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Amorphous carbon nitride (a-CNx) films prepared via reactive radio frequency magnetron sputtering 
deform under on–off visible light illumination. We investigate the relationship between photoinduced 
deformation and surface electrical states via scanning electron microscopy with Ar+ laser irradiation 
(SEM-L). Two samples with different levels of photoinduced deformation are prepared. For the film with 
small photoinduced deformation, uniform secondary electron emission is observed on the film surface, 
regardless of whether the laser is on or off. On the a-CNx film, which has fifty times larger photoinduced 
deformation than the previous film, light and dark patches, similar to a speckle pattern, appear on the 
film surface in SEM-L images. This anomalous phenomenon indicates non-uniformity of the electrical 
states excited by laser light irradiation. A size of the patches is well correlated with an inhomogeneous 
distribution of sp3C and sp2C, Isp3C/Isp2C, obtained using soft X-ray emission spectroscopy (SXES). 
Simultaneously, temporal decrease in the sp3C component under illumination is obtained via SXES.

Amorphous carbon nitride (a-CNx) thin films have attracted considerable attention owing to their unique prop-
erties, such as high wear resistivity1, low friction coefficient2,3, variable optical bandgap4, environment-dependent 
electrical resistance5, and biocompatibility6,7. Most recently, it was found that a-CNx films exhibit photomechan-
ical response8,9. This response manifests as temporal deformation under visible light irradiation. The amount of 
deformation is maximum in the blue region at around 460 nm in wavelength10.

Photomechanical response has been observed in several organic molecules, such as azobenezene11,12 and 
spiropyran13,14 and a few inorganic materials15–17. Some materials show reversible and irreversible responses to 
photo-irradiation. Azobenezene shows photomechanical reversible response to photo-irradiation with different 
photon energy which are UV and visible light, or thermal energy11,12. Macroscopic large deformation of films 
containing ordered the organic molecules has been observed18. Piezoceramics, such as Pb1-xLax(ZryTi1-y)1-x/4O3 
(PLZT), deform corresponding to the switching off and switching on of visible light15. This response is a combi-
nation effect of photoinduced strain and piezoelectricity. Chalcogenide glasses such as As2S3 and amorphous Se, 
show an irreversible response16,17. Volume expansion of this material leads to an increase in the defect density 
induced by photon irradiation.

For carbon-related materials, carbon nanotubes (CNTs) embedded in polymer films19,20 have been reported 
to undergo considerable photoinduced deformation. This underlying mechanism is the photothermal effects of 
CNTs. Photoinduced deformation of CNTs on a polymer film has also been reported21. This deformation can be 
attributed to the photothermal effects of CNTs and a difference in thermal expansion coefficients between CNTs 
and a polymer film.

The a-CNx films undergo photoinduced deformation when the temperature of the films increases by less 
than 1 K8. Thus, the photothermal effects in the photomechanical response of a-CNx films would be quite weak. 
Moreover, the photoinduced deformation has been observed in an a-CNx film with high resistivity and low pho-
toconductivity22. From these results, we assume that the origin of photoinduced deformation is the same as that of 
photoconductivity. That is, the photoinduced deformation of a-CNx films occurs as a result of electron excitation 
by photo-irradiation.
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In this study, we investigate the relationship between photoinduced deformation and surface electrical states 
by comparing two samples, with different amount of deformation, via scanning electron microscopy with Ar+ 
laser irradiation (SEM-L) and soft X-ray emission spectroscopy (SXES). Sample A was an a-CNx, grown at a tem-
perature of 473 K, showed a large amount of photoinduced deformation, while sample B grown at a temperature 
of 873 K showed a small amount of the deformation. This study is a first report of SEM-L which is a new approach 
to reveal the mechanisms of photoinduced deformation in all materials with photomechanical response.

Results
The typical photomechanical response of a-CNx films is shown in Fig. 1 (and Supplemental video). A film was 
deposited on a 12-μm thick poly(ethylenenaphthalate), PEN, film at 373 K. A curvature of the specimen becomes 
flat by irradiation. For comparing the amount of deformation for samples A and B, a displacement of the free end 
of the films deposited on Si substrate was measured by using cantilever technique. The magnitudes of photoin-
duced deformation, δy, in samples A and B were 12.3 and 0.2 μm, respectively.

The photoinduced stress σp was estimated from δy and the following equation23:
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where d and D are the thickness of the films and the substrate, respectively. E and ν are the Young’s modulus and 
Poisson ratio of the Si substrate, and their values are 1.3 × 1011 Pa and 0.28, respectively. L is the distance from 
the free edge of the sample to the position sensor. The photoinduced stresses in samples A and B were 3.7 and 
0.1 MPa, respectively.

Figure 2 displays C 1 s and N 1 s XPS spectra for both films. C 1 s and N 1 s were separated into their indi-
vidual chemical bonding components using Gaussian–Lorentzian fitting. The atomic concentration in the films 
was calculated from the integrated intensity of N 1 s and C 1 s and the photoelectron cross section of core levels. 
The nitrogen atomic concentration of sample A and sample B were 34.2 at.% (x = 0.52) to 24.2 at.% (x = 0.32), 
respectively.

Figure 3 shows Raman spectra of samples A and B. The Raman spectra contain two peaks called D and G 
peaks. The G peak at 1500–1600 cm−1 arises from the bond stretching motion of pairs of sp2C atoms in aromatic 
rings or olefinic chains. The D band at ~1350 cm−1 arises from the breathing modes of sp2 atoms in clusters of 
six-fold aromatic rings24. When the graphite cluster size decreases, the intensity of D band ID decreases because 
its internal disorder increases, and the intensity of G peak IG remains unchanged because it arises from all sp2 
stretching modes25. Thus, a growing ID/IG ratio is correlated to an increase of graphite. The ID/IG ratios of samples 
A and B were 2.77 and 3.44, respectively. That means the clusters are larger in sample B compared to sample A.

Figure 1.  Typical photomechanical response of a-CNx film. The substrate is a 12-μm thick 
poly(ethylenenaphthalate) film.

Figure 2.  C 1 s and N 1 s XPS spectra of a-CNx films deposited at 473 K (sample A) and 873 K (sample B).
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From XRR analysis, the densities of samples A and B were ~1.6 and ~1.3 g/cm3, respectively.
To investigate the origin of the photoinduced deformation, SEM-L was performed on samples A and B. The 

films were deposited on 0.05-mm thick Si substrates. Figure 4 shows the SEM-L secondary electron image of 
sample A when the laser light is switched on and off. The surface morphology was flat and uniform before light 
irradiation (Fig. 4a). Owing to irradiation, bright and dark patches that were similar to a speckle pattern appeared 
on the film surface (Fig. 4b). This inhomogeneous contrast appeared rapidly by irradiation. Subsequently, a few 
seconds after the light was turned off, the film showed homogeneous contrast as it was before irradiation. This 
behavior agrees well with the results of time-dependent photoinduced deformation measurement. The average 
area of the dark spot was ~200 μm2. In the case of sample B with small photoinduced deformation, this pattern 
was hardly visible. The patches were observed on many samples deposited on a 10-μm thick Al foil at different 
temperatures from 300 to 573 K. It is noteworthy that the speckle-like pattern was observed only in the SEM 
image of the surface of a-CNx films with photomechanical response.

The SXES spectrum, when the laser light is switched on and off, is shown in Fig. 5. This spectrum was obtained 
using a custom-made SXES system attached to the SEM. An excitation light was the same as SEM-L. The peaks 
in a second-order carbon K-emission spectrum were assigned to those of graphite and diamond26. The presence 
of sp2C-σ bonding is noticed by a structure at 276 eV, which is a graphite characteristic. The presence of sp3C-σ 
bonding is also noticed by a structure at 279 eV, which is a diamond characteristic. Intensity of the peak at 279 eV 
decreased temporarily under illumination.

Discussion
a-CNx films have a compressive stress in nature9. Thus, a significant bend of a-CNx films that were deposited on 
flexible PEN substrate can be attributed to the residual stress of compressibility in the a-CNx films. This intrinsic 
stress evolution in the a-CNx film has been attributed to the structural transformation induced by nitrogen incor-
poration and by C–C distortions27,28.

Even if the structure comprised graphitic clusters, the overall density of the film was significantly below that 
of graphite (2.27 g/cm3)29. The densities of samples A and B, as obtained from XRR, were ~1.6 and ~1.3 g/cm3, 

Figure 3.  Raman spectra of a-CNx films deposited at 473 K (sample A) and 873 K (sample B).

Figure 4.  SEM image of a-CNx film with photoinduced deformation; (a) without Ar+ laser irradiation and (b) 
with irradiation.
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respectively. Low density of a-CNx could be attributed to the high deposition pressure. It can be explained by a low 
mobility on the surface due to the deposited particles having very low energy.

On XPS spectra, C 1 s core level peaks consisted of five primary components centered at C1 (284.5 eV), C2 
(285.2 eV), C3 (286.1 eV), C4 (287.2 eV), and C5 (289.0 eV), respectively. N 1 s core level peaks were decomposed 
into two main components N1, N2 and N3 centred at 398.3, 400.1, and 402.8 eV, respectively. C1 and C2 peaks 
are attributed respectively to the chemical state of C atom with CC sp2 coordinated bonds in graphite and planner 
carbon sheet and the chemical state of C atom with CC sp3 bonds in diamond and diamond-like amorphous 
carbon30,31. C3 and N2 peaks are attributed to N bonded to trigonal C and the C4 and N1 peaks are attributed 
to N bonded to tetrahedral C30. C5 and N3 are assigned oxygen bonds derived from contamination and surface 
oxidation after deposition. As shown in Fig. 2a and Table 1, sp2CC bond was dominant in sample B. This result 
reinforces the presence of large graphitic clusters in sample B that will be discussed in Raman spectra. In case of 
nitrogen bonds, the predominant bonding in a-CNx films changed from N bonded to tetrahedral C to N bonded 
to trigonal C at an elevated deposition temperature.

A large magnitude of deformation under illumination was obtained for sample A, which contains small gra-
phitic cluster, a large amount of nitrogen, and a high concentration of N bonded to tetrahedral C in comparison 
with sample B.

For sample A, speckle-like pattern appeared on the film surface during SEM-L observation. In general, ran-
dom speckle patterns are known to occur owing to the interference of coherent light reflected onto a sample 
surface32. Thus, speckle patterns primarily reflect the surface roughness of a specimen. In terms of surface mor-
phology, the dark and bright parts in SEM images are defined as the concave and convex surfaces of a sample, 
respectively. However, the surface roughness and morphology of sample A did not change upon irradiation with 
visible light by using AFM and spectroscopic ellipsometry. In the meanwhile, it is still clear that electron excita-
tion by photon irradiation is relevant to the photoinduced deformation as mentioned above. Therefore, the uni-
formity of the secondary electron emission of a-CNx was considered because the number of secondary electron 
generations depends on the element and its density as well as the surface morphology of the samples.

The secondary electron yield of carbon materials decreases with the conversion of sp3 hybrids to six-fold aro-
matic domains, and the underlying reason for this is the strong correlation between the electronic structures close 
to the Fermi level33. If a pattern arises as a result of inhomogeneous secondary electron emission, it indicates that 
electrons excited by visible light irradiation are localized on the film surface. In fact, the a-CNx films with pho-
tomechanical response show little photoconductivity22. This experimental fact reinforces the above assumption, 
which means that the photocarriers generated by visible light are localized in a specific area and behave to change 
in a structure of the amorphous network.

Our previous study showed an inhomogeneous distribution of the bonding fraction in sample A by means of 
SXES spectrum mapping measurement using SXES-EPMA system without a visible light source26. On a spatial 
distribution of spectral intensity of sp2C, sp3C and N in sample A, the intensity ratio of Isp3C/Isp2C for a region of 
~30 × 23 μm ranged between 0.89 and 0.94, and large N-content regions had a larger sp3C component. The IN/Isp2C 
of the region ranged between 0.72 and 0.80. These results suggest that a-CNx films have specific area of high 
intensity of sp3C and N in one sample. A specific area of a high intensity of Isp3C/Isp2C exists in sample A and, the 
dimensions of this specific area is just about coincident with the dimensions of the pattern in SEM-L.

From SXES spectrum, as shown in Fig. 5, an intensity of sp3C-σ bonding decreased temporarily under illumi-
nation. This result is one of the evidences that photoinduced deformation is caused by temporal and local change 

Figure 5.  SXES spectra of a-CNx film with photoinduced deformation by turning Ar+ laser on and off.
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of chemical bonds. The temporarily decrease in sp3C bonds by photo irradiation suggests a change of the bond 
angle and bond length variations consistent with energy minimization. Consequently, the films are deformed 
under illumination.

In summary, we presented a correlation between surface electrical states and deformation of a-CNx films due 
to visible light irradiation. Two samples with different amounts of photoinduced deformation were prepared by 
reactive rf magnetron sputtering. A large magnitude of deformation under illumination was obtained in the film 
with a large nitrogen concentration, high film density and small graphitic cluster. On this film, bright and dark 
patches, similar to a speckle pattern, appeared on the film surface upon irradiation with an Ar+ laser, as observed 
by SEM. A size of the patches is well correlated with an inhomogeneous distribution of sp2C, sp3C and N. This 
anomalous behavior has not been reported to date.

Methods Deposition of a-CNx films.  a-CNx films were deposited via reactive radio frequency (rf) magne-
tron sputtering. The target was a graphite disc (Kojundo Chemical Laboratory, Lot. #4087341; purity = 99.995%, 
diameter ~ 5 cm), and only N2 (purity = 99.9995%) was used as the sputtering gas. Total N2 gas pressure was 16 Pa. 
Frequency and rf power and frequency were 13.56 MHz and 85 W, respectively. The target-substrate distance was 
approximately 4 cm. A Si(100) substrate with 0.5 mm thickness was used for the characterizations except pho-
toinduced deformation. To investigate the relationship between photoinduced deformation and surface electrical 
states, two samples with different amount of deformation were deposited on Si substrate (length, 20 mm; width, 
2 mm; and thickness, 0.05 mm). Samples A with a large amount of the deformation was deposited at 473 K and 
sample B with a small amount of the deformation was deposited at 873 K. a-CNx film was also deposited on a 
12-μm thick poly(ethylenenaphthalate) film and a 10-μm thick Al foil. In the proposed study, the total thickness 
of all a-CNx films was ~1 μm.

Measurements and characteristics.  To evaluate the nitrogen atomic concentration and chemical bond-
ing states of the films, X-ray photoelectron spectroscopy (XPS; KRATOS ULTRA2, Shimadzu) was performed 
using Al monochromatic X-rays (1486.6 eV). The pass energy and step size was 40 eV and 0.05 eV, respectively.

Raman spectroscopy (NRS-5100 laser Raman Spectrometer, JASCO) was employed to obtain the hybrid-
ization states of the films. An Ar+ laser (λ = 532.1 nm) with a power of 0.5 mW was used as the source of the 
excitation light.

The film densities were calculated using the critical angle θc of the total X-ray reflection determined via X-ray 
reflectivity (XRR; SmartLab, Rigaku) performed with Cu-Kα (λ = 0.15406 nm) monochromatic radiation, which 
was the scanning speed was set to 1°/min.

The a-CNx film thickness was measured using a field emission scanning electron microscope (FE-SEM; 
S-4500, Hitachi). The acceleration voltage and work distance was set to be 15 kV and 15 mm, respectively. The 
films were deposited on Si(100) substrate with a thickness 0.5 mm and then its fracture cross section was observed 
using FE-SEM.

The SEM-L apparatus used in this study was based on JEOL JSM6480LV. The laser light was irradiated on the 
sample surface through optical fiber, which was attached to the chassis of electron probe. The schematic image 
of SEM-L was shown in Fig. 6. The acceleration voltage was set to be 5 kV. The film is deformed by irradiation of 
visible light from 350 to 750 nm10. Hence Ar+ laser (λ = 514 nm) was used for exciting of the films.

Two SXES systems were used for obtaining the second-order spectrum of C K-emission, C-K(2), and 
third-order N K-emission spectrum, N-K(3). One was a commercial SXES system (SS-98000, JEOL) attached to 
an electron probe microanalyser (EPMA; JXA-9800, JEOL), SXES-EPMA. The probe current and acceleration 
voltage of this device were set to 40 nA and 5 kV, respectively. The other was a custom-made SXES system attached 

Figure 6.  A schematic image of SEM-L system.
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to a SEM, SXES-SEM34. The probe current and acceleration voltage of this device were set to 120 nA and 5 kV. 
The spectra represent as C-K(1) emission energy, which is the real X-ray energy emitted from the specimen of 
~280 eV. A peak intensity around 265 eV corresponds to third-order nitrogen K-emission, N-K(3), whose true 
X-ray energy is ~395 eV26.

The amount of photoinduced deformation was measured using a rectangular specimen and the optical-lever 
technique. The substrate was Si with 20 mm in length, 2 mm in width and 0.05 mm in thickness. The measurement 
system is described in ref.8. One end of the specimen was held on tight to a specimen holder like a cantilever, and 
the other free end of the specimen was measured using a He–Ne laser. A white light from Xe lamp through IR cut 
filter was used as the excitation light source.

Atomic force microscopy (AFM; SPM-9700, Shimadzu) and spectroscopic ellipsometry (alpha-SE, J.A. 
Woollam) were also carried out under visible light illumination to clarify the cause of photoinduced deformation. 
For both methods, the excitation light was irradiated to the surface of the films through optical fiber from a Xe 
lamp.
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