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Abstract: The isoflavone changes occurring in mature soybeans during food processing have been
well studied, but less information is available on the changes in immature soybeans during thermal
processing. This study aimed to determine the effect of thermal processing by dry- or wet-heating on
the changes in the isoflavone profiles of immature and mature soybeans. In the malonylglycoside
forms of isoflavone, their deglycosylation was more severe after wet-heating than after dry-heating
regardless of the soybean maturity. The malonyl forms of isoflavones in the immature seeds were
drastically degraded after a short wet-heating process. In the acetylglycoside forms of isoflavone,
dry-heating produced relatively low amounts of the acetyl types in the immature soybeans compared
with those in the mature soybeans. These results were explained by the content of acetyldaidzin
being relatively less changed after dry-heating immature soybeans but increasing four to five times
in the mature soybeans. More of the other types of acetylglycoside were produced by dry-heating
soybeans regardless of their maturity. Acetylgenistin in wet-heating was a key molecule because its
content was unchanged in the immature soybeans during processing but increased in the mature
soybeans. This determined the total acetylglycoside content after wet-heating. In contrast, most
of the acetyl forms of isoflavone were produced after 90 to 120 min of dry-heating regardless of
the seed maturity. It can be suggested that the pattern of isoflavone conversion was significantly
affected by the innate water content of the seeds, with a lower water content in the mature soybeans
leading to the greater production of acetyl isoflavones regardless of the processing method even if
only applied for a relatively short time. The results suggested that the isoflavone conversion in the
immature soybeans mainly follows the wet-heating process and can be promoted in the application
of stronger processing.

Keywords: isoflavone conversion; thermal process; immature seeds; mature seeds; internal water
content

1. Introduction

Soybeans (Glycine max L.) are one of the most widely consumed legumes in the world.
As well as their main role in providing protein, carbohydrates, and oil, soybeans are also a
rich source of phytochemicals, particularly isoflavones [1,2]. The content of isoflavones, a
type of flavonoid, is greater in soybeans than in other legumes [3]. The 12 major isoflavones
in soybeans can be classified into four main forms: aglycones (daidzein, glycitein, and
genistein); β-glycosides (daidzin, glycitin, and genistin); acetylglycosides (acetyldaidzin,
acetylglycitin, and acetylgenistin); and malonylglycosides (malonyldaidzin, malonylglyco-
sides, and malonylgenistin) [4,5]. Of these isoflavone groups, malonylglycosides are the
predominant form in raw soybeans, followed by β-glycosides and acetylglycosides, with
aglycones rarely observed [6]. Epidemiological studies have reported that the presence
of different types of isoflavone in soybeans contributes to various biological activities,
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such as reducing the risk of cancer, cardiovascular disease, and osteoporosis, and relieving
menopausal symptoms [7–12]. Among the four forms of isoflavones, the bioavailability
of malonyl-conjugated isoflavones was lower than that of corresponding non-conjugated
β-glycoside isoflavones [13], and that of isoflavone aglycons was highest because aglycones
were more easily and quickly absorbed by the intestine [14]. Furthermore, some studies
reported that non-conjugated glycoside isoflavones also possessed high-quality antioxi-
dant activity similar to aglycones. Thus, soybeans with a high content of non-conjugated
glycosides and aglycones had high-quality antioxidant activity [15].

Because of their grassy-beany flavor and bitter taste [16,17], raw mature soybeans
are mainly consumed after thermal processing, such as boiling or roasting, which greatly
improves the flavor of the soybeans and soy products [18–20]. It has also been reported
that thermal processing causes the conversion or degradation of isoflavones [21–24]. The
predominant isoflavone form (malonylglycosides) is usually converted into acetylglyco-
sides and β-glycosides by thermal processing [25–30], with the patterns of conversion
depending significantly on the severity of heating. In general, the increase in the contents
of isoflavone acetylglycosides and β-glycosides occurs through the decarboxylation and
deesterification of malonylglycosides, respectively [28,31]. The wet-heating method pro-
motes deesterification more than dry-heating as it causes the rapid conversion of isoflavone
malonylglycosides to β-glycosides rather than acetylglycosides [32,33]. Chien et al. [34]
reported no changes in the glycosides and aglycones during dry-heating below 150 ◦C, but
Huang and Chou [35] reported a decrease in the aglycones in soybeans steamed for 30 min
at temperatures above 60 ◦C.

The changes in isoflavone content during thermal processing in mature soybeans
have been widely reported, but those in immature soybeans have rarely been studied.
Immature soybeans, also known as edamame or maodou, are harvested when the green
seeds fill the pod and have a water content of 60 to 65% [36,37]. Immature soybeans are
also rich in isoflavones. The difference in the isoflavone content between immature and
mature soybeans is significantly affected by the cultivar. Simonne et al. [38] investigated
the iso-flavone contents of immature and mature beans of five soybean cultivars and found
that the immature beans contained twice the isoflavone content of the mature beans in
four of the cultivars, whereas Kim et al. [39] reported that the mature soybeans of several
cultivars contained more isoflavone than the immature soybeans. Immature soybeans
also exhibit a beany off-flavor and unique taste compared with mature soybeans [40].
Traditionally, in East Asia, immature soybeans have also been consumed as vegetables
and snacks after thermal processing, such as boiling [40]. Simonne et al. [38] studied the
influence of processing methods, such as boiling and freeze-drying, on the distribution of
isoflavones in immature soybeans, but the patterns of variation in isoflavone content in
immature soybeans during thermal processing are still unclear, particularly compared with
those in mature soybeans.

Therefore, the objectives of this study are: to compare the effects of thermal processing
(dry- and wet-heating) on variations in the isoflavone profiles of immature and mature
soybeans, and to determine the effect of the internal water content of soybeans on the
isoflavone content during thermal processing by varying the soaking time of mature seeds
before dry-heating. This study will provide basic information on utilizing isoflavones in
soybeans with different levels of maturity.

2. Results and Discussion
2.1. Physiological Characteristics of Immature and Mature Soybeans

The physical characteristics of the raw immature and mature soybeans are shown in
Table 1. The water contents of the immature and mature seeds were 66.87% and 13.04%,
respectively. Takahashi et al. [37] reported that, in immature soybeans, the water contents
of four different cultivars ranged from 61.5% to 76.8%, similar levels to those of the present
study. It has also been reported that the moisture content of mature soybeans was 10–
15%, a similar content to the present study [41,42]. The dry weight of 10 immature seeds
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(0.66 g) was significantly lower than that of 10 mature seeds (0.88 g) (Table 1). As expected, a
remarkable difference in the SSC of the immature (2.75 ◦Brix) and mature seeds (15.76 ◦Brix)
was also observed (Table 1). Sale and Campbell [43] reported that a dramatic reduction in
the water content of soybeans was accompanied by a steady accumulation of dry matter
and SSC during seed maturation from the R6 (immature) to the R8 (mature) stages. Figure 1
shows the morphologies of the immature and mature soybeans before and after thermal
processing. After dry-heating, the immature and mature soybeans had shrunk, particularly
the immature soybeans, whereas they had both swelled after wet-heating, particularly the
mature seeds. A significant variation in seed color (green to yellow) was also observed,
particularly for the immature soybeans, possibly because of the Maillard reaction [44].

Table 1. Physical characteristics of immature and mature soybean seeds.

Seed
Maturity

Water Content
(%)

Dry Weight
(g/10 ea)

SSC
(◦Brix)

Immature 66.87 ± 0.32 a 0.66 ± 0.02 b 2.75 ± 0.18 b

Mature 13.04 ± 0.22 b 0.88 ± 0.03 a 15.76 ± 0.31 a

SSC means soluble solids content. Different letters (a, b) in a column indicate significant differences at p < 0.05 by
Tukey’s studentized range (HSD) test. Results are given as mean ± SE (n = 10).
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Figure 1. Morphologies of immature and mature soybeans after dry- and wet-heating for different
times.

2.2. The Variation in the Total Isoflavone Content and Four Isoflavone Forms of Soybeans during
Thermal Processing

Many studies have reported the effect of thermal processing on the isoflavone profiles
of mature soybeans or soy products [25,28,30,32]. However, studies comparing the thermal
transformation or degradation of isoflavones in soybeans at different maturity levels are
still limited. The variations in the total isoflavone content (TI) and in the other four forms
of isoflavone (total isoflavone malonylglycosides (TIMG); total isoflavone acetylglyco-
sides (TIAG); total isoflavone β-glycosides (TIG); and total isoflavone aglycones (TIA)) in
immature and mature soybeans during thermal processing are shown in Figure 2.

Before thermal treatment (freeze-dried, FD), the TI of the mature soybeans (304.51 mg/
100 g DW) was 1.6 times higher than that of the immature soybeans. The isoflavone form
with the highest content in both the immature and mature soybeans was TIMG, followed
by TIG, with small amounts of TIAG and TIA (Figure 2). These results were consistent with
those of Kim et al. [39], who reported that the TI of mature soybeans was higher than that
of immature soybeans, with malonylglycoside isoflavones being the predominant form in
both immature and mature soybeans, followed by the β-glycoside, acetylglycoside, and
aglycone isoflavone forms.
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Figure 2. Changes in the total isoflavone (TI), total isoflavone malonylglycosides (TIMG), total
isoflavone acetylglycosides (TIAG), total isoflavone β-glycosides (TIG), and total isoflavone aglycones
(TIA) contents of immature and mature soybeans during dry-heating (A) and wet-heating (B). Data
are shown as mean ± SE (n = 3). Different letters indicate significant differences at p < 0.05 by Tukey’s
studentized range (HSD) test.

After thermal processing, the TI content tended to decrease regardless of the seed
maturity and processing method. The TI content decreased significantly after wet-heating:
in mature soybeans from 304.51 to 163.49 mg/100 g DW; in immature soybeans from 199.34
to 44.63 mg/100 g DW; compared with dry-heating: in mature soybeans to 200.32 mg/
100 g DW; and in immature soybeans to 147.15 mg/100 g DW). This may have been
caused by the difference in humidity between wet- and dry-heating affecting the transfer of
thermal energy [34,45], which accelerates the decrease in TI content. This decrease in the TI
content of thermally treated soybeans or soy products has been widely reported [13,29,38].
However, the present study has been the first to compare changes in TI content in soybeans
at different maturity levels and after different processing methods. The significant decrease
in the TIMG content was considered to be the main reason for the reduction in the TI content
(Figure 2). As mentioned previously, malonylglycoside isoflavones are the predominant
form in soybeans. Similar to the TI content, the content of TIMG in both the immature
and mature soybeans tended to decrease after thermal treatment, and soybeans with a
higher internal water content under wet-heating conditions promoted this decreasing trend
(Figure 2(A-2,B-2)). The relative thermal instability of malonyl-conjugated β-glycoside
isoflavones has been reported previously [34]. Wet-heating degraded malonyl isoflavones
more than dry-heating because of the higher moisture content in wet-heat process [32,45].

The decrease in the TIMG content, usually accompanied by an increase in the TIAG
content in soybeans processed by thermal treatments, such as roasting [46] and baking [47],
or in processed soy products, such as cooked soybeans [48] and soy milk [31], has been
widely investigated. The increase in the TIAG content was caused by the decarboxylation
of malonyl isoflavones during heat processing. Similarly, in mature soybeans, significant in-
creases in the TIAG content after thermal processing were also observed (Figure 2(A-3,B-3)),
with dry-heating increasing its content from 3.09 to 41.47 mg/100 g DW, thus being more
effective than wet-heating, which increased its content from 3.09 to 22.23 mg/100 g DW.
The difference in the effect of dry- and wet-heating on TIAG content can be explained
by the maximum degradation rate of malonyl to acetyl isoflavones under the dry-heat
condition, while a low conversion rate of malonyl to acetyl isoflavones was found under
the wet-heat condition [34]. It indicated that wet-heating tended to convert or degrade
malonylglycosides to other isoflavone derivatives instead of acetylglycosides, while the
decarboxylation of malonyl isoflavones also occurred simultaneously. However, imma-
ture soybeans showed the reverse behavior in response to dry- and wet-heating: like the
mature soybeans, dry-heating increased the TIAG content of immature beans from 5.20
to 19.36 mg/100 g DW, whereas wet-heating significantly decreased the TIAG content
from 5.20 to 2.04 mg/100 g DW. As there has been no comparative study on the variation
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in the TIAG content in immature soybeans under dry- and wet-heating conditions, the
present study is the first to report that the variation in the TIAG content of immature
soybeans after thermal processing is different from that of mature beans. This may have
been caused by the higher internal water content of immature soybeans significantly pro-
moting the transfer of energy under wet-heating compared with dry-heating conditions.
This led to the rapid conversion of acetylglycosides to β-glycosides, or the degradation of
acetylglycosides [34], a speculation also supported by Huang and Chou [35], who reported
that the acetyl isoflavones content of soaked black soybeans decreased after steaming at
100 ◦C for 30 min. Under dry-heat conditions, the TIAG content of the mature soybeans
increased significantly compared with the immature soybeans (Figure 2(A-3)). This could
be interpreted as the variation in the TIAG content of immature soybeans with their higher
internal water content under dry-heating being similar to that of mature soybeans under
wet-heating.

Thermal processing also increased the TIG content by deesterifying malonylglyco-
side and acetylglycoside isoflavones [46–50]. The patterns of variation in the TIG con-
tent were significantly affected by the processing methods and level of seed maturity
(Figure 2(A-4,B-4)). In mature soybeans, the effect of wet-heating, increasing the TIG
content from 25.16 to 91.64 mg/100 g DW, was better than that of dry-heating, where it
increased from 25.16 to 59.00 mg/100 g DW. This can be partly explained by the deesterifi-
cation of acetylglycoside isoflavones to form β-glycoside isoflavones under wet-heating
(Figure 2(A-3,B-3)). Huang and Chou [35] have also reported that the TIG content of mature
soybeans increased as the temperature of the thermal treatment increased. In contrast,
the opposite patterns were observed for immature soybeans. The TIG content after dry-
heating, ranging from 23.40 to 57.30 mg/100 g DW, was higher than that after wet-heating,
which ranged from 23.40 to 45.26 mg/100 g DW. As mentioned earlier, the high internal
moisture content of the soybeans under wet-heating may have led to excessive energy
transfer, leading to the further conversion or degradation of the β-glycoside isoflavones.
Thermal processes, such as oven drying [46], baking [47], frying [48], steaming [35], and
autoclaving [50], have been reported as important methods for increasing the TIG content
of mature soybeans. However, the effect of dry- and wet-heating on the variation in the
TIG content of immature soybeans has not been studied. The results suggest that, unlike
mature soybeans, dry-heating is more suitable for processing immature soybeans and leads
to a higher TIG content than wet-heating.

As mentioned earlier, TIA accounts for only a small proportion of the TI in soybeans.
Figure 2(A-5,B-5) shows the variation in the TIA content at different maturity levels of
soybeans after thermal processing. The TIA content remained stable in the mature soybeans
during dry-heating but decreased significantly during wet-heating. Similar results on
mature soybeans have also been observed by Kao et al. [51] and Aguiar et al. [50] for
dry- and wet-heating, respectively. The isoflavone deglycosylation from glycoside form to
aglycone was observed only under high temperature, possibly because it was difficult to
break down the glycoside groups to form aglycones at relatively low temperatures [52]. The
present study has shown that the variation in the TIA content of the immature soybeans was
similar to that of mature soybeans. In this study, because we used only one cultivar, further
studies using numerous cultivars are required to understand the isoflavone deglycosylation
patterns of soybeans regarding whether the isoflavone changes among immature soybean
cultivars by thermal processing are presenting the same patterns or not.

2.3. Correlation Analysis between Isoflavone Form and Corresponding Individual Isoflavones in
Immature and Mature Soybeans

To clarify the patterns of how isoflavones changed for different maturity levels of
soybeans during thermal processing, the correlations between the contents of the isoflavone
form and corresponding individual isoflavones were analyzed. Tables 2 and 3 show the
variations in the content of 12 individual isoflavones (IMG (MDZI, MGLI, and MGNI),
IAG (ADZI, AGLI, and AGNI), IG (DZI, GLI, and GNI), and IA (DZE, GLE, and GNE))
in immature and mature soybeans, respectively, after dry- and wet-heating. The profiles
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of 12 individual isoflavones detected by the reversed-phase high-performance liquid
chromatography (HPLC) in immature and mature soybeans before treatment and after
120 min of thermal treatment are shown in Figure 3.
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Figure 3. Twelve isoflavones of immature and mature soybean seeds after 120 min of dry- and
wet-heat treatment determined by HPLC. 1, daidzin (DZI); 2, glycitin (GLI); 3, genistin (GNI); 4,
malonyldaidzin (MDZI); 5, malonylglycitin (MGLI); 6, acetyldaidzin (ADZI); 7, acetylglycitin (AGLI);
8, malonylgenistin (MGNI); 9, daidzein (DZE); 10, glycitein (GNE); 11, acetylgenistin (AGNI); 12,
genistein (GNE).

Of the three types of malonylglycoside isoflavones, MGNI (78.18 mg/100 g DW in
immature soybeans; 141.25 mg/100 g DW in mature soybeans) and MDZI (62.32 mg/
100 g DW in immature soybeans; 119.20 mg/100 g DW in mature soybeans) were the main
isoflavones in the FD samples (Tables 2 and 3). The deglycosylation of MGNI, MDZI, and
MGLI was more severe after wet-heating than after dry-heating regardless of the level of the
seed maturity. Significantly positive correlations (p < 0.001) between the contents of MGNI,
MDZI, and MGLI individually and of TIMG were observed in all the samples (Table 4).
The contents of the three types of malonyl isoflavone in the immature soybeans did not
change after 30 min of dry-heating but drastically decreased after 30 min of wet-heating.
Similar results have also been observed by Chien et al. [34], where moist-heating at 100 ◦C
reduced the MGNI (standard compound) content more than dry-heating at 100 ◦C.
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Table 2. Isoflavone content (mg/100 g DW) in immature soybeans during thermal processing.

FD
(0 Min)

Dry-Heating Wet-Heating

30 Min 60 Min 90 Min 120 Min 30 Min 60 Min 90 Min 120 Min

Malonyl
glycosides

MDZI 62.32 ± 1.54 a 63.38 ± 9.37 a 34.81 ± 3.21 b 29.62 ± 3.55 b 23.01 ± 2.31 b,c 23.16 ± 2.64 b,c 9.39 ± 1.27 c,d 4.01 ± 0.08 d 2.03 ± 0.34 d

MGLI 29.26 ± 2.47 a 26.09 ± 7.54 a 18.51 ± 3.35 a,b 10.51 ± 1.80 b,c 7.70 ± 0.63 b,c 5.73 ± 0.42 c 1.57 ± 0.44 c 0.62 ± 0.21 c N.D.
MGNI 78.18 ± 0.21 a 72.87 ± 9.58 a 57.24 ± 4.00 a,b 40.79 ± 6.04 b,c 37.21 ± 4.76 b,c 38.68 ± 2.06 b,c 20.07 ± 1.80 c,d 7.13 ± 0.83 d 4.23 ± 0.48 d

Acetyl
glycosides

ADZI 5.20 ± 0.29 a 2.80 ± 0.62 b,c 2.64 ± 0.40 b,c 4.39 ± 0.70 a,b 5.66 ± 0.70 a 1.06 ± 0.20 c 0.68 ± 0.05 c N.D. N.D.
AGLI N.D. Tr. 0.36 ± 0.19 a 2.56 ± 0.77 a 3.65 ± 1.23 a N.D. N.D. N.D. N.D.
AGNI Tr. 0.12 ± 0.12 c,d 2.20 ± 0.26 c,d 4.02 ± 1.83 b 9.94 ± 1.27 a 2.25 ± 0.25 c,d 2.86 ± 0.13 c 2.25 ± 0.17 c,d 2.04 ± 0.16 c,d

β-glycosides
DZI 3.71 ± 0.53 c 5.16 ± 1.17 b,c 6.23 ± 0.59 b,c 10.11 ± 2.81 a,b,c 15.45 ± 1.80 a 8.91 ± 1.47 a,b,c 11.72 ± 1.51 a,b 10.55 ± 1.02 a,b,c 9.11 ± 0.70 a,b,c

GLI 11.62 ± 1.16 a 11.30 ± 3.98 a 10.82 ± 1.37 a 10.84 ± 2.27 a 11.70 ± 1.50 a 8.62 ± 1.08 a 7.42 ± 1.12 a 6.24 ± 0.80 a 7.31 ± 0.48 a

GNI 8.08 ± 0.96 e 10.26 ± 1.90 d,e 14.30 ± 0.57 c,d,e 22.52 ± 2.20 a,b,c 30.16 ± 2.90 a 19.16 ± 1.80 b,c,d 26.12 ± 2.22 a,b 25.47 ± 2.30 a,b 19.9 ± 1.41 b,c

Aglycones
DZE 0.77 ± 0.12 a 0.33 ± 0.03 a N.D. 0.61 ± 0.24 a 0.75 ± 0.32 a N.D. N.D. N.D. N.D.
GLE Tr. 0.28 ± 0.14 a 0.74 ± 0.42 a 1.13 ± 0.25 a 1.03 ± 0.42 a N.D. N.D. N.D. N.D.
GNE 0.22 ± 0.11 a,b 0.70 ± 0.12 a,b 0.74 ± 0.17 a,b 0.87 ± 0.21 a 0.89 ± 0.14 a 0.07 ± 0.07 b 0.22 ± 0.14 a,b N.D. N.D.

Data are shown as mean with standard error (n = 3). Different letters (a–e) in a row indicate significant differences at p < 0.05 by Tukey’s studentized range (HSD) test. N.D. indicates not detected; Tr. Indicates
trace amount.

Table 3. Isoflavone content (mg/100 g DW) in mature soybeans during thermal processing.

FD
(0 Min)

Dry-Heating Wet-Heating

30 Min 60 Min 90 Min 120 Min 30 Min 60 Min 90 Min 120 Min

Malonyl
glycosides

MDZI 119.20 ± 11.24 a 68.96 ± 4.43 b 57.43 ± 3.54 b,c 47.09 ± 2.40 b,c,d 31.92 ± 1.20 d,e 48.00 ± 2.54 b,c,d 35.03 ± 1.36 c,d,e 20.91 ± 0.64 d,e 18.34 ± 1.20 e

MGLI 24.18 ± 5.96 a 21.53 ± 1.52 a 22.27 ± 2.22 a,b 15.58 ± 2.61 b,c 14.15 ± 1.38 b,c 16.22 ± 2.80 b,c 12.87 ± 2.84 c 4.65 ± 0.28 c 4.09 ± 0.22 c

MGNI 141.25 ± 7.92 a 89.11 ± 3.38 b 80.17 ± 3.10 b 68.91 ± 2.22 b,c,d 52.48 ± 3.44 d,e 63.58 ± 0.59 b,c 52.53 ± 0.48 c,d 32.76 ± 1.20 e 26.17 ± 0.76 e

Acetyl
glycosides

ADZI 3.09 ± 0.35 d 5.74 ± 0.56 d 10.46 ± 0.61 b,c 15.83 ± 1.97 a 12.23 ± 0.98 a,b 5.96 ± 0.29 d 5.65 ± 0.30 d 6.32 ± 0.11 d 6.81 ± 0.35 c,d

AGLI N.D. 2.13 ± 0.83 c 6.12 ± 1.48 b,c 12.67 ± 1.04 a 8.67 ± 2.17 a,b 3.77 ± 0.66 b,c 3.22 ± 0.65 b,c 2.85 ± 0.25 c 3.57 ± 0.66 b,c

AGNI Tr. 5.62 ± 0.34 e 14.51 ± 0.78 b 21.10 ± 0.53 a 20.58 ± 1.61 a 6.57 ± 0.06 d,e 9.09 ± 0.19 c,d 9.42 ± 0.22 c,d 11.84 ± 0.35 b,c

β-glycosides
DZI 7.56 ± 0.80 e 11.22 ± 0.66 d,e 19.53 ± 1.11 b 19.92 ± 0.61 b 19.07 ± 0.88 b 13.62 ± 1.00 c,d 17.97 ± 0.58 b,c 20.03 ± 0.58 b 27.45 ± 0.38 a

GLI 7.53 ± 1.96 a,b 7.71 ± 0.86 b 15.05 ± 0.43 a,b 14.47 ± 1.09 a,b 10.37 ± 0.98 a,b 14.82 ± 1.82 a,b 17.30 ± 2.20 a 13.97 ± 0.97 a,b 16.75 ± 0.57 a

GNI 8.64 ± 1.99 e 16.83 ± 0.58 d 29.26 ± 1.04 c 33.99 ± 0.87 b,c 31.11 ± 2.08 b,c 21.07 ± 0.18 d 30.52 ± 0.71 b,c 36.74 ± 0.91 b 47.44 ± 1.62 a

Aglycones
DZE 1.21 ± 0.35 a 0.50 ± 0.10 a,b 0.78 ± 0.11 a,b 0.63 ± 0.05 a,b 0.59 ± 0.09 a,b 0.38 ± 0.03 b 0.29 ± 0.15 b 0.31 ± 0.16 b 0.57 ± 0.13 a,b

GLE Tr. N.D. N.D. N.D. N.D. 0.38 ± 0.02 a N.D. N.D. N.D.
GNE 0.94 ± 0.14 a 0.61 ± 0.08 a,b,c 0.70 ± 0.07 a,b,c 0.90 ± 0.12 a 0.72 ± 0.04 a,b 0.27 ± 0.06 c 0.30 ± 0.02 b,c 0.40 ± 0.10 b,c 0.45 ± 0.10 b,c

Data are shown as mean with standard error (n = 3). Different letters (a–e) next to data in a row indicate significant differences at p < 0.05 by Tukey’s studentized range (HSD) test. N.D. indicates not detected; Tr.
Indicates trace amount.
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Table 4. Correlation coefficients between isoflavone forms and individual isoflavones in thermally
treated soybeans.

Seed
Maturation

Heating
Methods MDZI MGLI MGNI

Immature
D z TIMG 0.983 *** 0.931 *** 0.970 ***
W y TIMG 0.999 *** 0.976 *** 0.944 ***

Mature
D TIMG 0.996 *** 0.712 *** 0.987 ***
W TIMG 0.996 *** 0.889 *** 0.997 ***

ADZI AGLI AGNI

Immature
D TIAG 0.704 ** 0.963 *** 0.967 ***
W TIAG 0.902 *** - −0.537 *

Mature
D TIAG 0.961 *** 0.955 *** 0.980 ***
W TIAG 0.901 ** 0.844 *** 0.983 ***

DZI GLI GNI

Immature
D TIG 0.939 *** 0.410 ns 0.946 ***
W TIG 0.972 *** −0.314 ns 0.953 ***

Mature
D TIG 0.943 *** 0.769 *** 0.956 ***
W TIG 0.983 *** 0.687 ** 0.976 ***

DZE GLE GNE

Immature
D TIA −0.053 ns 0.892 *** 0.420 ns

W TIA 1.000 *** - -

Mature
D TIA 0.601 * - 0.202 ns

W TIA 0.727 ** - 0.658 **
z and y indicate dry-heating and wet-heating, respectively. *, **, and *** indicate significances at p < 0.05, p < 0.01,
and p < 0.001 in Tukey’s HSD test. ns indicates no significance at the test. Data of 12 individual isoflavones, TIMG,
TIAG, TIG, and TIA, for correlation analysis were calculated by the time-dependent dry-heating and wet-heating
values, ranging from 0 to 120 min treatments.

Of the acetylglycoside isoflavones, ADZI (5.20 mg/100 g DW in immature soybeans;
3.09 mg/100 g DW in mature soybeans) was the main acetyl isoflavone in the FD samples
(Tables 2 and 3). Only a trace amount of AGNI was detected in both the immature and
mature soybeans, with no AGLI being detected. The three types of acetyl isoflavone in
the soybeans of different maturity levels responded differently to thermal processing. The
ADZI content changed relatively little in the dry-heated immature soybeans but increased
by four to five times in the dry-heated mature soybeans. The ADZI content also decreased to
undetectable levels in the wet-heated immature soybeans, but not in the wet-heated mature
soybeans. More AGLI and AGNI were produced in the dry-heated soybeans regardless
of the maturity level. The AGLI content of the immature soybeans did not change but
increased slightly after wet-heating. The AGNI in wet-heating was a key molecule because
its content was unchanged in the immature soybeans after processing but increased in
the mature soybeans, thus determining the amount of total acetylglycosides after wet-
heating. The increase in the AGNI content was greater than that in the contents of ADZI
and AGLI, possibly because of the varying thermal stability of the three acetylglycoside
isoflavones and the corresponding malonylglycoside isoflavones. In contrast, the content
of most of the types of acetyl increased up to 90 to 120 min of dry-heating regardless of the
seed maturity. Significant positive correlations were found between the contents of ADZI,
AGLI, AGNI, and that of TIAG for all the treatment groups except for the wet-heated
immature soybeans (Table 4). A high negative correlation between the contents of AGNI
and TIAG was observed for wet-heated immature soybeans, unlike the significant positive
correlations for the other samples. This indicated that the amount of total acetylglycosides
depended mainly on the content of AGNI during thermal processing.

The β-glycosides, the non-conjugated form of isoflavones, are the second major group
after malonylglycosides in raw soybeans [52,53]. Of the β-glycosides, the content of
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GLI (11.62 mg/100 g DW) was higher than that of DZI (3.71 mg/100 g DW) and GNI
(8.08 mg/100 g DW) in the FD immature soybeans (Table 2), similar to results from Simonne
et al. [38]. The content of GLI (7.53 mg/100 g DW) was relatively lower than that of DZI
(7.56 mg/100 g DW) and GNI (8.64 mg/100 g DW) in the FD mature soybeans (Table 3),
results that are consistent with those of Kim et al. [54]. During thermal processing, different
patterns of variation in the contents of GLI, GNI, and DZI arose. In the mature soybeans,
the increase in the GLI content was small after heating compared with a significant increase
in the DZI and GNI contents, similar to results reported by Toda et al. [48]. In the immature
soybeans, no significant differences (p > 0.05) in GLI content were observed between FD
and thermally treated soybeans. The contents of DZI and GNI both increased significantly
after thermal treatment regardless of the seed maturity and processing method. Wet-
heating was also more efficient in increasing β-glycoside isoflavones than dry-heating. The
contents of GNI and DZI of all the treated samples were significantly positively correlated
(p < 0.001) with the TIG content (Table 4). A good correlation (p < 0.01) between the GLI
and TIG contents during thermal processing was found in the mature soybeans but not
in the immature soybeans (p > 0.05). This indicated that the patterns of variation in the
TIG content of soybeans were dominated more by the contents of DZI and GNI than the
content of GLI during thermal processing even though the GLI content was relatively high
in both FD samples.

In the FD soybeans, only small amounts of DZE (immature soybeans, 0.77 mg/100 g
DW; mature soybeans, 1.21 mg/100 g DW) and GNE (immature soybeans, 0.22 mg/100 g
DW; mature seeds, 0.94 mg/100 g DW) were detected, with a trace amount of GLE. The
contents of the three aglycones in the immature soybeans were relatively stable under
dry-heating but decreased to undetectable levels after 90 min of wet-heating. Both types of
thermal processing decreased the contents of the three aglycones in the mature soybeans,
particularly wet-heating. The variations in the contents of the three aglycones with the
temperatures of thermal processing have been contradictory: Xu et al. [52] reported that
aglycones in soybean flour extracts were generated with heat treatments above 135 ◦C, but
Huang and Chou [35] reported that the contents of GNE, DZE, and GLE in black soybeans
decreased at steaming temperatures of 60 ◦C or above for 30 min. A good correlation
between the contents of DZE and TIA was found in all the treatments except for the dry-
heated immature soybeans (Table 4). However, only the GLE content was well correlated
with the TIA content in the immature soybeans under dry-heating with the content of GNE
being well correlated with the TIA content in the mature soybeans under wet-heating.

The three isoflavone types (daidzein, glycitein, and genistein) showed different conver-
sion patterns under heat processing. The MDZI and MGNI decreased more rapidly in the
initial 30 min than the MGLI. Moreover, the production of AGNI and GNI by heat process-
ing were higher than that of other isoflavone types. Glycitein conjugate types had relatively
low thermal-change compared to daidzein and genistein types regardless of the seed matu-
rity. Similar results have been reported by Stintzing et al. [55], where glycitein carrying a
meth-oxy group at 6 position of A-ring has higher stability upon dry-heating. Moreover,
Mathias et al. [56] reported that the heat-induced loss of daidzein glycosides was higher
than that of genistein glycosides. These results indicate that different deglycosylation rates
among isoflavone types occur during different thermal process methods.

2.4. Verification of the Relationship between Soybean Water Content and Changes in Patterns of
Isoflavone Contents

It is important to note the different patterns of variation in the contents of acetylgly-
coside and β-glycoside isoflavones during the dry- and wet-heating of soybeans at two
maturity levels. The internal moisture content of the soybeans affected the composition of
isoflavones during thermal processing. To confirm this assumption, fully mature soybeans
were soaked in distilled water for 0, 1, 2, 4, and 8 h to obtain different internal water
contents, then dry-heated, followed by further observations of the patterns of variation in
isoflavone content after heating for 1 h. Figure 4A shows the variations in the moisture con-
tent of the soybeans after soaking. The water content of the soybeans gradually increased
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from 6.34% to 57.04% as the soaking time increased. The contents of TI and of the four
forms of isoflavone, TMIG, TAIG, TIG, and TIA, in the fully mature soybeans before and
after the 1-h dry-heat treatment are shown in Figure 4B, C, D, E, and F, respectively.
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Before heating, no significant differences in the TI content were observed between the
unsoaked and soaked soybeans. Wang and Murphy [24] have also reported that soaking at
room temperature for 10 to 12 h significantly increased the moisture content from 11.03%
to 63.23% and retained the TI of the soaked soybeans. Heating significantly decreased
the content of TI and TIMG and increased the content of TIAG and TIG of the soybeans
compared with the FD samples (Figure 4B–E). The highest amount of TIAG generated was
found in the unsoaked soybeans (0 h), and the lowest amount in soybeans soaked for a
long time. There were no significant variations in the TIG content between the unsoaked
and soaked soybeans after dry-heating for 1 h. These results were consistent with this
report that the immature and mature beans had a similar TIG content after a long period of
dry-heating, with even immature soybeans showing a lower TIAG content than mature
soybeans (Figure 2). In contrast, the TIA content of the unsoaked soybeans was reduced by
dry-heating, but, the longer the soaking time, the more TIA was generated after heating
(Figure 4F). These results were different from the results we reported before, which may
have been caused by differences between natural soybeans with a higher internal water
content and artificially made soybeans with a higher water content. This also confirmed
the assumption that the internal moisture content of soybeans was an important factor
affecting the different patterns of variation in isoflavone content in soybeans of different
maturity.

It is notable that, the longer the soaking time, the less TIAG was produced after
heating. Lee and Lee [46] reported that the content of acetyl isoflavones in soybeans soaked
for 12 h did not change during 120 min of oven drying but that, in unsoaked soybeans, it
increased significantly after roasting at 200 ◦C. This indicated that soybeans with a higher
internal water content produced a lower amount of acetyl isoflavones after heating, which
confirmed the previous assumption that the water content of soybeans significantly affected
the pattern of isoflavone conversion. Therefore, the differences between the content of
acetyl isoflavones in mature and immature soybeans after heating were caused by the
difference in the internal water content. The increase in the content of aglycone isoflavones
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was highly related to soaking and heating, results similar to those of Lima et al. [57], who
found no significant difference in the content of aglycones in soybeans soaked at 25 ◦C but
a significant increase after soaking for 1 h at 70 ◦C.

3. Materials and Methods
3.1. Chemical Reagents

The HPLC-grade acetonitrile and water (Daejung Chemical & Metals Co., Siheung, Ko-
rea) were used as mobile phases for isoflavones analysis. Standards of isoflavone aglycones
(daidzein, glycitein, and genistein) and β-glycosides (daidzin, glycitin, and genistin) were
purchased from LC Laboratories (Woburn, MA, USA). Isoflavone acetylglycosides (acetyl-
daidzin, acetylglycitin, and acetylgenistin) were obtained from Nacalai tesque (Kyoto,
Japan), and malonylglycosides (malonyldaidzin, malonylglycitin, and malonylgenistin)
were obtained from GenDEPOT (Katy, TX, USA).

3.2. Soybean Cultivation

Soybean seeds (Glycine max L. cv. Pungwon) used in this study were provided by the
Pulmuone Food Co. (Chungbuk, Korea). The cultivar ‘Pungwon’ was registered to the
Korea Seed & Variety Service (Gimcheon, Korea) in 2007 and had earlier matu-ration period
and high content of isoflavones (more information described in Oh et al. [58]). The soybeans
were germinated for 24 h at room temperature in a dark culture room after soaking with
distilled water for 4 h. The germinated soybeans were planted in a horticultural soil
(Baroker, Seoulbio Co., Eumseong, Korea) in pots (Plastic pot, 24 × 27 × 18 cm) in early
June 2020 and then grown in the greenhouse of Kyung Hee University (Yongin, Korea)
under natural sunlight. The average of temperature during the soybean growing season
was 18–22 ◦C in June; 22–30 ◦C in July and August; 19–26 ◦C in September; 12–23 ◦C in
October (based on Korean meteorological administration data). The average solar radiation
period was 14 h/day in June to August and 12.5 h/day in September and October (based on
Korean meteorological administration data). The average of relative humidity was 45–55%
from June to October. The potted soybeans were maintained with several irrigations per
week in the early stage of soybean plants and with daily irrigation in the period of seed
formation. The soybean seeds were harvested at the immature stage on September 10 when
the pods of soybeans contained green seeds that filled the pod cavity and harvested at the
mature stage on October 10 when 95% of the pods exhibited the light brown color with
dehydrating, as shown in Figure 1 in a previous report [36].

3.3. Physical Characteristics of Immature and Mature Seeds

The harvested soybean samples were weighed before and after freeze-drying. The dry
weight of the immature and mature soybeans was expressed as the weight (g) of 10 raw
seeds based on the mean value of ten replicates. The water content (%) was calculated as
follows: 100 × [fresh weight (g) − dry weight (g)]/[fresh weight (g)]. Fresh soybeans (0.3 g)
were ground with a pestle and a mortar and added 0.6 mL of distilled water to measure
the soluble solid content (SSC). After stirring the mixture, the sample was centrifuged at
14,240× g for 15 min. The SSC of the supernatant was evaluated using a hand refractometer
(Atago Co., Tokyo, Japan) and expressed as degree of Brix (◦Brix).

3.4. Thermal Treatment

The immature and mature soybean seeds were processed using three thermal pro-
cessing methods: (1) freeze-drying (FD) at −80 ◦C for 72 h in a vacuum freeze-dryer
(IlshinBioBase. Co. Ltd., Dongducheon, Korea) and stored in a −20 ◦C refrigerator; (2) dry-
heating at 100 ± 3 ◦C for 30, 60, 90, and 120 min with a convective dryer (Koencon Co., Ltd.,
Hanam, Korea); and (3) wet-heating (steaming) at 100 ± 3 ◦C for 30, 60, 90, and 120 min
with a steam cooker. All experiments were carried out in triplicate. The thermally treated
samples were freeze-dried and stored in a −20 ◦C refrigerator before isoflavone analysis.
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3.5. Extraction of Isoflavones

All samples were finely ground using a commercial grinder (JL-1000, Hibell, Hwaseong,
Korea). The isoflavones extraction was performed by previously described method [59].
Briefly, 20 mg of ground sample mixed with 58% aqueous acetonitrile (1 mL, v/v) in a shak-
ing incubator for 24 h at 25 ◦C and 120 rpm after sonication for 30 min. The supernatant
was obtained after centrifuging at 14,240× g for 5 min. Then, two-fold volume of distilled
water was added to dilute the supernatant. The diluted supernatant was filtered through a
0.45 µm hydrophilic PTFE membrane syringe filter (Futecs Co., Ltd., Daejeon, Korea) and
used for isoflavones analysis.

3.6. Determination of Isoflavones

Extracts were analyzed using HPLC (Waters 2695 Alliance HPLC; Waters Inc., Milford,
MA, USA) with the octadecylsilane column (Prontosil 120–5-C18-SH-EPS 5.0 µm (200 ×
4.6 mm; Bischoff, Leonberg, Germany). According to the previously published method [59],
the solvent A (0.1% formic acid in water) and solvent B (0.1% formic acid in acetonitrile)
were used as mobile phase with the flow rate of 0.8 mL/min. The mobile phase B gradient
was as follows: 16–25%, 0 to 35 min; 25–50%, 35 to 40 min; 50–65%, 40 to 47 min; 65–16%,
47 to 50 min. The injection volume was 5 µL. The peaks of 12 standard isoflavones were
detected at 254 nm (Water 996 photodiode array detector (Waters Inc.)).

3.7. Statistical Analysis

All experiments were carried out in triplicate with the data expressed as the mean
with standard error (n = 3). Analysis of variance was performed using SAS software
(Enterprise guide 7.1 version, SAS Institute Inc., Cary, NC, USA). Significant differences
between experimental treatments were evaluated using Tukey’s student range test, with a
significance level defined at p < 0.05.

4. Conclusions

This is the first study to compare the patterns of isoflavone changes between soybeans
at two maturity levels after thermal processing. Overall, the patterns of the isoflavone
changes in the soybeans depended significantly on the soybean maturity and the processing
method, which affected the decarboxylation of malonylglycoside or the deesterification
of acetylglycoside isoflavones. The decreases in the TI in all the samples were mainly
caused by the decrease in the TIMG during thermal processing. The deglycosylation
of the three types of malonyl isoflavones was more severe in wet- than in dry-heating
regardless of the seed maturity. In the acetylglycoside isoflavones, dry-heating produced
a relatively low amount of acetyl isoflavones in the immature seeds compared with that
in the mature seeds. The ADZI was relatively less changed in the dry-heated immature
seeds but increased significantly in the processed mature seeds. AGLI and AGNI were
produced in greater amounts in the dry-heated samples regardless of the seed maturity.
The AGNI in wet-heating was the key molecule because its content remained unchanged
in the immature soybeans during processing but increased in the mature soybeans, which
determined the total amount of acetylglycoside in wet-heating. Wet-heating increased
the amount of β-glycoside isoflavones in the mature soybeans more than in dry-heating,
while, interestingly, the immature soybeans exhibited the opposite behavior. The aglycone
isoflavones were stable under dry-heating, but their contents decreased significantly after
wet-heating. The internal moisture content of the soybeans was an important factor
affecting the deglycosylation of isoflavones during thermal processing, also confirmed by
the verification experiment (Section 2.4). This is the first study to highlight the importance
of the internal water content of soybeans on the distribution of isoflavones during thermal
processing. The results of the present study will provide basic information on the different
uses of immature and mature soybeans after thermal processing.
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