
Published online 29 December 2014 Nucleic Acids Research, 2015, Vol. 43, No. 5 e33
doi: 10.1093/nar/gku1322

EvoTol: a protein-sequence based evolutionary
intolerance framework for disease-gene prioritization
Owen J. L. Rackham1, Hashem A. Shihab2, Michael R. Johnson3 and Enrico Petretto1,4,*

1Medical Research Council (MRC) Clinical Sciences Centre, Imperial College London, Hammersmith Hospital, Du
Cane Road, London W12 0NN, UK, 2The Medical Research Council Integrative Epidemiology Unit, University of
Bristol, Oakfield House, Oakfield Grove, Bristol BS8 2BN, UK, 3Division of Brain Sciences, Imperial College London,
Hammersmith Hospital Campus, Burlington Danes Building, London W12 0NN, UK and 4Duke-NUS Graduate
Medical School, 8 College Road, Singapore 169857, Singapore

Received September 03, 2014; Revised November 28, 2014; Accepted December 05, 2014

ABSTRACT

Methods to interpret personal genome sequences
are increasingly required. Here, we report a novel
framework (EvoTol) to identify disease-causing
genes using patient sequence data from within pro-
tein coding-regions. EvoTol quantifies a gene’s in-
tolerance to mutation using evolutionary conserva-
tion of protein sequences and can incorporate tissue-
specific gene expression data. We apply this frame-
work to the analysis of whole-exome sequence data
in epilepsy and congenital heart disease, and demon-
strate EvoTol’s ability to identify known disease-
causing genes is unmatched by competing methods.
Application of EvoTol to the human interactome re-
vealed networks enriched for genes intolerant to pro-
tein sequence variation, informing novel polygenic
contributions to human disease.

INTRODUCTION

The application of whole-exome sequencing (WES) to pa-
tient cohorts is becoming increasingly widespread. One
such use is through trio-sequencing where patients and their
parents have their exome sequenced in order to identify
disease-associated de novo mutations. Already this technol-
ogy has been used to study a number of disease cohorts
including epilepsy (1), schizophrenia (2), congenital heart
disease (CHD) (3) and autism (4). While these WES studies
identified several new disease genes on the basis of recur-
rent de novo mutation in affected offspring, the high rate
of de novo mutation in the human genome makes it diffi-
cult to distinguish causal mutations from irrelevant random
events, particularly for missense mutations, where genes are
impacted only singly or where gene mutation falls short of
exome-wide significance. Therefore, new tools for prioriti-
zation of disease-causing genes are required (5).

Currently, several techniques exist for predicting the
pathogenicity of individual sequence variants, for exam-
ple, PolyPhen (6) or SIFT (7), but these do not gener-
alize their predictions to the gene level. Complementary
to these variant-level prediction approaches, a number of
techniques for identifying or prioritizing candidate disease-
causing genes have been developed, but often these require
prior knowledge of known disease-causing genes for a par-
ticular disorder (for example, ENDEAVOUR (8) or Priori-
tizer (9)). This class of methods uses different kind of sim-
ilarity measures (e.g. functional similarity, sequence simi-
larity, pathways membership, cross-species phenotype sim-
ilarity, etc.) between known disease genes and the genes to
be prioritized (reviewed in (10)). For these approaches, the
prioritization accuracy, in the large part, depends on the ac-
curacy, availability and specificity of the prior information
used (known disease-causing genes).

Recently, a distinct (and new) class of approaches
for gene-level prioritization of disease-causing genes has
emerged, which does not require any prior disease-related
information. Using the pattern of DNA sequence varia-
tion observed in the human population, one recently de-
scribed method ranks a gene’s likelihood of causing disease
when mutated by calculating its ‘residual variance intoler-
ance score’ (RVIS) (11). Specifically, using the Exome Vari-
ation Server as a source of genetic variation across the pop-
ulation, the RVIS estimates the studentized residuals of rare
versus all variations known to occur in a particular gene and
this measure is used as a proxy for that gene’s ability to tol-
erate mutations. It has been shown that genes with high in-
tolerance to mutations according to RVIS are more likely to
be disease-causing genes than genes that can tolerate muta-
tions (11). Thus, the RVIS uses the pattern of sequence vari-
ation observed in the human population to prioritize possi-
ble disease-causing genes from sets of genes impacted by de
novo mutation in disease cohorts (e.g. from WES of family
trios). Despite the RVIS approach being relatively new it is
already a widely applied technique in the field, being used
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broadly including studies into the genetics of epilepsy (12),
kidney disease (13), autism (14) and familial dyskinesia (15).
A second, complementary approach for the analysis of ex-
cesses in de novo mutation per gene by calibrating a model of
de novo mutation has been recently introduced by Samocha
et al. (16). This method uses the absence of rare functional
variation in comparison to the expectation within humans
to derive constraint scores (or missense Z scores), which can
be similarly used to evaluate excesses of mutation in gene
sets and evaluate the significance for individual genes.

Here we present an alternative method to RVIS (11) and
the constraint score (16) for gene-level prioritization of dis-
ease genes. Uniquely, our method, EvoTol, combines genic
intolerance with evolutionary conservation of whole pro-
tein sequences or their constituent protein domains to pri-
oritize disease-causing genes. EvoTol’s ability to prioritize
disease-causing genes is as a result of utilizing the processes
guiding evolution, which have the effect of penalizing muta-
tions that unduly influence the ‘fitness’ of an organism. By
studying protein sequences across multiple species it is pos-
sible to estimate which protein sequences are more probable
given what has been observed. These probabilities are cap-
tured by creating sequence profiles, such as those found in
PFAM (17) or SUPERFAMILY (18). These profiles pro-
vide a rich resource for identifying protein-coding genes
that are more intolerant to mutation than others and can
be used for predicting a gene’s propensity to cause disease.
EvoTol builds on and extends the RVIS approach by not
looking exclusively at DNA sequence variation in the hu-
man population, but instead leveraging the information on
protein sequence evolution (via FATHMM (19)) to iden-
tify genes where the number of mutations that are likely to
be damaging based on evolutionary protein information is
higher than expected. We use this strategy to define an alter-
native proxy measure for intolerance to mutation (i.e. evolu-
tionary intolerance), which can be used to prioritize disease-
causing genes.

We show that EvoTol performs better than RVIS at prior-
itizing disease-causing genes from the Online Mendelian In-
heritance in Man (OMIM) database (20) and also at prior-
itizing possible disease causing genes from previously pub-
lished WES trio data sets for epilepsy (1) and CHD (3). In
order to show that the EvoTol measure can also be inte-
grated with other data types to improve its performance we
provide two example applications. In the first case, we inte-
grate the measure with tissue-specific gene expression from
>700 CAGE libraries taken from various cell types and tis-
sues (from the FANTOM5 consortium (21)). These are clas-
sified into cell-type categories using Uberon cell-type on-
tology (22). We then illustrate how removing genes that are
not expressed in a given tissue can result in a 3- to 7-fold
increase in the detection of known disease-causing genes in
disorders that are limited to a single cell or tissue type. In
the second case, we integrate the measure with the human
interactome (STRING data (23)). In doing so we identify
specific clusters with increased (and decreased) evolution-
ary intolerance scores that reflect functionally coherent bi-
ological processes relevant to disease aetiology, and which
may be of use to identify polygenic contributions to com-
plex disease.

Figure 1. EvoTol uses FATHMM predictions (on the protein space) for
dbSNP missense mutations in each gene to derive a gene-level ‘evolution-
ary intolerance’ score, which corresponds to the studentized residual of
damaging versus all mutations. For a given gene, the percentile of the Evo-
Tol score provides a measure of intolerance with low studentized residuals
corresponding to high intolerance. Integrating gene expression data from
the FANTOM5 consortium, the gene pathogenicity predicted by the evo-
lutionary intolerance score is determined with respect to the specific tissue-
context where the gene is expressed.

EvoTol is freely available and accessible online at www.
evotol.co.uk, where users can input gene lists to be ranked
according to the evolutionary intolerance score.

MATERIALS AND METHODS

Building the evolutionary intolerance (EvoTol) scores

A graphical summary of the EvoTol approach which builds
upon the intuition of RVIS is reported in Figure 1, summa-
rized in the following steps and explained in detail below:

(i) Taking a set of mutations from dbSNP, each mutation
is assessed by FATHMM in order to predict if it is dam-
aging or not.

(ii) The mutation set is then grouped by gene and a linear
regression of the total number of mutations against the
number of damaging mutations for all genes is calcu-
lated.

(iii) The studentized residuals are calculated for each gene
and this is used as a proxy for intolerance.

(iv) The genes are then ranked by their studentized residu-
als and assigned a percentile based on this rank. Those
genes that appear in the top 25 percentile are consid-
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ered to be intolerant, with most intolerant genes being
in the top one percentile.

EvoTol utilizes data from FATHMM (19) to predict the
functional consequences of missense mutations. To this end
we apply FATHMM to a set of 1 068 744 mutations from
dbSNP (24), obtaining a FATHMM score for each. Follow-
ing this, for each gene we derive a new score (the EvoTol
score) by taking the studentized residuals of all mutations
in a gene and plotting these against the number of predicted
damaging mutations according to FATHMM. A negative
residual represents a gene evolutionarily intolerance to mu-
tation (i.e. pathogenic) while a positive residual represents a
gene tolerant to mutation (i.e. benign).

Specifically, FATHMM exploits the evolutionary infor-
mation stored in hidden Markov models of protein se-
quences or their constituent domains and combines this
information with a novel weighting scheme in order to
predict if a missense mutation will be damaging or not.
FATHMM has previously been shown to outperform state-
of-the-art prediction methods (i.e. SIFT, PolyPhen, PAN-
THER, SNPs&GO and MutPred) (19). The hypothesis un-
derlying the EvoTol score is based upon the assumption
that if the same amino acid is conserved across species it
is likely to have a critical function, and therefore genes that
contain a higher proportion of these mutations are those
that are the most intolerant to mutation. In order to use
FATHMM information to identify intolerance at the gene
level (and compare this with RVIS), we used 1 068 744 sin-
gle nucleotide polymorphisms (SNPs) that appear in db-
SNP (24), of which 686 501 are missense and were scored
using FATHMM. FATHMM predictions are classified as
either ‘TOLERATED’ (535 592 in total) or ‘DAMAGING’
(120 089 in total) and were grouped by gene. Following this
we linearly regressed the number of DAMAGING muta-
tions against the total number of mutations for each gene
and calculated the studentized residuals. This transforma-
tion controls for SNP density and gene length and as such
creates the EvoTol score. The studentized scores were con-
verted to percentiles such that the most intolerant gene (i.e.
the gene where the number of DAMAGING mutations is
highest for its mutational load) falls in the first percentile
and vice versa.

The detail of how this method can be benchmarked
against existing methods and modified in order to incor-
porate cell-specific gene expression and protein interaction
data are described in the following sections.

Benchmarking EvoTol and RVIS

In order to assess the performances of both RVIS and Evo-
Tol when prioritizing putative disease genes we used the
same sets of OMIM genes employed by Petrovski et al. when
assessing RVIS (11). In total there are six gene sets; a set
containing all of the OMIM genes (with genes linked to
search terms resistance, cancer, somatic, susceptibility, car-
cinoma or tumor removed), and five subsets of genes ex-
tracted by identifying genes that matched a search for ‘re-
cessive’, ‘haploinsufficiency’, ‘dominant negative’, ‘de novo’
and a combination of ‘de novo’ and ‘haploinsufficiency’. The
RVIS (0.1% threshold) and EvoTol percentile for each of the

genes in a given set is then assigned and a count of the num-
ber of disease-causing genes that would be found at each
percentile are reported. In order to show the baseline pre-
diction, the result of randomly assigning a percentile to each
gene is also shown.

Real data analysis: epilepsy and CHD data sets

The Epi4K project (25) analyzed whole-exomes of 264
probands, and their parents, and confirmed 329 de novo mu-
tations (26) which were found in 176 genes, each of which
we annotated with its EvoTol score as described above. A
large study of CHD by Zaidi et al. (3) included 362 parent–
offspring trios comprising a proband with severe CHD and
no first-degree relatives with identified structural heart dis-
ease. WES analysis found 184 genes containing de novo mis-
sense mutations. All missense mutations for epilepsy and
CHD used in these studies are available at www.evotol.co.
uk, where the EvoTol scores can be retrieved for each gene.
For each intolerant gene we consider its protein product
and derived known phenotype associations from UniProt
db (Universal Protein Resource, www.uniprot.org), as re-
ported in Supplementary Table S3 (epilepsy) and Supple-
mentary Table S5 (CHD), respectively.

EvoTol analysis of the STRING network

The network analysis was performed using STRING v.9
(27). The network was filtered to include only high-
confidence edges with a STRING score greater than 500
and with an experimental score greater than zero. This
has the effect of removing most of the low quality (mostly
literature-based) edges and ensures that each edge inference
is supported by experimental data. The network was clus-
tered using the ‘Molecular Complex Detection’ (MCODE)
algorithm (28,29) with the default settings, which have been
used from within Cytoscape (30). MCODE identifies dis-
crete subnetworks (or clusters) from within a larger network
(e.g. STRING) and has the advantage over other clustering
methods to fine-tune directly clusters of interest without re-
lying on the rest of the network (28).

Each of the nodes of the network is a gene and as such can
be assigned its EvoTol scores as calculated above. The clus-
ters can be compared by performing a Mann–Whitney U
test on the distribution of EvoTol scores from each cluster.
A cluster that is significantly more/less intolerant will result
in a statistically significant P-value for the difference in me-
dian EvoTol score compared to that of the background (i.e.
the other clusters).

Functional annotation of intolerant genes and subnetworks

We used DAVID (the database for annotation, visualization
and integrated discovery) (31) to investigate functional en-
richment for intolerant genes and STRING subnetworks.
The DAVID tool uses several sources of gene annotation,
including Gene Ontology (GO) and Kyoto Encyclopedia
of Genes and Genomes (KEGG) pathways to assess over-
representation of specific functions and pathways within a
given gene set and accounts for the size of the gene set. The
background in the case of epilepsy and CHD was the set
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of de dovo mutation containing genes and for the networks
it was the whole genome. To annotate human genes with
respect to previously known disease phenotype functions
we used Ensembl Biomart to retrieve data from the OMIM
database for the Mendelian disorders (20), and the Devel-
opmental Disorders Gene to Phenotype (DDG2P (32)) and
Orphanet (http://www.orpha.net) databases.

Cell-type-specific evolutionary intolerance by integrating the
FANTOM consortium data

The FANTOM5 consortium produced capped analysis of
gene expression (CAGE) data from a large number of pri-
mary cells, tissues or cell lines (21) that can be used to pro-
vide context-specific gene expression information in a man-
ner that is useful for evolutionary analysis, as we previously
proposed (33). Each of the FANTOM samples can be an-
notated as belonging to UBERON cell-type ontology (22),
resulting in sets of samples which are ‘anatomically’ related
at various levels. For instance, the UBERON term ‘Central
Nervous System’ will group CAGE libraries from the FAN-
TOM5 project that correspond to this term, e.g. neuron,
hippocampus, adult brain, etc. For each such grouping pro-
vided by the UBERON ontology we use the corresponding
FANTOM5 data to calculate the mean expression level of
each gene and define a given gene to be reliably expressed
if the average gene expression is greater than 100 tags per
million (TPM) across the group, see Supplementary Figure
S2. These sets of expressed genes provide biological (cell-
type specific) context and can be used to redefine the per-
centiles of evolutionary intolerance scores. Specifically, the
evolutionary intolerance scores are calculated as described
above, providing a studentized residual for each gene based
on a linear regression of the number of known mutations
for that gene against the number that are predicted as dam-
aging. To produce an UBERON term-specific ranking the
genes that are not reliably expressed are removed, and the
remaining genes ranked by their residuals. These rankings
are then converted to percentiles and it is these percentiles
that are used to prioritize those genes that appear the most
intolerant in that specific context.

To show that cell-type-specific evolutionary intolerance
increases the power to predict disease-causing genes,
we retrieve known gene-phenotype associations (using
UniProt, see above) and compare these with the predicted
most intolerant (<25 percentile score) genes using the
cell-type-specific evolutionary intolerance. The fraction of
genes predicted by EvoTol using cell-type-specific evolu-
tionary intolerance is then compared with the fraction of
genes predicted using non-cell-type-specific evolutionary
intolerance and a fold change of enrichment is calculated.
For display purposes, we report these fold enrichments
by grouping ontological cell-types into six high-level
categories (respiratory system (UBERON:0001004),
digestive system (UBERON:0001007), circulatory
system (UBERON:0001009), central nervous sys-
tem (UBERON:0001017), musculoskeletal sys-
tem (UBERON:0002204) and immune system
(UBERON:0002405)). The complete UBERON cell-
type ontologies with the corresponding samples identifiers

retrieved from the FANTOM5 data set are reported in
Supplementary Table S7 online.

Identifying intolerant protein domains using EvoTol

Despite the prevailing direction in the field to concentrate
on identifying intolerant genes, EvoTol methodology also
permits the identification of intolerant protein domains.
This allows for an intermediate resolution between indi-
vidual SNPs and whole genes, which may be helpful when
only part of a gene is truly intolerant to mutation. In or-
der to identify intolerant protein domains we apply the
same methodology as described above with the exception
of grouping mutations by protein domain rather than gene.
In this way the total number of mutations found within a
domain is linearly regressed against the number of damag-
ing mutations. A studentized residual is calculated for each
domain, which in turn is converted to a percentile. There is
more than one domain type included with FATHMM and
as such the intolerant domains list contains domains from
SUPERFAMILY, PfamA and PFamB. The intolerant do-
mains list is made available online through www.evotol.co.
uk.

RESULTS

First, we set out to benchmark EvoTol performance against
RVIS (11) and the gene constraint score (16) with respect
of known disease-causing genes. Both of these methods for
prioritizing disease genes do so without relying on a priori
information on the disease of interest, and as such are the
only available techniques for comparison. We then apply the
EvoTol framework to the analysis of WES data in epilepsy
and CHD, and systematically test the utility of EvoTol to
prioritize genome-wide candidate disease-causing genes. To
illustrate an additional application of EvoTol, we also car-
ried out a network-level evolutionary intolerance analysis
of the human interactome. Finally, to demonstrate the in-
creased predictive ability of EvoTol when candidate genes
are stratified by their expression in a given tissue relevant
to the disease, we carried out separate comparative analysis
of EvoTol performance with and without using information
on tissue specificity.

Evolutionary intolerance has better predictive power than
genic intolerance to prioritize disease-causing genes

The OMIM database comprises a large repository of known
genes and mutations for Mendelian disease (20). The
OMIM database can be used to extract functionally coher-
ent gene-sets (for instance, genes containing the keywords
‘de novo’ or ‘haplo-insufficuency’) and these sets were pre-
viously used to assess the performance of RVIS (11). Here,
we use the same OMIM gene-sets to test the ability of Evo-
Tol to discriminate genes that do and do not cause disease
in comparison with RVIS. Figure 2 shows the relative per-
formance of RVIS and EvoTol to predict all OMIM genes
and specific gene-sets associated with the keywords ‘hap-
loinsufficiency’, ‘de novo disease causing’, ‘recessive genes’
and ‘dominant negative’. For each considered gene-set Evo-
Tol provides greater enrichment for disease genes compared
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Figure 2. Comparison between EvoTol and RVIS intolerance scores using
the OMIM database, showing the cumulative percentage plots for the resid-
ual variation intolerance scores for the six OMIM gene lists (A–F, as in-
dicated). Inserts, cumulative percentage of OMIM genes identified within
the 25th percentile of intolerance (yellow box) by EvoTol and RVIS.

with RVIS (see Supplementary Figure S1 for receiver oper-
ating characteristic (ROC) curves). It is worth noting that
OMIM is far from a complete resource and many disease
genes remain unannotated or undiscovered. In this respect
the following benchmark provides a good way of compar-
ing techniques but is not a good measure of overall accu-
racy of each technique since many of the ‘false positive re-
sults’ may well involve disease-causing genes that remain
unknown. Looking at the full set of OMIM genes, we found
that the first 25th percentile of the EvoTol score (previ-
ously adopted to prioritize disease genes using RVIS (11))
contained 50% of the OMIM genes while RVIS contained
only 35%, Figure 2A (insert). The increased ability of Evo-
Tol to retrieve disease-causing genes from OMIM as com-
pared with RVIS was preserved for all OMIM gene lists in-
vestigated and was most apparent for the ‘recessive’ gene-
set (54% versus 33% for EvoTol and RVIS at the 25th per-
centile cutoff, respectively, Figure 2). In addition, we found
the recently introduced gene constrain score (16) to have
similar performance as RVIS in predicting genes belong-
ing to OMIM terms (Supplementary Figure S5 and Table

S6). The performance of EvoTol is still better than existing
techniques if the data source is the Exome Variation Server
rather than dbSNP, see Supplementary Figure S5.

We looked in detail at the top 10 intolerant genes genome-
wide that are predicted by EvoTol and compared the per-
centile positions with those predicted by RVIS (Supple-
mentary Table S1). We identified several genes (BRCA1,
ABCA4, LRP2, FBN3 and HBB) judged to be highly evo-
lutionary intolerant by EvoTol that RVIS placed in the set
of genes tolerant to mutation. While BRCA1 is one of the
most intolerant genes predicted by EvoTol (i.e. within the
first percentile of residual intolerance) it is only within the
79th percentile according to RVIS. To explain these differ-
ences, we investigated BRCA1 in detail, for which there are
720 single nucleotide mutations found in dbSNP (24) for
which a FATHMM score can be obtained. Of these 720 sin-
gle nucleotide variations (SNVs), 426 (59%) are considered
to be damaging according to FATHMM, a ratio of toler-
ant to intolerant mutations that allowed EvoTol to place
BRCA1 in the list of most intolerant genes. In the same
gene there is a total of 237 SNVs documented in the Exome
Variant Server, of which 34 (14%) are common variants. Ac-
cordingly, RVIS places BRCA1 in the set of tolerant genes
despite over half the SNVs being predicted as damaging us-
ing amino acid conservation by FATHMM. For BRCA1,
PolyPhen (6) predicted 63% of mutations are either ‘pos-
sibly’ or ‘probably’ damaging and two phenotypes are as-
sociated with mutations in BRCA1 in the OMIM database
(20) (Supplementary Table S1). Using evolutionary intoler-
ance EvoTol predicted BRCA1 to be highly intolerant to
functional variation and therefore highly prioritized as a
disease-causing gene. Similar differences in the intolerance
predicted by EvoTol and RVIS were observed for ABCA4,
where only 149 (out of 538) SNVs are considered toler-
ant to mutation according to FATHMM. The high intol-
erance score for ABCA4 by EvoTol is further supported by
PolyPhen prediction (56% of either ‘possibly’ or ‘probably’
damaging mutations). There are six phenotypes associated
with mutations in ABCA4 in the OMIM database (20) (Sup-
plementary Table S1), one of which is cone-rod dystrophy;
65% of patients with cone-rod dystrophy carry a mutation
in this gene (34) which lends weight to the hypothesis that
ABCA4 is indeed intolerant to mutation.

Using evolutionary intolerance to prioritize disease genes in
epilepsy

A recent study searched for disease-causing mutations in
a cohort of patients with severe epilepsy using WES from
264 trios (Epi4k consortium (1)), resulting in a set of 329
de novo mutations occurring in 176 different genes in the
disease cohort. We re-analyzed this set of mutated genes
by first ranking them by their evolutionary intolerance
score (and by RVIS for comparative purposes), see Sup-
plementary Table S2. We focused first on genes within
the 25th percentile of EvoTol scores and annotated this
gene set using the DAVID tool (31) to investigate if this
quartile of most intolerant genes was enriched for func-
tional categories relevant to epilepsy. For the EvoTol results
this showed significant overrepresentation for ion channel
activity genes (BEST2, CACNA1A, GABRA1, GABRB1,
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Figure 3. EvoTol and RVIS intolerance scores using WES data from the
Epi4K consortium (26) and comparison with functional annotation of dis-
ease genes in UniProt. (A) Number of predicted disease genes for different
residual percentile scores. For each residual percentile score of EvoTol (B)
and RVIS (C) we report the number of predicted disease genes and percent-
ages (y-axes) that were annotated as ‘epilepsy’ genes by UniProt (keyword:
‘Epilepsy [KW-0887]’, Supplementary Table S3).

GABRB3, GRIN1, KCNQ2, KCNQ3, KCNB1, SCN8A,
SCN1A, SCN2A), enrichment P = 0.03 with respect to
the background of the 176 de novo mutations containing
genes. The EvoTol predictions for the genes within the 25th
percentile of intolerance were supported by data on as-
sociations between diseases and phenotypes and human
genes from OMIM, DDG2P (32) and Orphanet (http://
www.orpha.net) databases, Supplementary Table S2.

We then compared the ranked gene lists predicted by
EvoTol and RVIS with separate functional annotation
data from UniProt (http://www.uniprot.org) and found that
EvoTol has increased power to detect genes which if defec-
tive cause epilepsy. To this aim we retrieved a list of 81 pro-
teins (and corresponding genes) associated with epilepsy by
UniProt (keyword: ‘Epilepsy [KW-0887]’, Supplementary
Table S3), and investigated the extent to which these were
predicted by EvoTol or RVIS at different residual percentile
scores. Overall, EvoTol predicted more intolerant genes (i.e.
ranked within the 25th percentile) than RVIS (Figure 3A)
and among these, a higher fraction of genes were also func-
tionally annotated as epilepsy-causing by UniProt (Fig-
ure 3B and C). Notably, for decreasing residual percentile
scores, EvoTol identified an increased proportion of genes

in agreement with the functional annotation by UniProt,
whereas RVIS identified at most 50% of genes in agree-
ment with UniProt (Figure 3B and C). These analyses also
show the high sensitivity of the EvoTol score, which pre-
dicted more disease-causing genes (according to UniProt
functional annotation) for lower residual scores compared
to RVIS.

Annotation of the most evolutionary intolerant genes priori-
tized by EvoTol in epilepsy

In contrast with the RVIS method, the EvoTol approach
identified SCN1A, an established epilepsy gene (35), as
the most important gene in the Epi4K data set (0.04 per-
centile rank of evolutionary intolerance, Supplementary Ta-
ble S2). In the Epi4K data four de novo mutations are found
in SCN1A across all trios. The gene itself encodes for a
protein that has four repeated protein domains that form
a tetrameric transmembrane channel, as do other highly
intolerant genes identified by EvoTol including KCNQ2
(0.51th percentile rank) and KCNQ3 (6th percentile rank).
Notably, neither of these genes scored ranked as highly
on the RVIS measure (Supplementary Table S2), although
these genes are known epilepsy genes (36). Among the
Epi4K genes that are highly intolerant to missense muta-
tion predicted by EvoTol are CACNA1A, KCNQ2, KCNQ3,
SCN1A, SCN8A and SCN2A which all encode voltage-
gated ion channel subunit proteins and all have a protein
domain in common. Within these 6 highly intolerant genes
there is a total of 13 mutations predicted as damaging and,
of these, 10 are found within the same protein domain,
whereas the 3 remaining mutations are located between 2
and 30 amino acids from the predicted location of the pro-
tein domain (Figure 4A). Given that the average length of
the proteins (∼2000 AA) and of the protein domains (∼200
AA) then assuming a uniform mutation rate across the gene,
the probability of this clustering of mutations occurring by
chance is very low (P = 2.9 × 10−10). This repeated occur-
rence of damaging mutations in a specific protein domain
suggests this is functionally important for the phenotype.
In order to investigate whether the same clustering of mu-
tations is similarly observed in other diseases, we investi-
gated the occurrence of all SNPs from dbSNP occurring
in this domain. Figure 4B shows the distribution of fold
changes expected for all damaging mutations (according to
FATHMM) from dbSNP that map to this domain as well
as the occurrence in the epilepsy set alone. Three regions
showed more than expected damaging mutations (shown in
green, red and blue in Figure 4B). Of particular interest are
residues 180–190 (blue region) showing a ∼2-fold enrich-
ment to the expected number of damaging mutations oc-
curring in epilepsy and overall, coinciding to the location
in the protein where ions binds to the channel (Figure 4C).
Structural effects of mutations to the SCN1A gene are well
documented (37,38); here, we provide these observations as
an example of the follow-on investigation of the EvoTol re-
sults alone, and without extensive structural investigation
of the protein domains.

http://www.orpha.net
http://www.uniprot.org
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Figure 4. (A) Location and frequency of damaging missense mutations in seven of intolerant genes predicted by EvoTol in epilepsy. (B) Distribution of
fold-change enrichments of damaging mutations in the conserved voltage-gated potassium channels protein domain, where each bin in the histogram
groups 10 residues of the protein domain. The expected level of enrichment of damaging mutations is indicated by the dotted line. (C) Protein domain
model from voltage-gated potassium channels superfamily (SUPERFAMILY ID: 81324, Model ID: 0041998) where the superfamily model is based on
the seed structure d1orqc (http://scop.berkeley.edu/sunid=87348). The locations of the domain that show the greatest enrichment in deleterious mutations
are indicated in (B) and (C) and colored as follows: green (30–50 AA), red (90–110 AA) and blue (170–190 AA), the latter represents the protein location
where the ion binds to the channel.

Using evolutionary intolerance to prioritize disease genes in
CHD

Zaidi et al. performed trio exome sequencing to identify
de novo mutations that are associated with CHD (3), sug-
gesting these mutations tended to be involved in histone
modification. The study found 184 genes containing de
novo mutations. An EvoTol re-analysis of these data iden-
tified 53 genes in the top 25th percentile of EvoTol scores
(Supplementary Table S4). Focusing on the most intoler-
ant genes, i.e. those within the second percentile of Evo-
Tol scores, we identify 10 genes (PTCH1, LRP2, FBN2,
KCNH6, ABCA13, ALPL, STAB1, GRM8, GANAB and
FGFR4). The most intolerant gene in CHD predicted by
EvoTol (and RVIS) is PTCH1, which is involved in sonic
hedgehog signaling and mutations in the gene are known
to cause congenital disorders (39). Several genes predicted
to be intolerant by EvoTol and RVIS have been previously

implicated in heart disease, including FBN2, linked to con-
genital contractural arachnodactyly, a disease characterized
by contractions in connective tissue (40), and FGFR4 that
encodes the protein Fibroblast growth factor receptor 4, a
closely related gene that in mouse contains a mutation caus-
ing CHD (41). However, in several cases EvoTol and RVIS
provided conflicting rankings of gene intolerance in CHD.
To investigate these differences in more detail, we retrieved
all genes associated to ‘CHD’ in the UniProt database (Sup-
plementary Table S5). While the proportion of intolerant
genes predicted by EvoTol that match the UniProt gene an-
notation is no greater than 30% (for ranks <1%), Figure 5
shows that on the whole EvoTol has similar or greater power
and sensitivity than RVIS in detecting CHD genes. We
therefore investigated specific cases where EvoTol classified
a gene to be highly intolerant (i.e. <10th percentile rank)
and RVIS predicted the same gene to be tolerant. One such
case is the low-density lipoprotein-related protein 2 gene

http://scop.berkeley.edu/sunid=87348
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Figure 5. EvoTol and RVIS intolerance scores using WES data in CHD (3)
and comparison with functional annotation of disease genes in UniProt.
(A) Number of predicted disease genes for different residual percentile
scores. For each residual percentile score of EvoTol (B) and RVIS (C) we
report the number of predicted disease genes and percentages (y-axes) that
were annotated as ‘CHD’ genes by UniProt (keyword: ‘congenital heart
disease’, Supplementary Table S5).

(LRP2) that is a highly intolerant gene according to Evo-
Tol (0.21th percentile rank), but in contrast was predicted
highly tolerant by RVIS (99th percentile rank). However,
carriers of LRP2 mutations suffer from Donnai–Barrow
syndrome, a rare, autosomal recessive disorder often char-
acterized by congenital heart anomalies (42) and LRP2-
deficient mice are born with severe congenital anomalies af-
fecting multiple tissues (43) due to misregulation of choles-
terol levels in the developing embryo. Another intolerant
gene according to EvoTol but not RVIS is KCNJ15 whose
expression in the heart is developmentally controlled (44),
in keeping with the observation of damaging mutations in
this gene in CHD patients. Potassium voltage-gated chan-
nels have been extensively investigated as possible therapeu-
tic targets for CHD (45) and other closely related genes,
KCNA5 (46) and KCNQ1 (47), have been previously linked
to heart disease. Another class of highly intolerant genes
predicted by EvoTol but not RVIS are those which belong to
the ATP-binding cassette (ABC) family of transmembrane
transporters, such as ABCA10 a cholesterol responsive gene
(48), ABCA13 or ABCB6 previously involved in cardio-
vascular disease, such as atherosclerosis (49). These highly

homologous genes from the same family have been inves-
tigated in great depth, with ABCA1 being tightly linked
to cholesterol levels and heart disease (50), therefore, sug-
gesting a possible role for the mutated ABC transporters
in CHD. While the most intolerant genes solely predicted
by EvoTol belong to different protein classes (e.g. potas-
sium voltage-gated channels and ABC transporters), func-
tional enrichment analysis of the genes in the top 25th per-
centile of EvoTol scores using DAVID shows enrichment
for a number of terms including keywords, such as ‘recep-
tor’ (P = 0.0013) and ‘negative regulation of nitrogen com-
pound metabolic process’ (P = 0.0061) with respect to the
other 184 mutation containing genes. The genes within the
top 25th percentile by RVIS score were only enriched for a
two terms ‘phosphoprotein’ (P = 0.0017) and MAPK sig-
naling pathway (P = 0.0052). These analyses demonstrate
the ability of EvoTol to prioritize both new disease genes
and pathways from exome-sequence data over and above
those identified by RVIS.

The identification of highly intolerant protein domains

Since EvoTol incorporates evolutionary information
through the inclusion of data on the conservation of
protein domains it also allows to comment on which of
these domains are in themselves highly intolerant. Since
it is not always the case that the entire gene is intolerant
but only a small region being able to identify intolerant
subregions of a gene (like protein domains) is extremely
useful, and not possible in the existing methodologies. The
question of whether the whole gene is the correct unit to
be judging intolerance is an important one within the field,
with some genes clearly being more intolerant in confined
regions of the protein. Having calculated both a domain
and gene level intolerance we are able to identify genes
where this is indeed the case. As an example, if we consider
the SUPERFAMILY ‘Voltage-gated potassium channel’
protein domain we find that this is a highly intolerant
domain with 930 damaging mutations identified within
it. Correspondingly, 85 out of 96 genes that contain this
domain are also considered as intolerant, while 11 are
not. An example of this is GALNT8, which in its various
isoforms (ENSP00000408321 and ENSP00000252318)
contains four different SUPERFAMILY protein domains
(POZ Domain, Ricin B-like lectins, Nuceotide-diphospho-
sugar transferases and Voltage-gated potassium channels).
Of these only the Voltage-gated potassium channel is
considered intolerant. As this domain only occupies 234
amino acids out of the 1166 reported it is clear why the
protein as a whole can be considered tolerant. However,
a mutation in the Voltage-gated potassium channel is still
highly likely to be disease causing. This demonstrates
that despite in the majority of cases the gene-level is a
good unit to study intolerance, there are also cases where
considering the domain-level analysis can boost detection
of disease-causing genes (see Supplementary Figure S6 for
further details). In order to allow the community to study
both gene and domain level evolutionary intolerance, both
measures are accessible at www.evotol.co.uk.

http://www.evotol.co.uk
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Integrating evolutionary intolerance with tissue-specific gene
expression boosts prediction of disease-causing genes

EvoTol can also be integrated with information on cell-type
and tissue-specific gene expression patterns to rank genes
with respect to their pathogenicity in tissue-specific context.
This layer of information can prove useful to prioritize dis-
ease genes when the functional impact of mutations is re-
stricted to a specific tissue or cell-type, as for example, in
disorders of the human brain or heart. To illustrate this we
retrieved the lists of predicted most intolerant genes (<25th
percentile) after removing those genes not expressed in a tis-
sue type of interest (e.g. the central nervous system or cir-
culatory system) and the list of predicted most intolerant
genes (<25th percentile) (i) without using and (ii) includ-
ing, cell-type-specific expression information. We then com-
pared these lists with respect of the UniProt proteins (and
corresponding genes) associated with epilepsy by UniProt
(keyword: ‘epilepsy’, Supplementary Table S3) and CHD
(keyword: ‘congenital heart disease’, Supplementary Table
S5) and calculate the number of matching disease-causing
genes. We show that by ranking genes by ‘evolutionary in-
tolerance’ with respect to their tissue-specific expression,
we increase the power to predict known disease genes from
UniProt in the specific tissue-context relevant to the disease,
Figure 6. This was achieved by using CAGE data from the
FANTOM5 consortium (21) and selecting an average gene
expression greater than 100 TPM to identify robustly ex-
pressed genes for each category (see Materials and Meth-
ods), we found ∼3-fold increase in detection of ‘epilepsy’
UniProt genes in the central nervous system and 6- to 7-
fold increase in detection of ‘CHD’ UniProt genes in the
circulatory system. We also observe that the fold-increase
in detection of UniProt genes associated with ‘epilepsy’ and
‘CHD’ rose when a more stringent thresholding of expres-
sion was adopted, reaching a maximum fold-increase for
gene expression thresholds between 100 and 200 TPMs (see
Supplementary Figure S2).

In some cases the highly intolerant genes predicted by
EvoTol were also highly expressed in multiple tissues or
cell types. For instance, we found that the ATP2A2 gene,
encoding one of the sarco/endoplasmic reticulum Ca(2+)-
ATPases (SERCA) (which are intracellular pumps located
in the sarcoplasmic or endoplasmic reticula of muscle cells),
ranked very highly in the evolutionary intolerance score in
adult brain tissue (EvoTol percentile score = 5.7) and was
associated with epilepsy by UniProt (Supplementary Table
S3). Mutations in ATP2A2 are known to cause neuropsy-
chiatric phenotypes (including epilepsy) in patients with
Darier disease (51). In addition, ATP2A2 is predicted to be
highly intolerant to mutations in a number of other con-
texts including the cardiovascular system (EvoTol percentile
score = 8.2 in adult heart tissue), suggesting an additional
pathogenic role for this gene in cardiac disease, as previously
reported (52,53). Since ATP2A2 acts as a Ca2+ pump, an es-
sential function in both the brain and heart, its pleiotropic
damaging effect in these diseases is not unexpected. Overall,
these analyses show that stratifying gene candidates by their
expression in a tissue relevant to the disease under consider-
ation boosts EvoTol’s ability to predict gene pathogenicity
and can be used to reveal pleiotropic gene effects on dif-

ferent diseases. In this proof of principle we integrated Evo-
Tol with CAGE data from the FANTOM5 consortium (21).
However, with the increasing accumulation of gene expres-
sion data in public repositories (e.g. Gene Expression Om-
nibus (GEO)) and the systematic annotation of disease pro-
cesses to specific tissues (54), more comprehensive analyses
of the link between tissue- or cell-specific gene expression
and a gene’s EvoTol score may yield better predictions of a
gene’s pathogenicity.

Evolutionary intolerance analysis of the human interactome
network

In order to show that EvoTol is also useful when inte-
grated with multiple genes at the network level we set out
to investigate whether EvoTol can provide insights into dis-
ease susceptibility for multiple members of the same gene
(or protein) network or regulatory program. To this aim
we extended the EvoTol analysis to the level of protein
interaction networks using the STRING database (http:
//string-db.org/) (27). The whole STRING protein-protein
interaction (PPI) network was first analyzed to remove low
quality edges and then clustered using the MCODE al-
gorithm (see Materials and Methods) to derive gene net-
works for EvoTol analysis. Briefly, the MCODE algorithm
finds densely connected regions within the large PPI net-
work and therein identifies discrete clusters with above av-
erage ‘within-cluster’ connections compared to ‘out of clus-
ter’ connections (28,29). Using this approach we found a
total of 146 distinct PPI clusters, where only 41 contained
more than 10 nodes. In order to test whether any of these
clusters show a higher than expected evolutionary intoler-
ance we used the non-parametric Mann–Whitney U test
(MWT) to compare the distributions of intolerance scores
for genes within and outside each subnetwork. This iden-
tified four subnetworks with significantly increased (or de-
creased) intolerance using a stringent Bonferroni threshold
to account for multiple testing (Supplementary Figure S3).
DAVID analysis showed significant functional specializa-
tion of these clusters within the larger PPI network (Fig-
ure 7A and Supplementary Table S6). The most tolerant
PPI subnetworks included olfactory receptor genes and G-
protein-coupled receptors (GPCRs) (MWT for tolerance,
P = 4.6 × 10−22 and P = 9.7 × 10−6, respectively, that
were below the threshold of significance after correction for
multiple testing, P = 6.4 × 10−5). Olfactory receptors rep-
resent an ancient sensory system allowing an organism to
detect chemicals in its environment (55), which have been
shown to exhibit increased rates of molecular evolution rel-
ative to other (non-chemosensory) GPCRs (56), therefore,
suggesting high tolerance to genetic variation for this clus-
ter of genes. The most intolerant PPI subnetwork (MWT
for intolerance, P = 7.5 × 10−8) was highly enriched for
ligand-dependent nuclear receptor activity genes (P = 1.6
× 10−59), Figure 7B and Supplementary Table S6. Specif-
ically, this subnetwork contains hormone-sensing proteins
that can act as transcription factors and have a broad func-
tional role from coordinating development to controlling
metabolism (57). The other highly intolerant subnetwork
(MWT for intolerance, P = 1.2 × 10−5) was highly enriched
for genes with disease-causing mutation (DAVID analy-

http://string-db.org/


e33 Nucleic Acids Research, 2015, Vol. 43, No. 5 PAGE 10 OF 13

Figure 6. Taking into the context in which genes are expressed increases the enrichment of disease-causing genes within those predicted to be evolutionary
intolerant by EvoTol. For each cell type we identified robustly expressed genes as those whose average expression is >100 TPM, therefore defining lists of
genes specifically expressed in a given tissue. The ranking of a gene by its evolutionary intolerance score is then calculated with respect to all other genes
expressed in the same tissue. Highly evolutionary intolerant genes (in the top 25th percentile score) are then compared with known disease-causing genes
as annotated by UniProt keywords: ‘epilepsy’ (A) and ‘CHD’ (B). For each tissue (x-axes) we report the fold enrichment of predicting known disease genes
by EvoTol when information on tissue-specific gene expression is used (y-axes). Fold enrichments are calculated as the ratio between the number of genes
predicted by EvoTol using tissue-specific evolutionary intolerance and the number of genes predicted using non-tissue-specific evolutionary intolerance.
Inserts, fold enrichments observed for the top 20 tissues from the central nervous system (top) and the circulatory system (bottom).

sis, SP PIR KEYWORDS ‘disease mutation’, P = 8.4 ×
10−29), Figure 7C. Specifically, out of the 334 subnetwork
genes, 97 (29%) genes had at least one variant responsible
for a disease according to UniProt db, an enrichment that
we confirmed by looking at the OMIM database where we
found 103 genes (31%) with at least one phenotype-causing
mutation representing a significant enrichment with respect
of a genome-wide expectation (hypergeometric test P = 5.7
× 10−13). Notably, this global enrichment for disease caus-
ing genes by OMIM was not captured by RVIS analysis:
RVIS classified only 8 genes as intolerant (not identified
by EvoTol) and conversely EvoTol uniquely classified 34
genes as intolerant (not detected by RVIS) (Supplementary
Figure S4). Functionally, this cluster was also enriched for
genes involved in metabolic processes, such as glycerolipid
metabolism (P = 4.7 × 10−7) and KEGG pathway ‘alanine,
asparate and glutamate metabolism’ (P = 3.6 × 10−8), and

including several genes encoding for transferase proteins (P
= 3.1 × 10−16). Since transferases play an essential enzy-
matic function in hundreds of biochemical pathways it fol-
lows that mutations in this class of proteins are likely to have
a large impact on key metabolic functions and related dis-
orders. Similar analyses with RVIS failed to identify signif-
icant enrichment for intolerance for any subnetwork but,
consistently with EvoTol, RVIS identified the olfactory re-
ceptor cluster as highly tolerant (data not shown). These re-
sults show that the integration of EvoTol with gene network
information can be used to prioritize and annotate both in-
tolerant and tolerant genes as well as gene networks.

Online tool to prioritize evolutionary intolerant genes

To make the EvoTol method easy to access by the gen-
eral scientific community we have designed a fast and in-
tuitive web-based tool for evolutionary intolerance analy-
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Figure 7. Clustering of the human interactome network revealed functionally coherent subnetworks with high or low evolutionary intolerance to mutations.
(A) The whole interactome network where four subnetworks have been highlighted, representing clusters enriched for intolerant (left) and tolerant genes
(right). Each node in the network represents a gene where the size of the node is scaled by its evolutionary intolerance score. (B) The subnetwork most
enriched for intolerance (MWT, P = 7.5 × 10−8) that has significant functional enrichment for nuclear receptors. (C) The subnetwork most enriched for
intolerance (MWT, P = 1.2 × 10−5) that has significant functional enrichment for metabolic processes (see Supplementary Table S6 for additional details
on functional annotation for subnetworks).

sis, www.evotol.co.uk. We developed an easy to use graph-
ical user interface where the user can input sets of genes
(or proteins) to retrieve a ranked list of genes (or proteins)
with the corresponding EvoTol score for intolerance. In ad-
dition, EvoTol can integrate cell-type-specific gene expres-
sion (from the FANTOM5 consortium (21)) classified us-
ing the UBERON cell-type ontology (22). Integrating infor-
mation on cell-type-specific expression allows EvoTol to re-
move non-expressed genes before the assignment of genes to
percentiles of evolutionary intolerance hence taking into ac-
count the specific tissue and cellular context where the gene
is expressed. In addition, this framework represents a tem-
plate that is amenable to inclusion of additional sources of
data, including gene expression profiles from GEO or pro-
tein expression profiles in specific tissue types.

CONCLUSIONS

In this study we utilized evolutionary information analysis
of the predicted functional and phenotypic consequences
of amino acid sequence variation to develop an integrated
computational framework, EvoTol, to prioritize disease
genes on the basis of their intolerance to mutation. Using
known gene-phenotype associations and different levels of
gene function annotation, we demonstrated that EvoTol un-
covers intolerant genes more accurately than RVIS (11), in
particular showing increased power and sensitivity to differ-
entiate genes with predicted high pathogenicity. However,
of additional interest is that the RVIS and EvoTol scores do
not correlate strongly with each other (data not shown) and
since these are able to predict disease genes reliably, the ap-
plication of both scores in parallel will likely be of compli-
mentary benefit. We provide a single, easy-to-use integrated
approach to prioritize pathogenic genes (www.evotol.co.
uk), which allows the systematic annotation of genomic se-

http://www.evotol.co.uk
http://www.evotol.co.uk
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quence and mutation data from large-scale sequencing stud-
ies. To illustrate this point, we have applied EvoTol to the
analysis of two separate WES data sets and showed how
EvoTol provides a powerful framework to prioritize candi-
date disease-causing genes in epilepsy and CHD. We also
showed EvoTol can be integrated with other data sources,
increasing its ability to prioritize disease-causing genes op-
erating in specific tissues or cellular contexts (when this in-
formation is available). For instance, stratifying genes by
their expression patterns across more than 700 cell types
and tissues results in up to 7-fold increase in EvoTol’s abil-
ity to classify disease-causing genes. Another gene network-
level application of EvoTol to the analysis of the human
interactome (STRING (27)) revealed two highly intolerant
networks enriched for nuclear receptors and genes involved
in the regulation of metabolic processes. These intolerant
networks were not classified as such by RVIS, however, the
contribution of these network genes to cause Mendelian or
complex disease has been confirmed by analysis of separate
functional annotation data (e.g. OMIM, UniProt). As we
move toward the personalized genomics era and massive
genome sequence data from patients are made available to
the scientific community, EvoTol can provide a simple and
intuitive tool to prioritize new gene discovery.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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