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Abstract
Rationale During value-based decision-making, organisms make choices on the basis of reward expectations, which have been
formed during prior action-outcome learning. Although it is known that neuronal manipulations of different subregions of the rat
prefrontal cortex (PFC) have qualitatively different effects on behavioral tasks involving value-based decision-making, it is
unclear how these regions contribute to the underlying component processes.
Objectives Assessing how different regions of the rodent PFC contribute to component processes of value-based decision-
making behavior, including reward (or positive feedback) learning, punishment (or negative feedback) learning, response
persistence, and exploration versus exploitation.
Methods We performed behavioral modeling of data of rats in a probabilistic reversal learning task after pharmacological
inactivation of five PFC subregions, to assess how inactivation of these different regions affected the structure of responding
of animals in the task.
Results Our results show reductions in reward and punishment learning after PFC subregion inactivation. The prelimbic,
infralimbic, lateral orbital, and medial orbital PFC particularly contributed to punishment learning, and the prelimbic and lateral
orbital PFC to reward learning. In addition, response persistence depended on the infralimbic and medial orbital PFC. As a result,
pharmacological inactivation of the infralimbic and lateral orbitofrontal cortex reduced the number of reversals achieved,
whereas inactivation of the prelimbic and medial orbitofrontal cortex decreased the number of rewards obtained. Finally, using
simulated data, we explain discrepancies with a previous study and demonstrate complex, interacting relationships between
conventional measures of probabilistic reversal learning performance, such as win-stay/lose-switch behavior, and component
processes of value-based decision-making.
Conclusions Together, our data suggest that distinct components of value-based learning and decision-making are generated in
medial and orbital PFC regions, displaying functional specialization and overlap, with a prominent role of large parts of the PFC
in negative feedback processing.
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Introduction

To be able to survive and thrive in a dynamic environment,
animals must learn to repeat actions that were profitable in the
past, while withholding actions that were not. For example,
when a certain action leads to food reward, a hungry animal is
likely to repeat that action. Conversely, when an action does
not result in expected reward, or when it results in explicit
punishment, an animal is likely to avoid that action in the
future. This integration of action-outcome relationships is
the basis of reinforcement learning theory (Rescorla and
Wagner 1972; Sutton and Barto 1998; Dayan and Daw
2008), which states that value is attributed to preceding ac-
tions, updated based on their outcomes, and stored for when
confronted with a comparable choice later on. Such learning
processes enable animals to flexibly adapt to a changingworld
and use environmental resources optimally (Verharen et al.
2019b).

It has long been known that function of the prefrontal cor-
tex (PFC) underlies such value-based learning and decision-
making processes (Miller and Cohen 2001; Dalley et al. 2004;
Roberts 2006; Robbins and Arnsten 2009; Floresco 2013).
For example, lesions or temporary inactivations of the rodent
PFC impair processes like reversal learning (Chudasama and
Robbins 2003; Dalton et al. 2016; Izquierdo et al. 2017;
Hervig et al. 2019), set shifting (Birrell and Brown 2000),
and probabilistic discounting (St Onge and Floresco 2010).
Importantly, different subregions of the PFC have been impli-
cated in distinct aspects of value-based learning and decision-
making. For example, in humans, functional activity in
orbitofrontal regions is crucial for flexible decision-making
behavior, while activity in the dorsolateral PFC is important
for reward-related feedback sensitivity (Hornak et al. 2004).
Likewise, pharmacological inactivation of distinct PFC re-
gions in the rat has been shown to alter performance in a
probabilistic reversal learning task in qualitatively different
ways (Dalton et al. 2016).

Although conventional measures of performance in oper-
ant tasks, including reversal learning, provide important in-
sights into how task behavior is altered by neuronal manipu-
lations, value-based choices are the result of a dynamic pro-
cess in which outcome expectancies, innate preferences, and
explorative urges are weighed, ultimately leading to a choice
between different options. As such, alterations in overt behav-
ior are typically the result of changes in a variety of such
component processes. One way to gain insights into how neu-
ronal manipulations alter these processes is by performing
computational trial-by-trial analysis of the behavioral data.
For example, one could assume that animals make decisions
by tracking the reward value of different choice options and
that they update these values based on the outcome after every
trial. By using such models, one can describe behavior on the
basis of computations that may be akin to processes that occur

within the neural circuit, including reward prediction error-
guided learning (Schultz et al. 1997) and balancing explora-
tion versus exploitation (Cohen et al. 2007).

Here, we investigated the anatomical organization of core
processes underlying value-based learning and decision-
making within the rat PFC. We employed an experimental
design that was comparable to a previous study (Dalton
et al. 2016) that assessed the effects of pharmacological inac-
tivation of five different rat PFC regions on probabilistic re-
versal learning, all of which have been implicated in different
aspects of value-based behavior (Birrell and Brown 2000;
Miller and Cohen 2001; Dalley et al. 2004; Roberts 2006;
Robbins and Arnsten 2009; St Onge and Floresco 2010;
Floresco 2013; Izquierdo et al. 2017): the anterior cingulate
cortex (ACC), the prelimbic cortex (PrL), the infralimbic cor-
tex (IL), the medial orbitofrontal cortex (mOFC), and the lat-
eral orbitofrontal cortex (lOFC). We modified this behavioral
paradigm for computational trial-by-trial analysis and used
this tool to investigate how inactivations of these same five
regions affected the structure of responding in the task.
Finally, we show how alterations in these processes may ulti-
mately drive changes in reversal learning performance.

Materials and methods

Animals

Sixty adult male (> 300 g) Long-Evans rats (Janvier labs,
France) were used for the experiments. Rats were singly
housed in a humidity- and temperature-controlled room and
were kept on a 12-h/12-h reversed day/night cycle (lights off
at 8 AM). All experiments took place in the dark phase of the
cycle. Animals were kept on food restriction (~ 5-g standard
lab chow per 100-g body weight per day) during behavioral
training and testing. All experiments were conducted in accor-
dance with European (2010/63/EU) and Dutch (Wet op de
Dierproeven, revised 2014) legislation and were approved
by the Dutch Central Animal Testing Committee and by the
Animal Ethics Committee and the Animal Welfare Body of
Utrecht University.

Surgeries

Animals were implanted with bilateral guide cannulas above
each of the target areas (one brain area per group). For surgery,
animals were anesthetized with an i.m. injection of a mixture
of 10 mg/kg fluanisone and 0.315 mg/kg fentanyl (Hypnorm,
Janssen Pharmaceutica, Beerse, Belgium). Animals were
placed into a stereotaxic apparatus (David Kopf Instruments,
Tujunga, USA), and an incision was made along the midline
of the skull. Using a dental drill, two small craniotomies were
made above the area of interest, and 26-G guide cannulas
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(Plastic Ones, Roanoke, USA) were lowered to the following
positions (relative to Bregma; based on Paxinos and Watson’s
brain atlas, 6th Edition):

ACC: AP + 2.0 mmML± 0.6 mmDV − 2.2 mm from the
skull
PrL: AP + 3.2 mmML ± 0.6 mm DV − 2.6 mm from the
skull
IL: AP + 3.2 mm ML±0.6 mm DV − 4.3 mm from the
skull
mOFC: AP + 4.4 mm ML ± 0.6 mm DV− 3.8 mm from
the skull
lOFC: AP + 3.6 mm ML ± 2.6 mm DV − 3.7 mm from
the skull under a 5° angle.

For the ACC, PrL, IL, and mOFC groups, guide cannulas
were used with a bilateral protrusion of 5 mm (with 1.2-mm
space between the protrusions). For the lOFC group, single
cannulas were used with a protrusion length of 5 mm.

Guide cannulas were secured with screws, dental glue
(C&B Metabond, Parkell Prod Inc., Edgewood, USA), and
dental cement, and the skin of the animals was sutured such
that no skull was exposed. After the surgery, animals received
saline (10 ml once, s.c.) and carprofen for pain relief (5 mg/kg,
3× daily, s.c.). Dummy injectors were placed into the cannu-
las. Animals were allowed to recover for at least 7 days before
behavioral training started.

Behavioral task

The behavioral task was conducted in operant conditioning
chambers (Med Associates Inc., USA; 30.5 × 24.2 ×
21.0 cm), placed within sound-attenuated cubicles. The boxes
contained two illuminated nose poke holes, a tone generator,
and a house light on one side of the chamber, and on the other
side of the chamber a food receptacle delivering 45-mg su-
crose pellets (SP; 5UTL, TestDiet, USA) flanked by two cue
lights (note that for visualization purposes, the food receptacle
and nose poke holes were shown on the same side of the
chamber in Fig. 1a; in reality, these were on opposite sides).

At task initiation, one of the two nose poke holes was
randomly assigned as the high-probability hole that gave
80% chance on reward and 20% chance on a time-out, and
the other hole was assigned as the low-probability hole, which
gave 20% chance on reward and 80% chance on a time-out
(Fig. 1a, b). Determination of the response outcome (reward
or time-out) happened through independent sampling, so that
the outcome of the previous trial did not affect the odds of
reward in the next trial. The start of the session was signaled to
the animal by illumination of the house light and the two nose
poke holes.

Directly after a “win” response (i.e., a responses that result-
ed in reward delivery), the lights in the two nose poke holes

were turned off, a sucrose pellet was delivered into the food
receptacle, a tone was played for 0.5 s, and the two cue lights
next to the food receptacle were turned on. Consumption of
the reward was measured by an infrared light sensor in the
food receptacle, after which the cue lights were extinguished
and a new trial was initiated. After a “lose” response (i.e., a
response that resulted in a time-out), the house light and lights
in the nose poke holes were turned off, and a 10-s time-out
started during which animals remained in the dark, and poking
either of the two nose poke holes was without scheduled con-
sequences. After 10 s, a new trial was automatically initiated,
signaled to the animal by the illumination of the house light
and the two nose poke holes.

When the animals made 8 consecutive responses in the
high-probability nose poke hole, the contingencies reversed,
so that the previously high-probability nose poke hole became
the low-probability nose poke hole, and vice versa. The task
automatically terminated after 90 min, and the animals were
allowed to make an unlimited number of trials during this
period.

This task is a probabilistic reversal learning paradigm (Bari
et al. 2010; Dalton et al. 2016) that was changed to be more
suitable for behavioral modeling in two different ways. First,
the animals were allowed to make an unlimited amount of
trials during the 90-min session, as there is a strong positive
relation between reliability of model parameter estimation and
the amount of trials on which that estimation is based. Second,
there was no restriction to the time in which the animals could
make a response at one of the nose poke holes (i.e., the task
was self-paced, and no trials were designated as “omissions”),
because it is unknown how an animal may update the values
of the two nose poke holes after an omission (although tem-
poral value decay functions may be used to include this).
Importantly, the lack of omissions may mask any attentional
deficits evoked by pharmacological inactivation, although this
is also partially captured by the “response latency” parameter.

For each trial, the choice of the animal, the side of the high-
probability nose poke hole, the outcome of the trial (win or
lose), and the timestamps of trial start and nose poke response
were monitored. Win-stay was defined as the fraction of win
trials on which the animal chose that same nose poke hole on
the next trial. Lose-switch was defined as the fraction of lose
trials on which the animal chose a different nose poke hole on
the next trial.

Pharmacological inactivations

Infusions took place after the animals reached stable perfor-
mance in the task, which was defined as a non-significant
result of a repeated measures one-way ANOVA on the total
number of reversals per 100 trials for 3 consecutive days,
which was typically after ~ 10 training sessions. One day be-
fore test sessions, all animals received an infusion of saline, to
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habituate them to the infusion procedure. The next days,
animals received an infusion with saline or a mixture
of baclofen (1 nmol; Sigma-Aldrich, The Netherlands)
a n d m u s c i m o l ( 0 . 1 nm o l ; S i gm a - A l d r i c h ,
The Netherlands) dissolved in saline, counterbalanced
between days, with 24 h in between test sessions.

For the infusions, dummy injectors were removed and re-
placed by injectors that injected 0.3 μl/side of dissolved drug
solution (or saline) at a rate of 0.3 μl/min with a syringe pump
(Harvard apparatus, Holliston, USA). The injectors were kept
in place for an additional 30 s after the infusion to allow for
diffusion of the drug into the tissue. Injectors of the double
cannulas protruded 1 mm, and the injectors of the single can-
nulas protruded 0.4 mm below the termination point of the
guide cannula. Subsequent to the infusion, the animals were
placed back into their home cage for 10 min, after which they
were placed in the operant boxes.

To reduce intra-animal variability, thereby reducing the
number of animals necessary to achieve the same statistical
power, we performed the experiment a second time and

averaged all task measures across the two conditions. In other
words, animals were measured twice after saline infusion, and
twice after baclofen + muscimol infusion, and the outcomes
were averaged to get one single saline and one single baclofen
+ muscimol measure, which were used for statistical analyses
(see also Online Resource 1 for effect sizes of individual
measurements).

Computational modeling

Basic model

We fit a series of Q-learning models to our data to assess
which model (i.e., task performance strategy) best described
the animals’ behavior in the task (Rescorla and Wagner 1972;
Verharen et al. 2019a; Verharen et al. 2019c). The first model
that we tested is the classic Rescorla-Wagner Q-learning mod-
el (RW1) that assumes that on every trial t, the nose poke
values are updated based on the reward prediction error
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Fig. 1 Effects of PFC inactivation on probabilistic reversal learning. a
Probabilistic reversal learning setup. b Example session of one rat. c
Effects of PFC inactivation on probabilistic reversal learning. ACC, n =
10 rats; PrL, n = 12 rats; IL, n = 9; mOFC, n = 9; lOFC, n = 9. *P < 0.05,

**P < 0.01, ***P < 0.001, ****P < 0.0001 (post hoc Holm-Sidak test;
see also the Supplementary statistics table in Online Resource 1; for
infusion sites see Online Resource 3)
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(RPE), which is the difference between the reward received
(this is 1 for win trials, 0 for lose trials) and the reward expect-
ed (i.e., the expected value Q of the chosen nose poke hole s):

RPEt ¼ outcomet−Qs;t−1 ð1Þ

so that RPEt ¼ 1−Qs;t−1 for win trials
0−Qs;t−1 for lose trials

�
ð2Þ

Nose poke hole values were subsequently updated with
learning rate α according to a Q-learning rule:

Qs;t ¼ Qs;t−1 þ α⋅RPEt ð3Þ

Note that the value of the unchosen side was not updated
and thus retained its previous value. For the first trial, both
nose poke values were initiated at 0.5.

The relationship between nose poke values Qleft and Qright,
and the probability that the rat chooses the left or right (pleft,t,
respectively pright,t) nose poke hole in every trial, was de-
scribed by a Softmax function:

pright;t ¼
exp β � Qright;t

� �

exp β � Qleft;t

� �þ exp β � Qright;t

� � ð4Þ

and

pleft;t ¼ 1−pright;t ð5Þ

In this function, β is the Softmax inverse temperature,
which indicates how value-driven the agent’s choices are. If
β becomes very large, then the value function β∙Qs,t of the
highest valued side becomes dominant, and the probability
that the animal chooses that side approaches 1. If β is zero,
then pleft,t = pright,t = e0/(e0 + e0) = 0.5. β is sometimes referred
to as the explore/exploit parameter, where a low β favors
exploration (i.e., sampling of all options) and a high β favors
exploitation (i.e., choosing the most beneficial option).
Therefore, a sharp decrease in β may reflect a more general
disruption of behavior, since it indicates that the animal
chooses more randomly.

All the subsequently tested models are extensions of this
Rescorla-Wagner Q-learning model.

Model extensions

The second model we tested (RW2) is similar to RW1, except
that separate learning rates were used for learning from posi-
tive (reward delivery; win trials) and negative (reward omis-
sion; lose trials) feedback, α+ and α−, respectively. The value
updating function is thus given by Eq. 6:

Qs;t ¼
Qs;t−1 þ αþ � RPEt for win trials
Qs;t−1 þ α− � RPEt for lose trials

�
ð6Þ

Model RW3 is an extension of model RW2 and adds a
stickiness parameter π to the model. This parameter indicates
a preference for the previously chosen (π > 0; perseveration)
or previously unchosen (π < 0; alternation) option, so that the
Softmax is given by Eq. 7:

pright;t ¼
exp β � Qright;t þ π � ϕright;t

� �

exp β � Qleft;t þ π � ϕleft;t

� �þ exp β � Qright;t þ π � ϕright;t

� � ð7Þ

Here, ɸ is a boolean with ɸ = 1 if that hole was chosen in
the previous trial, and ɸ = 0 if not. For example, if the right
nose poke hole was chosen in trial t-1, then ɸright,t becomes 1,
and ɸleft,t becomes 0. This adds a certain amount of π to the
value function of the right nose poke hole in trial t, in addition
to the nose poke hole’s expected value Qright,t.

In addition, we tested a hybrid Rescorla-Wagner/Pearce-
Hall model of reinforcement learning that is able to account
for an increased learning rate when task volatility is higher, for
example right after a reversal. As such, it has a fixed single
learning rate α, and a variable learning rate γ that is dependent
on the unsigned prediction error to a certain amount η (which
was a free variable in the model).

Online Resource 2 shows the equations that are used for
value updating and the conversion of values into action prob-
abilities for each of the models.

Parameter estimation

Modeling was performed using Matlab (Version R2018a;
MathWorks Inc., USA). To obtain realistic estimates of the
model parameters on a population level, we used maximum
a posteriori probability (MAP) estimation. This was done be-
cause a simple grid search sometimes lead to unrealistic pa-
rameter values (for example, learning rates > 1). The used
priors for the MAP estimation were:

α+, α−: betapdf(1.5, 1.5)
π: normpdf(0.5, 0.5)
β: normpdf(2, 2)

Multiplication of these priors with the likelihood gives the
posterior probability of the model parameters given the ob-
served choice sequence:

P αþ;α−;π;βf gjdata;modelð Þ
¼ P datajmodel; αþ;α−;π;βf gð Þ

� P αþ;α−;π;βf gjmodelð Þ ð8Þ

in which P(data | model, {α+, α−, π, β}) is the likelihood of
the observed choice sequence (from trial 1 to the last trial T)
given the model and the parameter settings (computed as the
log likelihood):
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log P datajmodel; αþ; ; ;α−; ; ;π; ; ;βf gð Þð Þ

¼ ∑
t¼1

T
log P choicetjQle f t;t;Qright;t;ϕle f t;t;ϕright;t

� �� �
ð9Þ

The posterior probability was calculated for many combi-
nations of parameters {α+, α−, π, β} and arranged in a mul-
tidimensional grid. Best-fit parameter values were then esti-
mated by integrating these posterior probabilities over the pa-
rameter’s range, marginalized over the other parameters.

Model comparisons

The log-model evidences of individual sessions were penal-
ized for model complexity by computing the Akaike informa-
tion criterion and Bayesian information criterion:

AIC ¼ 2� number of free parameters in the model½ �−2
� log likelihoodð Þ ð10Þ

BIC ¼ −2� log likelihoodð Þ
þ number of free parameters in the model½ �
� log number of trials½ �ð Þ ð11Þ

As such, a lower value of the AIC and BIC reflects more
evidence in favor of the model. In addition, model compari-
sons contained a random choice model, in which all choices
had a probability of 0.5; hence, the log likelihood for each
session was computed as log(0.5total trials). To compare
models, we entered the AICs of all baseline sessions (i.e., after
saline infusion) in a random effects Bayesian model compar-
ison (implemented in SPM12) analysis to assess the evidence
that one model is more likely than any of the others (see
Rigoux et al. 2014).

Statistical analysis

Statistical tests were performed with Prism 6 (GraphPad
Software Inc.). For each measure, a 2-way repeated measures
analysis of variance (ANOVA) was used, in which drug (sa-
line versus baclofen + muscimol) was used as a within-subject
repeatedmeasures factor, and group (ACC, PrL, IL, mOFC, or
lOFC) as a between-subjects factor. When the ANOVA
yielded a significant interaction effect, or a main effect of drug
(p < 0.05), a planned pairwise comparison (Holm-Sidak
multiple comparisons test) was used to test, for each group,
whether there was a significant difference between the saline
and baclofen + muscimol sessions, similar to Hervig et al.
(2019). All statistics are presented in the Statistics Table in

Online Resource 1. In all figures, *P < 0.05, **P < 0.01,
***P < 0.001, and ****P < 0.0001.

Histology

After the experiments, brains were sliced using a cryostat
(50-μm slices), and histological verification of infusion sites
was conducted by an experimenter blind to the outcome of the
expe r imen t s ( f o r h i s t o log i c a l p l a cemen t s , s e e
Online Resource 3). All experimental groups started with 12
animals. The following animals were excluded from the
analysis:

ACC group: 1 rat died during surgery, and 1 rat was
excluded due to misplacement of the cannulas (final
group, n = 10 rats).
PrL group: none (final group, n = 12 rats).
IL group: 2 rats died during surgery, and 1 rat was ex-
cluded due to misplacement of the cannulas (final group,
n = 9 rats).
mOFC group: 2 rats died during surgery, and 1 rat was
excluded due to misplacement of the cannulas (final
group, n = 9 rats).
lOFC group: 1 rat died during surgery, and 2 rats were
excluded due to misplacement of the cannulas (final
group, n = 9 rats).

Results

Behavioral probabilistic reversal learning measures

A two-way repeated measures ANOVA, using brain region as
a between-subject factor and inactivation as a within-subject
factor, showed a main effect of inactivation on both the num-
ber of reversals and the fraction of rewarded trials, but no
significant brain region × inactivation interaction effect for
both these measures, suggesting that inactivation of the re-
gions has comparable effects on performance (Fig. 1c; see
also Supplementary Statistics table in Online Resource 1).
Yet, planned pairwise comparisons, testing the difference be-
tween inactivation (B/M) condition and control (saline) con-
dition using the Holm-Sidak test, showed only a significant
reduction in the fraction of rewarded trials after PrL and
mOFC inactivation. In contrast, IL and lOFC inactivation
did not change the number of rewards earned, but did result
in a significant reduction in the total number of reversals the
animals achieved (i.e., the rats less often reached the criterion
of 8 consecutive responses at the high-probability nose poke
hole). Despite the fact that this did not lead to explicit negative
consequences for the animals (i.e., less rewards earned), a
reduction in the total number of reversals indicates lower task
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volatility (as reward contingencies switched less often), which
might be easier for the animals and this may therefore mask a
reduction in performance. In addition, inactivation of the ACC
did not significantly affect any of the two performance mea-
sures. Finally, further analyses of the data demonstrated that
inactivation of none of the regions changed the number of
trials completed in the task or response latencies (Fig. 1c).

Computational model parameters

To gain insight into the component processes subserving
reversal learning that are disrupted by the pharmacological
inactivations, we fit a series of Q-learning models to the data.
These models assume that the animals perform the task in
order to maximize reward, by using past outcomes to track
the value of each of the two nose poke holes and make
choices based on these stored values. To estimate which of
the learning mechanisms best described the animals’ behav-
ior, we fit different reinforcement learning models to all 196
individual reversal learning sessions and performed random
effects model selection using the log model evidence esti-
mates (Rigoux et al. 2014) (Fig. 2a). The first model we
tested is the classic Rescorla-Wagner Q-learning model, in
which the value of each choice option is updated according
to the prediction error (Rescorla and Wagner 1972), i.e., the
difference between the expected outcome and the actually
received outcome according to learning rate α. Considering
that a wealth of literature implicates the PFC in value-based
learning and decision-making (Miller and Cohen 2001;
Dalley et al. 2004; Roberts 2006; Robbins and Arnsten
2009; Floresco 2013), this model should be able to explain
the impairments in reversal learning caused by the PFC in-
activations. We next extended this model in various ways.
Model 2 included separate learning rates for negative and
positive feedback, α+ and α−, since certain manipulations
only impact one type of feedback learning (Verharen et al.
2018). In model 3, we added a stickiness parameter π to this
second model to assess the degree to which an animal per-
severates on one choice option, independent of prior out-
comes (Gershman 2016). Model 4 was a Rescorla-Wagner/
Pearce-Hall hybrid model (Pearce and Hall 1980; Li et al.
2011) which was used to assess whether the learning rate
changes when task volatility is higher (i.e., in proportion to
the absolute prediction error, for example after a reversal).
For all models, the value estimates were converted to choice
probabilities using a Softmax function, allowing choice be-
havior to be stochastic to an extent described by parameter
1/β (often called the explore/exploit parameter; see
“Materials and methods” section).

Model 3 provided the best fit to the data (protected
e x c e e d a n c e p r o b a b i l i t y = 1 ; s e e F i g . 2 a a n d
Online Resource 4); it explains the behavior of the animal
on the basis of reward (i.e., positive feedback: reward

delivery) and punishment (i.e., negative feedback: time-out
instead of reward) learning rates α+ and α−, stickiness pa-
rameter π, and stochasticity parameter β (Fig. 2b). Assessing
the parameter values as a function of inactivation condition
revealed differential contributions of the PFC subregions to
these different computational building blocks of value-based
decision-making (Fig. 3). A two-way ANOVA revealed a
main effect of inactivation condition on positive and nega-
tive feedback learning, but no inactivation × brain region
interaction effect (see Supplementary Statistics table in
Online Resource 1), suggesting a general impairment in in-
tegrating past outcomes after inactivation of one of the PFC
regions. Yet, post hoc planned comparisons using the Holm-
Sidak test showed only a significant reduction in positive
feedback learning after inactivation of the PrL and lOFC,
and a reduction in negative feedback learning after inactiva-
tion of the PrL, IL, mOFC, and lOFC, but not ACC. In
contrast to these two learning parameters, a significant inac-
tivation × brain region interaction effect was observed for the
stickiness parameter, suggesting that stickiness is differen-
tially affected by inactivation of the different brain regions.
Planned comparison Holm-Sidak tests showed that a signif-
icant reduction in stickiness was observed after inactivation
of the IL and mOFC, with no effects after ACC, PrL, and
lOFC inactivation. Importantly, estimates of stochasticity pa-
rameter β were unchanged across the inactivations, suggest-
ing that pharmacological inactivation of the PFC affected
value-based learning rather than value-based decision-
making.

Interestingly, when we perform Bayesian model selection
for each inactivation condition separately, it can be seen that in
most cases, model 3 remains the best-fit model after pharma-
cological inactivation (Online Resource 5), indicating that the
inactivation-induced changes are of quantitative, rather than
qualitative in nature. An exception may be inactivation of the
mOFC, after which the Rescorla-Wagner-Pearce-Hall model
(model 4) is slightly favored over the others. See Fig. 4 for a
visual summary of the inactivation-induced changes in com-
putational model parameters, as indicated by post hoc Holm-
Sidak tests.

Data simulations

Although the effects of inactivation of different PFC regions
had similar effects on the computational model parameters
(e.g., IL and mOFC inactivation both decrease punishment
learning and stickiness), they did not always evoke the same
effects on conventional measures of task performance (e.g., IL
inactivation reduced the number of reversals while mOFC
inactivation reduced the fraction of rewarded trials). In an
attempt to understand these apparent discrepancies, we simu-
lated data of 650,250 probabilistic reversal learning sessions
(13,005 conditions × 50 simulations) with the earlier used Q-
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learning model. For visualization purposes, and because PFC
inactivations did not affect explore/exploit behavior, β was
fixed at a value of 1.686 (the average of all animals across
all conditions in Fig. 3), but values of learning rates α+ and α−

and stickiness parameter πwere varied; heatmaps of simulated
data are presented in Fig. 5.

These simulations demonstrate complex, interacting rela-
tionships between the computational model’s parameter
values and the four conventional measures of task perfor-
mance. For example, for this level of β (1.686), the number
of reversals is highly dependent on the value of the stickiness
parameter, but only when both reward and punishment learn-
ing rates are high. In addition, the number of rewarded trials
requires high learning and is the highest for stickiness param-
eter values close to 0. Furthermore, win-stay and lose-switch
measures are most strongly dependent on stickiness, and also

drop dramatically when learning rates become very low (<
0.3). Importantly, the link between win-stay behavior and re-
ward learning versus lose-switch and punishment learning,
often assumed in scientific literature (Bari et al. 2010), does
not seem as straightforward, as reward and punishment learn-
ing rates both affect win-stay and lose-switch behavior.
Importantly, it can be seen that a wide range of parameter
values allows the animal to perform well in the task, and that,
dependent on baseline values of the parameters, decreases of
learning rate up to 50% are required to see changes in the
conventional measures of task performance. Finally, it should
be noted that these heatmaps look different for different values
of the explore/exploit parameter β (Online Resource 6). For
example, during high exploitation of value (high β), a higher
number of reversals will be obtained with lower values of
punishment learning—this is likely due to the notion that in

b
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this case it is profitable to ignore false-negative data (i.e., the
occasional reward omission) at the high-probability nose poke
hole.

Discussion

In this study, we assessed the effects of pharmacological inac-
tivation of five different subregions of the rat PFC on perfor-
mance in a probabilistic reversal learning task and used com-
putational modeling to assess how these inactivations
disrupted the structure of responding in the task. We found
that inactivation of the PrL, IL, mOFC, and lOFC impaired
task performance and that this was driven by reductions in
punishment learning and response persistence (IL and
mOFC) or in a combined reduction in reward and punishment
learning (PrL and lOFC). Inactivation of the ACC did not
affect conventional performance measures or any of the com-
putational model parameters. It is important to note that only
for the stickiness parameter, the two-way ANOVA yielded a
significant brain region × interaction effect, suggesting a dif-
ferential involvement of PFC subregions in response persis-
tence. In contrast, the ANOVA on positive (reward) and neg-
ative (reward omission) feedback learning only yielded a main
effect of inactivation, suggesting a general reduction in learn-
ing after PFC inactivation, regardless of brain region.

Our experimental design was comparable to the study of
Dalton et al. (2016), and our findings were, to a large extent,
consistent. That is, we found no effects of ACC inactivation
on probabilistic reversal learning performance, and we ob-
served changes in performance after inactivation of the PrL,
mOFC, and lOFC. There are, however, two important differ-
ences: (1) we found a reduction in performance after IL in-
activation, whereas Dalton et al. found no effects, and (2)
Dalton et al. observed an improvement in reversal learning
performance after PrL inactivation, while we observed an
impairment. We think that the most likely explanation for
these discrepancies arises from baseline differences in be-
havior. In our simulated data (Fig. 5 and Online Resource
6), we show that a reduction in punishment learning and
stickiness (as we observed after IL inactivation) does not
necessarily change the number of reversals—it only does
so if the effects are strong enough and when baseline func-
tioning allows it. Indeed, there is a wide range of parameter
values that is optimal for task performance (both in terms of
number of reversals and rewarded trials; see the large spread
of the 90th percentile border in Fig. 5). Likewise, reductions
in the computational model parameter values may in some
cases even lead to an increase in performance, as was ob-
served by Dalton et al. (2016) (see heatmaps for high β
values in Online Resource 6). Thus, whether changes in the
model parameter values lead to changes in conventional be-
havioral measures of task performance is not straightforward

and depends on the characteristics of the animals and the
amount of training (i.e., baseline levels of the computational
models parameter values). An alternative explanation for the
discrepancies between the two studies is that subtle, but im-
portant methodological differences exist. For example, in our
study, the task was self-paced, so that task performance had
more direct consequences for the amount of reward received.
Moreover, trial outcomes (either wins or losses) were more
explicitly signaled by pertinent cues in our task version. As a
result, in our study, task performance may have relied to a
greater extent on PrL and IL function, because of their com-
plementary roles in action-outcome tracking (Corbit and
Balleine 2003; Killcross and Coutureau 2003) and cue-
driven reward pursuit and consumption (Ishikawa et al.
2008; Burgos-Robles et al. 2013).

The simulated data in Fig. 5 and Online Resource 6 give
two additional important insights into the data. First, it may
explain why similar effects on the computational model pa-
rameters sometimes have differential effects on the conven-
tional measures of task performance. For example, both IL
and mOFC inactivation reduced punishment learning and
stickiness (Fig. 3), whereas IL inactivation reduced the num-
ber of reversals and mOFC inactivation decreased the fraction
of rewarded trials (Fig. 1c). One observation from the simu-
lated data (Fig. 5 and Online Resource 6) is that all of the
computational model parameters influence all of the behavior-
al measures of task performance, and it depends on the base-
line values of these parameters and the size of the effects as of
which conventional task parameter is affected. Second, win-
stay and lose-switch measures, classically used as a proxy for
reward and punishment learning, respectively (Bari et al.
2010), are not specific to either types of learning, as win-
stay and lose-switch are both dependent on reward and pun-
ishment learning. In fact, win-stay and lose-switch appear
more strongly influenced by stickiness parameter π, rather
than by learning. This finding indicates that win-stay and
lose-switch behavior should not be used as straightforward
descriptors of sensitivity to reward and punishment, as we
have shown before (Verharen et al. 2018).

Together, our data suggest that value-based behaviors in
the rat are governed through distinct, but functionally overlap-
ping PFC regions by mediating different aspects of value-
based learning and decision-making (Fig. 4). Given this over-
lap in function, we speculate that within the rat PFC, there is
redundant coding of value-related signals. This redundancy
could be indicative of the existence of a neural safety net that
ensures that essential cognitive operations can continue if ac-
tivity in a part of the PFC is impaired, for example by neuro-
logical disease, pharmacological insults, or stress.
Alternatively, there may be coding of value-based learning
functions across a larger, interconnected network that eventu-
ally mediates decision-making. This suggests distributed, par-
allel processing of value-related information across different
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brain circuits, as has been proposed by recent theories (Cisek
2012; Rushworth et al. 2012; Hunt and Hayden 2017).
Dissecting these circuits, including the identification of the
cell types and neuronal projections that mediate value-based
processes across the PFC, is an important topic for future
research. Of special interest would be the elucidation of neural
pathways that are specialized in subcomponents of learning
and decision-making, using contemporary viral vector–based
techniques, as has been done recently for projections from the
OFC (Groman et al. 2019).

Deficits in reversal learning after pharmacological inacti-
vation or lesion of regions of the PFC have been observed
before in different species, although the effects of neural ma-
nipulations of the medial PFC (PrL/IL) have been inconsistent
(Izquierdo et al. 2017). Overall, it has been suggested that the
medial PFC becomes engaged in reversal learning only when
the task becomes more complex and requires higher levels of
attention (Izquierdo et al. 2017), for example when reward
contingencies are probabilistic. Indeed, most studies that have
assessed the role of the medial PFC in reversal learning—with
for the most part negative results—have used a deterministic
version of the task, in which reward contingencies are absolute
(i.e., one response always, the other never rewarded) (see
Izquierdo et al. 2017). Animals can then rely onmore heuristic
strategies to perform the task, such as win-stay/lose-switch
(Posch 1999), rather than by actively tracking the outcome
of the choice options over time, which may require a lesser
involvement of PFC-mediated value-based processes. Indeed,
other behavioral tasks that have been shown to rely on func-
tional activity of the PFC, such as set shifting (Birrell and
Brown 2000) and probabilistic discounting (St Onge and
Floresco 2010), are more complex by nature and involve
changes in behavioral strategies, reward contingency
switches, and/or probabilistic reward delivery. It may there-
fore be the case that our results extend beyond probabilistic
reversal learning and that the behavioral effects of PFC lesion
or inactivation in these tasks are the result of general changes
in processes underlying value updating and decision-making,
including reward learning, punishment learning, and/or choice
perseveration.

The OFC is thought to be important for a variety of value-
based decision-making processes, with functional heterogene-
ity along both the mediolateral and the anteroposterior axes
(Izquierdo 2017). In the present study, we mainly targeted the
anterior MO/VO region of the mOFC and the more dorsal part
of the VO/LO region of the lOFC, which have been implicated
in functions such as decision-making under uncertainty and
outcome prediction (Izquierdo 2017). Although impaired
decision-making under uncertainty does capture the deficits
in conventional measures of reversal learning that we ob-
served after lOFC inactivation, its role in reward and punish-
ment learning suggests a broader functionality, for example
covered by the theory that the lOFC keeps a cognitive map of

task structure (Rudebeck and Murray 2014; Wilson et al.
2014). The inability of animals to generate such a cognitive
map after inactivation may lead to general disruptions in be-
havior that in the behavioral model are best described by the
inability to adapt to reward and punishment. Thus, “model-
free” reinforcement learning models, as the one used in this
study, may not capture the true function of the lOFC, and the
observed learning deficit after its inactivation may in reality be
due to the disruptions in higher-order cognitive processes. In
line with this notion is the finding that mOFC inactivation
evoked qualitative changes in task strategy, as the model
fitting procedure on the mOFC inactivation sessions showed
that the Rescorla-Wagner-Pearce-Hall best described those
sessions, rather than the Rescorla-Wagner model that best de-
scribed the baseline sessions (Online Resource 5). That said,
assessing how inactivation affects the structure of responding
in the task may provide important clues about how this region
contributes to complex decision-making behavior, being it
directly involved in the component processes of model-free
decision-making behavior or not.

A recent study showed changes in positive and negative
feedback learning, as well as in response persistence (sticki-
ness), in people with stimulant abuse disorder and obsessive-
compulsive disorder (Kanen et al. 2019), two psychopathol-
ogies in which the human PFC has been implicated (Bechara
and Van Der Linden 2005; Volkow and Morales 2015). This
may provide interesting clinical relevance to our findings,
especially since these same authors provided a potential drug
target (the dopamine D2/3 receptor) for modulating these com-
ponents of learning and decision-making in humans (Kanen
et al. 2019). In addition, the subregion-specific involvement of
the mOFC and PrL in stickiness may be of special clinical
importance, given the suggested involvement of maladaptive
response persistence—irrespective of outcome—in addictive
behaviors (Everitt and Robbins 2016).

Concluding remarks

Overall, our study reveals a rat PFC that is anatomically orga-
nized into functional districts, in which each function
supporting probabilistic reversal learning depends on activity
in at least two different PFC subregions. Such a topographic
map of PFC function suggests an intricate balance between an
efficient distribution of function, so that not all regions are
engaged in all aspects of task behavior, and safeguarding of
function, so that each function relies on activity in at least two
brain regions. Interestingly, punishment learning was depen-
dent on four of five PFC regions, suggesting that negative
feedback learning is especially robustly integrated in the fron-
tal lobe, perhaps because of its importance for survival.
Altogether, we demonstrate a specialized but overlapping
functional-anatomical organization of higher-order cognition
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within the rat PFC, providing important insights into the func-
tional architecture of the mammalian brain.
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