 cells (1 × 105 cells/well) were seeded on the top of the

membranes and cultured further for 24 h. On the other hand, for the preparation of conditioned medium from the co-culture between

IL-1β-treated TMJSCs and RAW264.7 cells with cell-cell contact, TMJSCs were first stimulated for 24 h with 0.1 ng/ml of IL-1β. The

IL-1β-stimulated TMJSCs were subsequently washed for the removal of IL-1β. Then, RAW264.7 cells (1 × 105 cells/well) were

seeded and layered on to the IL-1β-stimulated TMJSCs monolayer and co-cultured for an additional 24 h. Each value represents

the mean +− S.D. (n=4). *P<0.05 and ***P<0.001 were considered statistically significant.

the appropriate fluorescent secondary antibodies at room temperature. For the experiment in Figure 3A, they were
incubated with Alexa Fluor R© 488 phalloidin for another 30 min. Samples were viewed and photos taken on a laser
confocal microscope (C1 si, Nikon, Tokyo, Japan).

TMJSC and RAW264.7 cell co-culture
In Figure 4B, in order to elucidate existence of a positive amplifying loop between IL-1β-treated TMJSCs and
RAW264.7 cells, we evaluated the protein concentration of MCP-1 in the conditioned medium from monocultures
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of RAW264.7 cells and IL-1β-treated TMJSCs, and evaluated that in the conditioned medium from co-cultures be-
tween IL-1β-treated TMJSCs and RAW264.7 cells with or without cell–cell contact. We also evaluated the protein
concentrations of IL-1β in the conditioned medium from these monocultures and co-cultures.

For preparation of the conditioned medium from IL-1β-treated TMJSCs monoculture, TMJSCs were seeded in
24-well cell culture insert companion plates and stimulated with IL-1β, as described in the ‘IL-1β stimulation of
TMJSCs’ section. Then, the IL-1β-stimulated TMJSCs were washed by DMEM once for the removal of excess amount
of IL-1β. And then the fresh DMEM without IL-1β was added to each well. Then, the transwell devices (0.4 μm pore
size) were inserted into the individual wells of the plates. And then, DMEM was added on to the top of the membranes
without seeding any RAW264.7 cells on to the top of the membranes. Then, the IL-1β-removed TMJSC monoculture
was maintained further for 24 h for the collection of the conditioned medium. On the other hand, for preparation
of the conditioned medium from RAW264.7 cells monoculture, DMEM supplemented with 0.1 ng/ml of IL-1β was
added into each well in 24-well cell culture insert companion plates without seeding of any TMJSCs, and subsequently
maintained for 24 h. After the washing of each well by DMEM once for the removal of IL-1β, the fresh DMEM without
IL-1β was added to each well. And then, the transwell devices were inserted into the individual wells of the plates.
RAW264.7 cells (1 × 105 cells/well) were seeded on the top of the membranes and cultured further for 24 h.

For the preparation of conditioned medium from the co-culture between IL-1β-treated TMJSCs and RAW264.7
cells without cell–cell contact, TMJSCs were seeded in 24-well cell culture insert companion plates and stimulated
with IL-1β, as described in the ‘IL-1β stimulation of TMJSCs’ section. Then, the IL-1β-stimulated TMJSCs were
washed by DMEM once for the removal of excess amount of IL-1β. And then, the fresh DMEM without IL-1β was
added to each well. Then, the transwell devices were inserted into the individual wells of the plates. RAW264.7 cells (1
× 105 cells/well) were seeded on the top of the membranes and cultured further for 24 h. On the other hand, for the
preparation of conditioned medium from the co-culture between IL-1β-treated TMJSCs and RAW264.7 cells with
cell–cell contact, TMJSCs were seeded in 24-well cell culture insert companion plates and stimulated with IL-1β,
as described in the ‘IL-1β stimulation of TMJSCs’ section. Then, the IL-1β-stimulated TMJSCs were washed with
DMEM once for the removal of excess amount of IL-1β. And then, RAW264.7 cells (1 × 105 cells/well) were seeded
and layered on to the IL-1β-removed TMJSCs monolayer and co-cultured for an additional 24 h.

Statistical analysis
Data were presented as means +− S.D. (n=4 for Figures 2A,B, 3C, and 4B; n=8 for control, and n=7 for rmMCP-1
in Figure 2D; n=8 for Figure 3B; and n=10 for Figure 2E). Statistical significance was analyzed by Student’s t test
(Figure 3B), Welch’s t test (Figure 2B,D), or Tukey’s multiple comparison test (Figures 2A,E, 3C, and 4B) (GraphPad
Prism Software ver.7, San Diego, CA). Values of *P<0.05, **P<0.01, ***P<0.001, and ****P<0.0001 were considered
to be statistically significant. The results shown in all experiments were representative of at least two independent
experiments.

Results
Confirmation of fibroblastic character of TMJSCs
To elucidate the relationship between TMJ tissue cells and inflammatory cells, we obtained TMJSCs from EGFP mouse
TMJ tissues. Morphologically, the cultured TMJSCs appeared to be spindle-shaped fibroblasts when observed by
phase-contrast microscopy, and all of them were EGFP positive (Figure 1A). Moreover, we confirmed the fibroblastic
character of TMJSCs by quantitative reverse transcriptase-PCR (RT-qPCR) analysis. TMJSCs highly expressed mRNA
of colIα1 and vimentin compared with NIH3T3 cells as a standard fibroblast control, and hardly expressed that of
CD45, a leukocyte common antigen, whereas RAW264.7 cells, a murine monocyte/macrophage cell line expressed
that of CD45 (Figure 1B). These results suggested that TMJSCs had mesenchymal and fibrogenic phenotypes.

MCP-1 secreted from IL-1β-stimulated TMJSCs promotes migratory
activity of RAW264.7 cells
Next, we examined whether TMJSCs express and produce homing factors, which possibly induce chemotactic ac-
tivities and mobilization of inflammatory cells into the damaged TMJ sites. Recently, it has been reported that the
production of MCP-1 is increased in human TMJ synoviocytes stimulated with IL-1β [8]. MCP-1 is one of the rep-
resentative chemokines that induce monocyte/macrophage migration into inflammation sites [11]. Therefore, we
stimulated TMJSCs with IL-1β and then evaluated the status of MCP-1 synthesis in these TMJSCs. The MCP-1
mRNA levels were increased in response to IL-1β (0.01–1 ng/ml) in a dose-dependent manner 4 h after stimulation
(Figure 2A). Moreover, the protein level of MCP-1 in conditioned medium from TMJSCs stimulated with 0.01 ng/ml
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IL-1β was determined by ELISA (Figure 2B). The IL-1β-stimulated TMJSCs secreted greater amounts of MCP-1
than the unstimulated controls 27 h after stimulation. Thus, these results indicated that IL-1β similarly promoted
MCP-1 expression in TMJSCs derived from mice, as previously demonstrated for human TMJSCs [8]. MCP-1 binds
to the cell surface CCR2 [12-14] and has important roles in monocyte recruitment to inflammation sites [15]. It has
been reported that CCR2 is expressed in monocytes, T cells, dendritic cells, fibroblasts, and endothelial cells [16]. By
RT-qPCR analysis, RAW264.7 cells were confirmed to express CCR2 mRNA (Figure 2C), whereas mouse peritoneal
macrophages expressed larger amount of CCR2 mRNA than RAW264.7 cells by 4.8-times. We examined chemo-
tactic activity of RAW264.7 cells stimulated with rmMCP-1. As shown in Figure 2D, rmMCP-1 (100 ng/ml) signif-
icantly enhanced RAW264.7 cell migration. We examined whether RAW264.7 cells migrated in response to factors
secreted from the IL-1β-stimulated TMJSCs. The number of cells that migrated into the lower chamber in which the
IL-1β-stimulated TMJSCs were cultured was greater than that of cells that migrated into the lower chamber in which
unstimulated TMJSCs were cultured (Figure 2E). Intriguingly, CCR2 selective antagonist RS504393 significantly ab-
rogated the IL-1β-stimulated TMJSCs-promoted migration of RAW264.7 cells, indicating that MCP-1 secreted from
IL-1β-stimulated TMJSCs promotes migratory activity of RAW264.7 cells.

Inflammatory stimulation against TMJSCs promotes adhesion of
RAW264.7 cells to TMJSCs possibly through augmentation of
ICAM-1/LFA-1 (CD11a/CD18)-mediated cell–cell adhesion
To investigate cell–cell interactions between TMJSCs and monocytes/macrophages in inflamed TMJ tissue, we ex-
amined the adhesive status of RAW264.7 cells to TMJSCs cultured with or without IL-1β stimulation. Intriguingly,
the number of RAW264.7 cells that adhered to IL-1β-stimulated TMJSCs was greater than that of cells adhered
to unstimulated TMJSCs (Figure 3A,B). In addition, we investigated how RAW264.7 cells preferentially adhere to
IL-1β-stimulated TMJSCs at the molecular level. Generally, it has been reported that leukocyte–mesenchymal cell
adhesion is mediated via α- and β-integrins on leukocytes and adhesion molecules such as ICAMs on mesenchy-
mal cells [17]. Therefore, we investigated the expression status of these adhesion molecules in the IL-1β-stimulated
TMJSCs. IL-1β increased mRNA expression of ICAM-1 in TMJSCs 4 h after stimulation (0.1–1 ng/ml) (Figure 3C).
In addition, immunofluorescence analysis revealed that IL-1β (0.1 ng/ml) increased ICAM-1 expression at the protein
level 24 h after stimulation (Figure 3D). It has been reported that ICAM-1 binds to leukocyte function-associated anti-
gen (LFA)-1 (CD11a/CD18) that is known to be an important integrin as a leukocyte adhesion molecule [18]. Then,
we confirmed that CD18 (integrin β2) mRNA expression in RAW264.7 cells and primary macrophages by RT-qPCR
analysis (Figure 3E). We found that mouse peritoneal macrophages expressed larger amount of CD18 mRNA than
RAW264.7 cells by 51.7-times.

Cell–cell interactions mediated through soluble factors and cell–cell
adhesion molecules between IL-1β-stimulated TMJSCs and RAW264.7
cells synergistically augment secretion of MCP-1 from these cells
Previous study has shown that MCP-1 is produced by cell–cell contact between human lung fibroblasts and monocytes
from peripheral blood [19]. Therefore, we investigated whether MCP-1 synthesis was promoted by cell–cell contact
between TMJSCs and RAW264.7 cells. We compared the amounts of secreted MCP-1 in the conditioned medium
from co-cultured TMJSCs and RAW264.7 cells with or without cell–cell contact (Figure 4A). To avoid direct cell–cell
contact between TMJSCs and RAW264.7 cells as a control experiment, we carried out the co-culture assay using a
0.4-μm pore-size cell culture insert system described in the ‘Materials and methods’ section.

In order to examine whether there was amplifying loop mediated through soluble factors or adhesion molecules
between macrophage lineage cells and TMJSCs, we evaluated the protein concentrations of MCP-1 in the conditioned
media from monocultures of IL-1β-treated TMJSCs and RAW264.7 cells, and also evaluated those in the conditioned
media from co-cultures between IL-1β-treated TMJSCs and RAW264.7 cells with or without cell–cell contact as de-
scribed in ‘Materials and methods’ section. We found that the concentration of MCP-1 protein in the conditioned
medium from monoculture of IL-1β-treated TMJSCs was at 10.5 pg/ml, whereas that of non-treated RAW264.7 cells
was not at detectable level (Figure 4B). Intriguingly, production of MCP-1 was dramatically increased by co-culture
between IL-1β-treated TMJSC and RAW264.7 cells without cell–cell contact compared with that by monoculture of
IL-1β-treated TMJSC. Moreover, production of MCP-1 was clearly increased by co-culture between IL-1β-treated
TMJSC and RAW264.7 cells with cell–cell contact compared with that by co-culture without cell–cell contact (Figure
4B). In addition, ELISA analysis revealed that the concentrations of IL-1β protein in the conditioned media from
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monocultures of IL-1β-treated TMJSCs and non-treated RAW264.7 cells and the concentrations of that in the con-
ditioned media from co-cultures between IL-1β-treated TMJSC and non-treated RAW264.7 cells with or without
cell–cell contact were not at detectable level (data not shown).

Discussion
A previous study has implicated that CD45RO- or CD68-positive cells infiltrate into the synovium of patients
with painful joint clicking or OA; in particular, CD68-positive cells are more abundant in OA patients [20]. It is
generally known that CD68 is a representative antigen for macrophage detection [21]. The infiltration of mono-
cytes/macrophages to diseased tissues is a characteristic finding in chronic inflammation, and it is thought that TMJ
synoviocytes and monocytes/macrophages may have some kind of communication with each other at such sites.
Therefore, to clarify the relationship between TMJ synoviocytes and monocytes/macrophages in TMJ inflammation,
we obtained and cultured TMJSCs from murine TMJ areas (Figure 1A,B). Several research groups have reported how
to isolate TMJ synoviocytes from TMJ synovial membranes, and the isolated cells exhibit spindle-like shapes and
fibroblast-like or mesenchymal stem cell-like characteristics [22-24]. Anatomically, it is reported that there are two
types of TMJ synovial cells: macrophage-like cells (type A) and fibroblast-like cells (type B) [2,25]. Tobe et al. [22]
reported that primary cultured synovial cells obtained from human TMJ tissue were positively immunostained with
certain fibroblastic marker antibodies (propyl 4-hydroxylase and vimentin), whereas macrophage markers were neg-
ative for these stains. TMJSCs isolated from mouse TMJ tissues also expressed fibroblastic markers, collagen type I
and vimentin, but not the leukocyte marker CD45 (Figure 1B). Therefore, it was suggested that TMJSCs might be type
B cells (fibroblast-like cells). To investigate cell–cell interactions between TMJSCs and monocytes/macrophages, we
used murine macrophage cell line RAW264.7 cells instead of primary cultures of mouse monocytes/macrophages ex-
pected to home to TMJ inflammation sites in vivo. Recently, it has been reported that MCP-1 production is increased
when fibroblast-like synoviocytes obtained from patients with TMD are stimulated with IL-1β [8]. In accordance
with this report, we also confirmed that MCP-1 production by mouse TMJSCs was facilitated by IL-1β stimulation
(Figure 2A,B). We also examined that RAW264.7 cells express CCR2, the receptor for MCP-1 (Figure 2C). In ad-
dition, rmMCP-1 actually promoted migratory activity of RAW264.7 cells (Figure 2D). Moreover, CCR2 selective
antagonist RS504393 suppressed the IL-1β-stimulated TMJSCs-promoted migration of RAW264.7 cells, indicating
that MCP-1 secreted from IL-1β-stimulated TMJSCs promotes migratory activity of RAW264.7 cells (Figure 2E).
Therefore, it was strongly suggested that TMJSCs stimulated with the inflammatory cytokine IL-1β possibly recruited
monocytes/macrophages to inflamed synovial membranes through secretion of MCP-1 at TMJ inflammation sites.

It is generally known that immune cells such as macrophages, T cells, and mast cells infiltrate inflamed synovial
tissue in OA [26]. The first step of the infiltration of immune cells into synovial tissue is adhesion of immune cells
to synovial membranes. Therefore, we examined how IL-1β stimulation of TMJSCs affected cell–cell adhesion be-
tween monocytes/macrophages and TMJSCs. A cell adhesion assay revealed that the number of TMJSCs adhered to
RAW264.7 cells was increased after TMJSCs were stimulated with IL-1β (Figure 3A,B). Actually, IL-1β increased
ICAM-1 expression in TMJSCs possibly bound to LFA-1 on RAW264.7 cells (Figure 3C–E). However, it was not pos-
sible to rule out the possibility that IL-1β directly stimulated RAW264.7 cells, resulting in augmentation of adhesive
ability in RAW264.7 cells to TMJSCs. Furthermore, we investigated whether the cell–cell interaction between TMJSCs
and monocytes/macrophages affected the status of progression of inflammation in synovial tissue. We found that pro-
duction of MCP-1 was dramatically increased by co-culture between IL-1β-treated TMJSC and RAW264.7 cells with-
out cell–cell contact compared with that by monocultures of IL-1β-treated TMJSC or RAW264.7 cells (Figure 4B).
Moreover, production of MCP-1 was clearly increased by co-culture between IL-1β-treated TMJSC and RAW264.7
cells with cell–cell contact compared with that by the co-culture without cell–cell contact (Figure 4B). In addition,
ELISA analysis revealed that the concentrations of IL-1β protein in the conditioned media from monocultures of
IL-1β-treated TMJSCs and non-treated RAW264.7 cells, and the concentrations of that from co-cultures between
IL-1β-treated TMJSC and non-treated RAW264.7 cells with or without cell–cell contact were not at detectable level
(data not shown). These results strongly suggested that cell–cell interactions mediated through soluble factors other
than IL-1β and cell–cell adhesion molecules between IL-1β-stimulated TMJSCs and RAW264.7 cells synergistically
augments secretion of MCP-1 from these cells: (i) there was a positive amplifying loop for MCP-1 production be-
tween inflamed TMJSCs and macrophage lineage cells mediated through soluble factors other than IL-1β, and that
(ii) cell–cell contact between inflamed TMJSCs and macrophage lineage cells further up-regulated MCP-1 produc-
tion in the inflammatory sites in the TMJ. Previous studies have reported that interactions of lung fibroblasts and
monocytes from peripheral blood [19] or renal fibroblasts and peripheral blood mononuclear cells [27] facilitate the
production of MCP-1.
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We also found that mouse peritoneal macrophages expressed larger amount of CCR2 (Figure 2C) and CD18 (Figure
3E) than RAW264.7 cells, which was not inconsistent with our hypothesis that cell–cell interactions between mono-
cytes/macrophages and synoviocyte-like cells through ICAM-1/LFA-1 (CD11a/CD18) promote inflammatory cell
infiltration mediated by augmentation of MCP-1 production in TMJ.

Taken together, it was suggested that TMJSCs stimulated with inflammatory cytokine IL-1β in inflamed synovial
membranes vigorously secreted MCP-1, which exerted further homing of monocytes/macrophages into inflamed
TMJ synovial tissue, resulting in the elevated adhesion of monocytes/macrophages to the synovial membrane. IL-1β
up-regulated the expression level of ICAM-1 on TMJSCs bound to LFA-1 (CD11a/CD18) on monocytes/macrophages
in inflamed synovial membranes, suggesting that IL-1β up-regulated the adhesive ability of TMJSCs to mono-
cytes/macrophages. Thus, the cell–cell interactions between inflammatory cells and TMJSCs, which was mediated
by a soluble factor such as MCP-1 or adhesive molecules such as ICAM-1 and LFA-1 on the surface of TMJSCs and
inflammatory cells, respectively, possibly exacerbates the symptoms of synovitis or promotes its transition to chronic
inflammation in TMJ. Our findings partially clarify the molecular mechanisms underlying the progression of inflam-
mation in TMJ, and may aid in identifying drug targets for treating this condition at the molecular level.
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