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Tenascin-C plays important roles in immunity. Toll-like receptor 4, integrin a9b1 and
chemokines have already been identified as key players in executing the immune
regulatory functions of tenascin-C. Tenascin-C is also found in reticular fibers in
lymphoid tissues, which are major sites involved in the regulation of adaptive immunity.
Did the “tool box” for reading and interpreting the immune-regulating instructions imposed
by tenascins and tenascin-C co-evolve? Though the extracellular matrix is ancient,
tenascins evolved relatively recently. Tenascin-like genes are first encountered in
cephalochordates and urochordates, which are widely accepted as the early branching
chordate lineages. Vertebrates lacking jaws like the lamprey have tenascins, but a
tenascin gene that clusters in the tenascin-C clade first appears in cartilaginous fish.
Adaptive immunity apparently evolved independently in jawless and jawed vertebrates,
with the former using variable lymphocyte receptors for antigen recognition, and the latter
using immunoglobulins. Thus, while tenascins predate the appearance of adaptive
immunity, the first tenascin-C appears to have evolved in the first organisms with
immunoglobulin-based adaptive immunity. While a C-X-C chemokine is present in the
lamprey, C-C chemokines also appear in the first organisms with immunoglobulin-based
adaptive immunity, as does the major histocompatibility complex, T-cell receptors, Toll-
like receptor 4 and integrin a9b1. Given the importance of tenascin-C in inflammatory
events, the co-evolution of tenascin-C and key elements of adaptive and innate immunity
is suggestive of a fundamental role for this extracellular matrix glycoprotein in the immune
response of jawed vertebrates.
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INTRODUCTION

Tenascins are extracellular matrix glycoproteins with one or more epidermal growth factor-like
repeats, multiple fibronectin type III (FNIII) domains, and a C-terminal fibrinogen-related domain
(FReD) (1). In bony fishes and tetrapods there are four tenascins. The first tenascin to be discovered
and characterized was tenascin-C (2), which is widely expressed in the embryo at sites of cell
org April 2021 | Volume 12 | Article 6639021
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motility and other forms of active morphogenesis but has a much
more restricted distribution in adult organisms (3). Tenascin-R
(4) and tenascin-W (5, 6) are primarily expressed in the
developing nervous system and in developing bone,
respectively, though tenascin-W is also found together with
tenascin-C in certain stem cell niches in the adult (7).
Tenascin-X is widely expressed in loose connective tissue
during development and in the adult (8).

In addition to expression in the embryo, tenascin-C is expressed
in the adult in a variety of pathologic situations, notably in the
stroma of most solid tumors (9) and at other sites of inflammation
(10). Midwood et al. (11) found that chronic inflammation
associated with rheumatoid arthritis (RA) requires the expression
of tenascin-C, and that joint damage from induced erosive arthritis
is limited in mice lacking tenascin-C. These authors went on to
show that tenascin-C’s FReD is a ligand for Toll-like receptor 4
(TLR4), and that tenascin-C acts through TLR4-mediated signaling
to initiate the production of pro-inflammatory cytokines (11).
Tenascin-C is also an integrin ligand (12), and through integrin
a9b1 tenascin-C can induce the expression of pro-inflammatory
chemokines such as CCL2, CCL4 and CXCL5 (13).
Correspondingly, the expression of CXCL2 is reduced in the
absence of tenascin-C in an animal model of liver ischemia and
reperfusion injury (14). Using a murine RA model of joint injury,
Ruhmann et al. (15) showed that tenascin-C plays an active role in
the polarization of Th17 lymphocytes, demonstrating a role for
tenascin-C in inflammatory damage from the adaptive immune
system. Tenascin-C can promote cancer progression in many ways
(9, 16, 17). Recently tenascin-C was shown to contribute to the
immune-suppressive microenvironment of the tumor stroma
through integrin a9b1 inducing CCL21 (in lymphatic endothelial
cells) and TLR4 regulating CCR7 (in CD11c+/dendritic cells) (18,
19). This suggests that cancer cells may be able to hijack important
immune-related functions of tenascin-C in tumors.

In this mini review we will explore the possibility that
tenascin-C appeared during evolution along with other critical
players in the immune system, pointing to fundamental roles for
this extracellular matrix glycoprotein in regulating inflammatory
events. We will also consider the possibility that tenascin-C acts
through some of the same players to perform similar roles during
embryonic development.
THE EVOLUTION OF TENASCINS

Phylogenetic analysis can be used to predict the first appearance
of a protein during evolution, and in turn this can be used to
infer an explanation for the evolution of the protein. Some well-
studied extracellular matrix genes encoding components like
fibrillar collagens, laminins and thrombospondins are found in
the genomes of sponges and sea anemones, indicating that they
evolved prior to specialized connective tissues and a complex
nervous system (20). Tenascins, in contrast, are not found in the
genomes of animals outside the phylum Chordata (21, 22).
Invertebrate members of the phylum like the cephalochordates
and urochordates have a single tenascin gene (i.e., prior to the
whole genome duplication events of ancestral vertebrates), but
Frontiers in Immunology | www.frontiersin.org 2
when included in the construction of phylogenetic trees these
tenascins do not belong to any of the four tetrapod tenascin
clades. Two tenascins are found in the genome of the Japanese
lamprey Lethenteron japonicum and one in the genome of the sea
lamprey Petromyzon marinus. But like the tenascins from
invertebrates, the tenascins from these jawless (agnathan) fish
do not sort to the tenascin-C, -R, -W or -X clades. Cartilaginous
fish like the elephant shark Chalorhincus milii, in contrast, have
tenascin-C and tenascin-R, while bony fish and tetrapods have all
four tenascin paralogs (23). Thus, tenascin-C and tenascin-R
evolved together with the first jawed vertebrates (gnathostomes),
and additional members of the family appeared later during
evolution. The evolution of tenascins is summarized in Figure 1.
THE EVOLUTION OF
ADAPTIVE IMMUNITY

Like most protostomes and echinoderms, cephalochordates have
an extremely complicated innate immune system. An early
analysis of the Branchiostoma genome revealed 48 TLR genes
and 92 nucleotide-binding oligomerization domain-like
receptors, among hundreds of other genes related to innate
immunity (24). A more recent examination revealed 30
additional TLRs and confirmed their expression (25). However,
cephalochordates lack an adaptive immune system. In contrast,
jawless vertebrates like the lamprey were first shown, over half a
century ago, to have both innate and adaptive immune systems
(26). The lamprey’s adaptive immune system is based not on
recombination-activating gene-mediated rearrangement of light
chains and heavy chains to make immunoglobulins, but instead
on rearrangement based on leucine-rich repeat cassettes to create
variable lymphocyte receptors (VLRs) (27). The lamprey’s
immune cells express one VLR per cell, and secreted VLR
dimers form pentamers (28), not unlike IgM. These stunning
examples of convergent evolution were recently reviewed by
Flajnik (29). In contrast, all jawed vertebrates, from cartilaginous
fish to mammals and birds, have an adaptive immune system
based on immunoglobulins, T-cell receptors, and the major
histocompatibility complex (MHC). The evolution of
immunoglobulin-based adaptive immunity in gnathostomes
has been thoroughly reviewed by others (30–34). Thus,
adaptive immunity is seen in all vertebrates, but it has evolved
independently into a VLR-based system in jawless vertebrates,
and into an immunoglobulin-based system in jawed vertebrates.
THE EVOLUTION OF CHEMOKINES

Chemokines are secreted factors that influence cell motility both
in the embryo and in the immune system. They are classified
according to the arrangement of cysteine residues found at the
amino terminus of the protein (C-C, C-X-C, CX3C and XC).
Their receptors are named using the same schema (CCR, CXCR,
CX3CR and XCR) (35 ) . Inve r t ebra t e s , inc lud ing
cephalochordates and urochordates, do not have chemokines
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(24), but a C-X-C chemokine (an IL-8 homologue) has been
found in the lamprey (36), and extensive analysis of the lamprey
genome reveals three CXCRs homologous to CXCRs from
human (37). The same study demonstrated the presence of 6
CCRs, 5 CXCRs and a XCR in the elephant shark, and even more
in bony fishes. Thus, while C-X-C chemokines evolved with the
first vertebrates, the large number and diversity of chemokines
found in mammalian genomes first appeared with the evolution
of jawed vertebrates.
Frontiers in Immunology | www.frontiersin.org 3
THE EVOLUTION OF THE
EXTRACELLULAR MATRIX OF
RETICULAR FIBERS

The presence of tenascin-C in the reticular fibers of lymphoid
organs (38) and in tumor matrix tracks (39) is remarkable and
may represent an ancient defense program that is reused, or
perhaps better characterized as mis-used, in cancer. However,
most of the other extracellular matrix molecules found in
FIGURE 1 | A schematic illustration of the co-evolution of tenascins (in red) and elements of the immune systems of representative chordates. Tenascins first
appeared in invertebrate members of the phylum Chordata like the cephalochordates. Branches in green indicate chordates lacking an adaptive immune system,
while branches in black indicate chordates with both innate and adaptive immunity. In the vertebrates, the jawless agnathans (e.g., lamprey) evolved adaptive
immunity based on variable lymphocyte receptors (VLRs); the first chemokines (C-X-C) and fibronectin (FN) appeared at this time as well. Tenascin-C first appeared
in the jawed vertebrates (gnathostomes), together with immunoglobulin (Ig)-based adaptive immunity, the major histocompatibility complex (MHC), additional
chemokines (C-C), interferons (IFN), T-cell receptors (TCR), Toll-like receptor 4 (TLR4) and the integrin a9b1. Podoplanin/gp38 and VCAM-1 appeared at this time as
well. Many key elements of reticular fibers and vertebrate immune systems predate the evolution of chordates and are included in the inset. See text for details. 1R
WGD, First round whole genome duplication; 2R WGD (with the question marks showing two proposed periods for this event), Second round whole genome
duplication; 3R WGD, third round whole genome duplication; CAMs, cell adhesion molecules; TN10 and TN62, lamprey-specific tenascins; NLRs, nucleotide-binding
oligomerization domain-like receptors.
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reticular fibers appear to be more ancient than tenascin-C. For
example, fibrillar collagens, collagen type IV, fibrillins, perlecan,
laminins and nidogen are found in the genomes of sponges and
placozoans (20). Other specific collagen types found in reticular
fibers appear significantly later, but still predate the jawed
vertebrates (e.g., collagen type XII is found in urochordates
[Gene ID 100182938]). Fibronectin evolved in jawless
vertebrates (23), i.e., after tenascins but before tenascin-C and
gnathostome-specific immunity. Fibroblast reticular cells (FRCs)
are an important stromal cell type that shapes the structure and
function of lymph nodes (40). FRC markers such as podoplanin/
gp38 and VCAM-1 appear to have co-evolved with tenascin-C in
jawed fishes (41) (XM_033029124.1), though other cell adhesion
molecules are quite ancient (42). Remarkably, stroma in oral
squamous cell carcinomas has lymphoid properties characterized
by abundant FRCs expressing extracellular matrix components
of lymph nodes including tenascin-C and utilizing CCR7/CCL21
signaling for retaining CD11c+ immune cells in the tumor
matrix tracks. Moreover, in the absence of tenascin-C these
lymphoid properties are largely diminished suggestive of
tenascin-C as an orchestrator of these tissues (19).
DISCUSSION

Tenascins appeared with the first chordates, but tenascin-C
evolved with the jawed vertebrates. This coincides with the
evolution of immunoglobulin-based adaptive immunity, the
MHC, most chemokines, T-cell receptors, interferon Types I
and II (43), and TLR-4 (Figure 1). Given the recently identified
roles of tenascin-C in regulating inflammatory events, tenascin-C
may have evolved, in part, to play a key function in adaptive and
innate immunity in jawed vertebrates. The high amino acid
sequence conservation in tenascin-C (44) and the absence of
gross deletions of tenascin-C underscores a potential important
role in the organism, perhaps related to fine-tuning adaptive
immunity. Interestingly, a9b1 integrin also evolved in
vertebrates even though homologues of other alpha integrin
subunits are found much earlier in sponges and sea anemones
(45, 46).

Not all of the hardware in the mammalian immunoglobulin-
based adaptive immunity tool kit co-evolved with tenascin-C in
cartilaginous fishes. As described above, some chemokines
predate the appearance of tenascin-C, and other key elements
appear to have evolved after. For example, the natural killer cell
activating receptor NKG2D is not found in fishes, amphibians,
reptiles or birds, but is limited instead to mammals, including
monotremes (e.g., the platypus) (XM_029081597.1). Others, like
transforming growth factor b, appeared earlier in the first
deuterostomes (47).

Mucosal fluids such as breast milk have anti-HIV activity, and
this activity is mimicked with exogenous tenascin-C and lost
when naturally occurring tenascin-C is removed from breast
milk (48). Tenascin-C is proposed to block the interaction
between the HIV-1 envelope protein (Env) and the coreceptor
CCR5/CXCR4 via binding to the HIV-1 Env V3 loop via the
Frontiers in Immunology | www.frontiersin.org 4
FNIII and FReD domains in tenascin-C, and appears to require
oligomerization and N-linked glycosylations (49). Thus,
tenascin-C can also play an important role in preventing
infection through pathways independent of the traditional
innate and adaptive immune systems. This may be another
reason why the tenascin-C sequence is so highly conserved.

While tenascin-C is expressed during inflammation, it is also
abundant in the normal embryo. For example, tenascin-C is
found in the extracellular matrix surrounding neural crest cells
(50), a population of migratory cells that also appears to have
evolved in the first vertebrates (51). Neural crest cells themselves
make tenascin-C (52), and they stop migrating if this tenascin-C
expression is disrupted with antisense morpholinos (53).
Tenascin-C may have similar roles during inflammation and
development. For example, neural crest cell migration into the
pharyngeal arches of the chicken embryo is disrupted by CXCR4
antagonists (54), and CXCR4-null mice have abnormally small
dorsal root ganglia, which are formed from the neural crest (55).
As the CXCR4 ligand, SDF-1/CXCL12, is also a chemoattractant
for T-lymphocytes (56), tenascin-C may be acting through
s imi l a r pa thways in the embryo and dur ing the
immune response.

One of the places where tenascin-C is expressed in the adult
organism, and in the embryo, is in stem cell niches (e.g., neural,
hair follicle, dental pulp, periosteal, hematopoietic and lymphoid
progenitor stem cell niches) (7). As in immunity, the many roles
of chemokines in a variety of stem cell niches in regulating cell
proliferation and migration are well known, suggesting the use of
similar tool kits in diverse systems (57–59). Future studies can be
directed toward exploring potential roles for tenascin-C and
chemokine expression and functions in the stem cell niches.

What does phylogenetic analysis tell us about tenascin-C
and its role as a TLR-4 ligand? While TLRs are ancient parts of
the innate immune system that predate the evolution of
tenascins by hundreds of millions of years (60–62), TLR-4 is
a relatively new member of the family that co-evolved with
tenascin-C in jawed vertebrates (63). However, interactions
between the FReD of tenascin-C and TLR-4 may not be limited
to this member of the tenascin family, as the binding pocket of
the FReD is found in the other tenascin family members as well
(64). One intriguing possibility is that the tenascin/TLR
interactions may have predated the roles currently being
found for tenascin-C in the immune systems of vertebrates
and may indicate a fundamental role for tenascins in
invertebrate chordates in regulating their innate immunity.
Future studies should address in more detail the common
determinators of how tenascin-C regulates innate and
adaptive immunity through TRL4, integrin a9b1, chemokines
and other yet-to-be-identified partners. This could also be
important in the defense against microbes, as described above
with HIV-1.

We have focused here on well-known elements of innate and
adaptive immunity in vertebrates and especially on molecules
with known connections to tenascin-C; future studies should
concentrate on other players in the context of the evolution of
extracellular matrix.
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