
REVIEW

Two complementary strategies to improve cell engraftment in mesenchymal stem
cell-based therapy: Increasing transplanted cell resistance and increasing
tissue receptivity

Fernando E. Ezquera, Marcelo E. Ezquera, Jose M. Vicenciob, and Sebasti�an D. Calligarisa

aCentro de Medicina Regenerativa, Facultad de Medicina, Cl�ınica Alemana-Universidad del Desarrollo, Santiago, Chile; bCancer Institute,
University College London, London, UK

ARTICLE HISTORY
Received 8 April 2016
Revised 26 May 2016
Accepted 30 May 2016

ABSTRACT
Over the past 2 decades, therapies based on mesenchymal stem cells (MSC) have been tested to
treat several types of diseases in clinical studies, due to their potential for tissue repair and
regeneration. Currently, MSC-based therapy is considered a biologically safe procedure, with the
therapeutic results being very promising. However, the benefits of these therapies are not stable in
the long term, and the final outcomes manifest with high inter-patient variability. The major cause
of these therapeutic limitations results from the poor engraftment of the transplanted cells.
Researchers have developed separate strategies to improve MSC engraftment. One strategy aims at
increasing the survival of the transplanted MSCs in the recipient tissue, rendering them more
resistant to the hostile microenvironment (cell-preconditioning). Another strategy aims at making
the damaged tissue more receptive to the transplanted cells, favoring their interactions (tissue-
preconditioning). In this review, we summarize several approaches using these strategies, providing
an integral and updated view of the recent developments in MSC-based therapies. In addition, we
propose that the combined use of these different conditioning strategies could accelerate the
process to translate experimental evidences from pre-clinic studies to the daily clinical practice.
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Introduction

Mesenchymal stromal cells, also referred to as mesenchy-
mal stem cells (MSCs), were first discovered in 1974.1

MSCs are a heterogeneous group of cells mainly obtained
from bone marrow (BM-MSC), adipose tissue (ADSC)
and umbilical cord blood (UCB-MSC). Since the 90s,
MSCs have been investigated and used in cell-based ther-
apies for several different human diseases. This extensive
research has contributed identification of 3 main proper-
ties of MSCs offering real potential in regenerative medi-
cine: 1–they are multipotent cells with the capacity to be
differentiated in vitro and in vivo into diverse cells types
including adipocytes, osteoblasts, hepatocytes, myoblasts
and neuron-like cells; 2–they can be recruited to the
damaged tissue by following chemotactic signals; and 3–
they produce and secrete several factors into the extracel-
lular space (cytokines, chemokines, growth factors, exo-
somes, microvesicles, miRNA) that mediate their
regenerative and immunomodulatory effects in the
transplanted recipient.2

The number of registered clinical trials using MSCs
worldwide is increasing exponentially, and so is the
promise of their use in daily clinical practice.3 At present,
588 MSC-based clinical trials, either complete or ongo-
ing, appear in the database of the US National Institute
of Health, targeting different types of human diseases.
These include: central nervous system diseases (12.5%),
heart and blood diseases (10.5%), bone and cartilage dis-
eases (10.5%), autoimmune diseases (8.5%) and liver dis-
eases (5.4%).4 Beneficial effects of MSC-based therapies
have been demonstrated in many diseases; however, the
degree of benefits in the outcomes is highly variable
among individuals and not perdurable over time. In
most cases, limitations in the clinical outcomes have
been attributable to the poor cell engraftment of MSCs
in the target tissue.2

It is currently believed that even if a low count of
transplanted cells are able to persist in the target tissue,
they are able to mediate beneficial effects. This is
explained by the repair mechanism by which MSCs exert
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their actions. In recent years, it has been believed that
MSCs mediate tissue repair via a transdifferentiation
process, whereby they graft, differentiate and become an
integral part of the target tissue mediating regeneration.
However, there has been a paradigm shift in this hypoth-
esis, and it is currently accepted that after homing into
the target tissue, MSCs produce several humoral factors
including cytokines and extracellular vesicles (which
themselves contain many signaling peptides and recep-
tors as well as mRNA and miRNA). The humoral factors
secreted by MSCs improve the function of the surround-
ing tissue and have actions in distant tissues as well,
which ameliorate organ function without requiring
transdifferenciation of the MSCs.5 This paracrine
hypothesis may contribute to explain why, even if the
transplanted MSCs reside in non-target tissues after
grafting, they are still able to exert beneficial effects.
Based on these premises, current efforts have been made
in order to enhance the survival of transplanted MSCs as
a priority for the treatment efficacy. If a small percentage
of transplanted viable cells are able to persist in target tis-
sues producing such beneficial effects, then increasing
MSC engraftment and survival seems critical for amelio-
rating the clinical efficacy of MSC-based therapies.

From the clinical point of view, some strategies have
been proposed to improve cell survival and consequently,
therapeutic efficacy. For instance, determination of the
optimal time point for cell delivery;6 optimization of
methods for cell isolation and ex vivo expansion;7 and
evaluation of different delivery routes for MSC adminis-
tration (local vs. systemic).8 From the pre-clinical point
of view, important advances in understanding the inter-
actions between the target tissue and the transplanted
MSCs have been accomplished in the last decade, and
these mainly relate to the mechanisms by which MSCs
are able to integrate in the receptor tissue.

The gradual loss of organ function in almost all dis-
eases is caused by the death of specialized cells in the
tissue. This result corresponds to a variety of different
malign episodes, among which the most frequent are
ischemia/reperfusion, autoimmune responses or expo-
sure to cytotoxic drugs including chemotherapeutic
agents. In this context, an initial inflammatory response
in the damaged tissue is characterized by increased oxi-
dative stress, a remodelling of the extracellular matrix
(ECM), and an increase in the release of chemokines to
the blood flow. Several earlier described chemokines
promote the migration of leucocytes to the inflamma-
tion site. One of the best studied is CXCL12 or stromal
cell-derived factor-1 (SDF-1), which is also involved in
the homing of transplanted MSC. Homing is the capac-
ity of infused cells to migrate to the injury tissue; the
migration process is classified in 3 stages: 1-chemotaxis/

traffic, 2-rolling and transendothelial migration and
finally and 3-integration into the parenchyma.9 MSC
express different receptors or transmembrane ligands
that are involved in each stage. Regarding the first stage:
MSC express a broad range of chemokine receptors,
including CXCR4 (receptor for SDF-1), which has a rel-
evant role in MSC homing.10 In addition, MSC can
express receptors for cytokines (IL-6, PDGF, TGF-b1,
TNF-a) and several growth factor receptors (IGF-1R
and VEGFR), with their ligands being released in large
quantities by damaged tissue during the inflammatory
process.11 In the next stage, MSCs interact with the
endothelium through P-selectins expressed on endothe-
lial cells, promoting MSC recruitment.12 Different sur-
face proteins of MSCs are also involved in this
interaction, mainly from the integrin family. Some of
them are very late antigen-4 (VLA-4), vascular cell
adhesion molecule-1 (VCAM-1) and intercellular cell
adhesion molecules (ICAM), and they are required for
the transendothelial migration phase.12 When MSC are
anchored to the endothelial cells, they express proteo-
lytic enzymes such as metalloproteinases (MMPs) in
order to pass through the basal membrane and get into
the parenchymal space.13 The third step needed to
achieve MSC integration into the target tissue requires
the correct interaction between MSCs and the ECM,
and these are critical to allow cell survival and finally,
the permanency of MSC engraftment.

The lack of cell adhesion due to inappropriate MSC-
ECM interaction induces an apoptotic process known as
anoikis (Greek word meaning “homeless”). ECM stimu-
lates cell survival thorough integrin receptors activating
intracellular signaling cascades such as the PI3K/Akt and
the MEK/ERK pathways.14 Anoikis is responsible, at
least in part, for the low percentage of MSC engraftment
of “unprepared” transplanted cells. Other signals that
decrease their survival derive from the hostile microenvi-
ronment of the target tissue, where a highly inflamma-
tory and cytotoxic process is taking place, which aims at
removing anything unnecessary in the affected area.

In this review, we focus on describing different pre-
conditioning strategies used to promote MSC resis-
tance to adverse microenvironments. We also cover
the conditioning methodologies used to render the tar-
get tissue more receptive to transplanted MSC (Fig. 1).
Only the articles that demonstrated an enhanced cell
engraftment by strategies conditioning MSCs or the
target tissues were included in this review. Articles
that reported a clinical benefit of the cell therapy with-
out considering the transplanted cell engraftment were
excluded. The experimental details of the described
strategies were summarized and presented in Table 1
(A and B). We propose that the combination of both
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approaches can be used to increase cell engraftment
and consequently, to achieve long-term benefits of
MSC therapies.

Induction of MSC resistance to the hostile
microenvironment

Ex vivo MSC culture has been normally carried out
under atmospheric oxygen tension (21% O2). In 2007,
Fehrer and colleagues demonstrated for the first time,
that BM-MSC (in their in vivo niche) proliferated with
1-7% oxygen.15 This discovery provided new insights for
MSC cultivation protocols. In fact, many studies have
reported that manipulation of oxygen tension impacts
during in vitro MSC cultivation, has an effect on their
properties in differentiation capacity, proliferation rate
and secretome profiles.16

Since transplanted MSC will undergo hypoxia inside
the inflamed tissue, the hypoxia stimulation, previous to
transplant, has been investigated as a training strategy
termed preconditioning, in order to improve the in situ
cell survival. Pre-treatment of BM-MSC with hypoxia
(1%) for 24 hrs. increased fourfold its engraftment in
comparison to untreated cells in an animal model of idi-
opathic pulmonary fibrosis,17 improving pulmonary
function and reducing tissue collagen content in the
transplanted tissue. Authors suggested that the enhance-
ment of survival rate of engrafted BM-MSCs is partially
due to the up-regulation of hepatocyte growth factor
(Hgf). Wang and colleagues reported that the intracaver-
nous administration of hypoxia-preconditioned ADSC
(HP-ADSC) was more efficient at reverting diabetic erec-
tile dysfunction (measured by intracavernosal pressure)

compared to administration of untreated ADSC. A week
after cell transplantation, the number of HP-ADSC in
the tissue was 50% higher compared to untreated ADSC,
probably due to the high gene expression of SDF-1 and
CXCR4 inducted in ADSC by hypoxic preconditioning.18

The beneficial effects of hypoxic preconditioning on BM-
MSC were also proved in an acute myocardial infarction
murine model. Engraftment of pre-treated BM-MSC was
2.5 higher than untreated BM-MSC after one day of its
intravenous administration, reducing myocardial infarct
size and decreasing cardiac damage. Authors also suggest
that high expression of CXCR4 in pre-treated BM-MSC
promoted cell survival in myocardial ischemic tissue.19

Similar benefits of MSC preconditioning have been
observed in the homing and retention of human adipose
tissue-derived MSCs (hASCs) after in vivo transplanta-
tion. Preconditioning hASCs increased their expression
of CXCR4, which combined with exogenous SDF-1a
delivery, allowed for further homing/retention of ASCs
after transplantation.20 Importantly these results high-
light that, in addition to MSC preconditioning, increas-
ing, the chemokine attraction profile of the target tissue
contributes to MSC retention. Regarding clinical trials
that explore the use of hypoxic preconditioning to
enhance the stem cell therapeutic potential for myocar-
dial repair, in 2015 Hu and colleagues provided the first-
in-man evidence that intracoronary administration of
preconditioned-bone marrow mononuclear cells, follow-
ing acute myocardial infarction, improves cardiac func-
tional parameters without any adverse effect.21

Antioxidants have also been used to protect MSCs
from the hostile microenvironment in the target tissue
after transplantation. Xu and colleagues investigated
whether high-density lipoprotein (HDL) could protect

Figure 1. Summary of MSC based strategies to improve cell engraftment. The red arrow represents the strategy used in clinical trials
where untreated MSCs have been transplanted into the target tissue in the host (hostile microenvironment symbolized as a bed of
nails). Blue arrows represent the strategies used in pre-clinic studies where MSCs or target tissue received a preconditioning procedure
to promote cell engraftment. The orange dotted arrow represents the combination of both strategies suggested in this review. Abbrevi-
ations: ESW, Extracorporeal shock waves; IPC, ischemic postconditioning; UTMD, ultrasound-target microbubble destruction.
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BM-MSC against oxidative stress-induced apoptosis.
This study is based on the fact that HDL reduces the risk
associated with cardiovascular ischemic disease, protect-
ing endothelial cells from apoptosis induced by intracel-
lular oxidative stress.22 After exposure of BM-MSC to
HDL (HDL-BMMSC), cells were administrated in the
myocardium of an animal model of post-myocardial
infarction recovery. Cardiac function improvement and
cell engraftment were significantly higher in the HDL-
BMMSC based therapy than untreated BM-MSC based
therapy. In vitro studies suggested that HDL activated
the antiapoptotic PI3K/Akt signaling pathway.22 Curcu-
min is also known for its antioxidant properties (ROS-
scavenging activity).23 Liu and colleagues demonstrated
in an in vitro study that curcumin exposure activated the
pro-survival signaling pathway PTEN/Akt/p53 in ADSC.
Indeed, cell therapy with curcumin-preconditioned
ADSC (C-ADSC) was more efficient in attenuating myo-
cardial damage compared with untreated ADSC in a
mouse model of ischemia-reperfusion injury. Impor-
tantly, this effect correlated with increased cell engraft-
ment of transplanted ADSC.24

Trimetazidine (TMZ) is used to attenuate the conse-
quence of myocardial ischemic-reperfusion injury in the
clinical practice because TMZ increases cell tolerance to
ischemia by maintaining cellular homeostasis.25 Precon-
ditioning of BM-MSC with TMZ for 6 h induced the
expression of Hif-1a. Preconditioned cells exhibited a
better engraftment capacity and therapeutic perfor-
mance, increasing myocardial function and neovasculari-
zation after administration in an animal model of cardiac
ischemia-reperfusion injury.26

Statins are a group antilipidemic compounds that
inhibit the enzyme HMG-Coa reductase, which is
involved in the production of cholesterol. However, sta-
tins have additional pleiotropic effects post-ischemia-
reperfusion, including improvement of endothelial dys-
function, antioxidant properties and inhibition of
inflammatory responses. For this reason, using statins is
a common treatment in the clinical practices for the pre-
vention of tissue injury after a heart or brain infarction.27

Li and colleagues demonstrated that Atorvastatin (AT)
preconditioning of BM-MSC up-regulated CXCR4
expression, increasing cell survival and cardiac perfor-
mance in an animal model of acute myocardial infarc-
tion.28 Similarly; melatonin, a neurohormone with anti-
inflammatory and antioxidant properties, has been
proved to exhibit cytoprotective effects against ischemic
injury in the liver, kidneys, brain and the heart. Han and
colleagues demonstrated in a pre-clinic study that the
pre-treatment of ADSC with melatonin could facilitate
ADSC based therapy for myocardial infarction, possibly

through promoting survival of ADSC via SIRT1
signaling.29

Dua and colleagues demonstrated that epigenetic
reprograming of MSCs by microRNAs previous to trans-
plant rendered them more resistant to the hostile micro-
environment. BM-MSC were transfected with a double-
stranded miR-133a, which is abundantly expressed in
heart and is down-regulated in patients after myocardial
infarction. Apaf-1, a pro-apoptotic factor involved in
intrinsic apoptosis is a target of miR-133a. BM-MSCs
transfected with miR-133a administered in an animal
model of myocardial infarction led to a significant
increase in cell engraftment, cardiac function, and
decreased fibrosis compared to control BM-MSC.30

Because the processes of homing and engraftment
depend on multiple variables, and their mechanisms are
not fully understood, some researchers have tested a
“multiple stimulation/reprograming” strategy to increase
MSC engraft capacity. Platelet rich plasma (PRP) has
been used in human applications since the 1970s for its
healing properties attributed to secreted proteins.31 Peng
and colleagues described that PRP-preconditioning of
BM-MSC induced PI3K/Akt/NF-kb signaling, enhanc-
ing cell survival and regenerative function in a wound
healing murine model.32

Cell-conditioned media has been used in vitro to
investigate the stimuli (coming from the cellular micro-
environment) that the transplanted cells receive inside
the target tissue.33 Smith and colleagues reported a cell
culture-based approach to enhance hADSC engraftment
in brain tumors by pre-exposing ADSC to glioma-condi-
tioned media and extracellular matrix proteins (fibronec-
tin and laminin). This method contributes to educate the
MSCs in order to enhance their homing capacity and to
specifically direct them to localized tumors.34

Screening technology is a new approach to identify
new molecules that could render MSCs more resistant
to a hostile microenvironment. Recently, a novel
method for screening small molecules that enhance
homing of systemically administrated cells was devel-
oped. Levy and colleagues screened 9000 signal trans-
duction modulators to identify hits that increase MSC
surface expression of homing ligands that bind to
intercellular adhesion molecule 1 (ICAM-1). They
identified a kinase inhibitor called Ro-31-8425. Pre-
conditioned-MSCs with Ro-31-8425 exhibited
increased homing into inflamed sites, and displayed
improved anti-inflammatory properties in lipopolysac-
charide-induced inflamed mouse ears.35 The examples
presented here clearly point to the beneficial conse-
quences of modulating MSCs prior to transplantation,
either via hypoxic preconditioning, drug treatment,
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ROS attenuation, immunomodulation, chemotactic
transformation and genetic programming (Fig. 1).

Induction of target tissue receptivity
for transplanted MSC

The approaches used to prepare the damaged tissue to
promote the engraftment of transplanted cells are sum-
marized in Table 1B. Shao and colleagues reported that
regional hepatic irradiation with X-rays before
BM-MSC transplantation, ameliorated thioacetamide-
induced liver fibrosis in rats. Hepatic irradiation pro-
moted homing of BM-MSC, reducing the inflammatory
status and increasing liver function.36 The ultrasound-
target microbubble destruction (UTMD) technique used
to increase wall vessel permeability, favors the extravasa-
tion of cells into the parenchymal space. Zhang and col-
leagues showed that UTMD increased renal protection
after intravenous administration of BM-MSC, using an
animal model of diabetic nephropathy. Authors sug-
gested that this protective effect is mediated by an
enhancement of homing (via increasing capillary perme-
ability) and retention of BM-MSC (mediated by upregu-
lation of VCAM-1) into the kidneys.37 Extracorporeal
shock wave (ESW) therapy is a non-invasive treatment
for chronic tendinopathies. Although the biological
mechanism of this therapy is not clear, it appears to pro-
mote neovascularization and the removal of damaged
ECM components.38 Lee and colleagues described a ben-
eficial effect on BM-MSC engraftment after ESW treat-
ment in a chronic spinal cord injury rat model,
presumably by up-regulation of SDF-1 and CXCR4
expression.39 Regarding clinical studies, in the CELL-
WAVE randomized clinical trial, a positive, albeit mod-
est improvement was observed in left ventricular ejection
fraction at 4 months after intracoronary infusion of bone
marrow-derived mononuclear cells (BMC). Patients with
post-infarction chronic heart failure received ESW
24 hrs before BMC transplantation.40

Procedures to attenuate heart failure resulting from
myocardial infarction have been investigated in animals
and humans in the past decades. The most successful
procedure to date, called post-conditioning, is based on
the application of repeated vascular occlusion for brief
periods at the onset of reperfusion after an ischemic
event. Recent studies demonstrated that ischemic post-
conditioning (IPC) reduces reperfusion injury, described
as cellular death induced by oxidative stress, increased
inflammation levels and extracellular matrix remodel-
ing.41 Chen and colleagues combine, for the first time,
ICP with stem cell based therapy to prevent tissue dam-
age after an ischemic episode. Using an animal model of
pulmonary ischemia reperfusion injury, they reported

intravenous administration of BM-MSC after IPC
enhances pulmonary function and cell engraftment in
the lungs.42 Jiang and colleagues have also shown that
remote conditioning (an alternative to conditioning
where ischemia is applied to a distant tissue) enhanced
cell retention and cardiac function in the myocardium
after BM-MSC transplantation in a myocardial ische-
mia-reperfusion animal model, suggesting that SDF-1 is
a key molecule in the cell engraftment mechanism.43 In
2016, the same research group demonstrated that these
beneficial effects were mainly attributed to the hospitable
microenvironment for engrafted cells.44

As we mentioned above, statin administration attenu-
ates the effects of an ischemic episode in the heart or the
brain, mainly reducing the inflammation in the injured
tissue. Yang and colleagues reported that AT, a member
of the statin family, decreased the hostility of the cardiac
microenvironment and facilitated survival of MSC
administration in a post-infarct in vivo model.45 More-
over, Zhang and colleagues reported that the combined
therapy of Rosuvastatin and MSCs has a synergistic
effect on improving myocardial function after infarction,
improving the survival of engrafted ADSC, at least in
part, through the PI3K/Akt and MEK/ERK 1/2 signaling
pathways.46

The proliferative growth factor of b-fibroblasts
(bFGF) promotes cell survival, migration and the differ-
entiation capacity of BM-MSC in vitro, and these abilities
may improve BM-MSC engraftment to target tissue.
Wang and colleagues observed that the co-administra-
tion of bFGF with BM-MSC (by retrograde coronary
venous infusion) in an animal model of myocardial
infarction, enhanced BM-MSC survival and differentia-
tion, recovering cardiac function and preventing adverse
remodelling.47 A summary or the reported findings in
MSC-based therapy in pre-clinic and clinical studies,
in addition to our suggested strategy are summarized in
Figure 1.

Future perspective and conclusions

The first milestone to overcome during the development
of MSC therapy has been to guarantee the biosafety of
their use in clinical trials.48 At present, consensus in the
scientific community agrees that MSC therapy is safe
when its isolation, ex vivo expansion, and administration
are made following Good Manufacturing Practice
(GMP) guidelines. The number of clinical studies evalu-
ating the regenerative effect of MSCs in multiple diseases
is growing fast and therapeutic results are increasingly
positive. However, concurrently, scientists have observed
that the long-term benefit of MSC therapy is restricted
by the poor engraftment of transplanted cells. At present,
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the second milestone aims to achieve a stable MSC-
regenerative effect in the transplant host. The discovery
of new mechanisms of cell homing and engraftment will
present a stronger possibility to improve the interactions
between transplanted cells and tissue cells, for instance,
modulating the expression of adhesion and migration
molecules in MSCs.49 On the other hand, in order to pre-
vent the difficulties of cell engraftment, researchers have
also investigated the use of biomaterial to mimic the nat-
ural niche of MSCs with encouraging results, particularly
in bone and cartilage regeneration in order to draw
MSC-host tissue interactions.50,51

Strategies of MSC preconditioning or damaged tissue
preconditioning have been successful in pre-clinic stud-
ies for different diseases, increasing the cell engraftment,
the gain of tissue function and consequently, the efficacy
of cell therapy. The successful use of statins for MSC pre-
conditioning or for damaged tissue preconditioning to
increase the MSC therapy efficacy in the treatment of
myocardial infarction consequences after reperfusion
suggests that even more powerful results of combined
strategies may be achieved. Therefore, we propose that
using both complementary strategies will enable acceler-
ation of the process to translate the experimental evi-
dence from the pre-clinic studies to the daily clinical
practice, reaching the next milestone (Fig. 1). In addi-
tion, we call for more research in this area, in particular,
we advocate research that includes various modalities of
combining the strategies to produce excellent clinical
results.
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Akt serine/threonine-specific protein kinase
ADSC adipose derived mesenchymal stem cells
ATR2 angiotensin type 2 receptor
bFGF b-fibroblast growth factor
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