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The Hippo signalling pathway regulates cellular proliferation, apoptosis and

differentiation, thus exerting profound effects on cellular homeostasis. Inhibition

of Hippo signalling has been frequently implicated in human cancers, indicating

a well-known tumour suppressor function of the Hippo pathway. However, it is

less certain whether and how hyperactivation of the Hippo pathway affects bio-

logical outcome in living cells. This review describes current knowledge of the

regulatory mechanisms of the Hippo pathway, mainly focusing on hyperactiva-

tion of the Hippo signalling nexus. The disease implications of hyperactivated

Hippo signalling have also been discussed, including arrhythmogenic

cardiomyopathy, Sveinsson’s chorioretinal atrophy, Alzheimer’s disease, amyo-

trophic lateral sclerosis and diabetes. By highlighting the significance of disease-

relevant Hippo signalling activation, this review can offer exciting prospects to

address the onset and potential reversal of Hippo-related disorders.
1. Introduction: an overview of Hippo pathway
regulation

The tumour suppressor Hippo pathway has emerged as a major regulator of

organ size control, stem cell pluripotency and regeneration (figure 1). Deregu-

lation of Hippo signalling leads to deleterious consequences including cancers

[1–6]. Deregulation of the Hippo pathway often refers to inhibition of Hippo

signal transduction and over-proliferative effects. Nevertheless, the Hippo

pathway can also be deregulated in an opposite way, which causes hyperacti-

vation of Hippo signalling and survival defects (table 1). In contrast with the

inactive Hippo pathway, the biological significance of hyperactive Hippo

signalling has been largely underestimated.

The Hippo pathway was initially discovered in the fruit-fly Drosophila
melanogaster by genetic screens for identifying genes required for growth and pro-

liferation. The warts (wts) gene was first identified from the genetic mosaic screens,

whose mutations caused dramatic overgrowth of the mutant tissues [17,18]. Sub-

sequently, salvador (sav) and hippo (hpo) were discovered and, together with wts,
defined a pathway controlling growth/proliferation and survival [19–24].

Hence, the Hippo pathway is also known as the Salvador–Warts–Hippo pathway.

Most components of the Hippo pathway are conserved from flies to mammals,

although some differences may exist (details will be described below). Regulation of

the Hippo pathway largely relies on kinase cascade of the core components. Inhi-

bition of Hippo signalling (i.e. hypo-Hippo) means that the kinase cascade of the

Hippo pathway is inactive, whereas hyperactivation of the Hippo pathway (i.e.

hyper-Hippo) means that the kinase signalling cascade is active. The Hpo kinase

(Ste20 family kinases, MST1/2 in vertebrates) forms a complex with the adaptor

proteins Sav (SAV or WW45 in vertebrates) and Mats (Mob as tumour suppressor;

MOB1A/B in vertebrates), which enhances Hpo/MST kinase activity and facilitates

the interaction between Hpo/MST and the serine threonine kinase Wts (NDR

family kinases, LATS1/2 in vertebrates). Hpo/MST phosphorylates and activates
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Figure 1. Models of Hippo pathway in fly and mammals. A simplified version of Hippo pathway regulation is shown here. In both Drosophila and mammals, when Yki/
YAP/TAZ is relieved from inhibition through phosphorylation-dependent or independent mechanisms, its nuclear translocation then drives target gene expression in regu-
lation of cellular proliferation, apoptosis and differentiation. The phosphorylation mechanism relies on the core kinase cascade including Hpo/MST, Wts/LATS, Sav/SAV1 and
Mats/MOB1. In Drosophila, the FERM domain protein Ex has been shown to physically associate with Yki and block its nuclear translocation. Similarly, in mammals, the
adherens protein AMOT and CRB3 complex inhibit target gene expression via sequestering YAP/TAZ in cytoplasm.

Table 1. Hyperactive Hippo pathway and diseases.

disease Hippo components affected organ or tissue evidence references

arrhythmogenic cardiomyopathy NF2, MST1/2, LATS1/2 and

YAP

heart gene expression [7]

Sveinsson’s chorioretinal

atrophy

TEAD1 eye human, mouse

mutation

[8,9]

retinal detachment MST2 eye gene expression [10]

Alzheimer’s disease MST1/2, YAP brain, nerves gene expression [11,12]

skeletal muscle atrophy MST1, YAP? muscles, nerves gene expression [13]

amyotrophic lateral sclerosis MST1, YAP nerves gene expression [14,15]

diabetes MST1 multiple gene expression [16]
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Wts/LATS via a sequential phosphorylation process [23,25–28].

Recent structural data have further proved the critical roles of

MOB1 in this kinase activation loop through direct interactions

with MST and LATS [26]. The activated Wts/LATS subsequently

phosphorylates the final effector of the Hippo pathway, the tran-

scriptional co-activator Yorkie (Yki; Yes associated protein (YAP)

and TAZ in vertebrates) [29–37]. Phosphorylation of Yki/YAP/

TAZ leads to cytoplasmic retention and subsequent protein

degradation through b-TRCP (b-transducin repeat-containing

E3 ubiquitin protein ligase)-dependent proteasomal degra-

dation, thereby inhibiting their transcriptional activity

[29,32,34,36,38–41]. Therefore, Yki/YAP/TAZ phosphorylation

caused by active kinase cascade of the Hippo pathway indicates

that Hippo signalling is hyperactivated. Recently, emerging evi-

dence has uncovered additional kinases, which share similar

roles with Hpo/MST and Wts/LATS in Hippo pathway
regulation. MAP4K (mitogen-activated protein kinase kinase

kinase kinase) kinases can activate LATS through a direct phos-

phorylation event [42,43]. Other members of the NDR family

kinases, STK38 (NDR1) and STK38L (NDR2), also function as

YAP kinases and inhibit YAP activity in certain cell types [44].

Similar to the LATS kinases, STK38 is activated by the binding

of MOB1 as well as by MST-dependent phosphorylation [45–

47]. Further studies will be needed to unravel the physiological

roles of MAP4K and STK kinases in Hippo pathway regulation.

Phosphorylation-independent regulations also exist. Yki can

directly bind to the FERM-domain-containing adaptor protein

Expanded (Ex) and form a complex with Hpo/MST and Wts/

LATS, thereby triggering the cytoplasmic retention of Yki

[48,49]. Prior to these studies, Ex and Merlin (neurofibromin 2

(NF2) in vertebrates) were considered to function upstream of

the core Hippo signalling cassette [50]. As an apical
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membrane-localized protein, Ex not only intrinsically modulates

Yki activity but also transduces signal from outside of the cell

through binding to the transmembrane protein Crumbs (Crb;

CRB3 in vertebrates) [51–54]. The binding of Ex with Crb

stabilizes its apical localization and then promotes the Hippo sig-

nalling pathway. Interestingly, however, vertebrate CRB3

regulates Hippo signalling through different mechanisms.

CRB3 forms a complex with YAP/TAZ to sequester YAP/TAZ

in the cytoplasm, thereby inhibiting their transcriptional activi-

ties. The prevention of YAP/TAZ nuclear localization by CRB3

may require components of junction-associated protein i.e.

angiomotin family members (AMOT, AMOTL1 and

AMOTL2), although the AMOT family has no homologue in

Drosophila. AMOT proteins retain YAP/TAZ in the cytoplasm

through direct (binding to YAP/TAZ) or indirect (stimulating

LATS kinase activity) mechanisms [55–61]. Hence, in addition

to kinase cascade regulation, the discovery of multiple

protein–protein interactions indicates Hippo signalling is a regu-

latory network.

Conversely, when the Hippo pathway is inactivated, unpho-

sphorylated Yki/YAP/TAZ translocates to the nucleus. Nuclear

Yki/YAP/TAZ activates transcription through binding to Scal-

loped (Sd, the TEA domain family members 1–4 (TEAD1–4) in

vertebrates) [62–66] or other transcription factors because Yki/

YAP/TAZ lack their own DNA-binding domains. Binding to

Sd/TEAD allows Yki/YAP/TAZ to activate expression of

target genes that are involved in controlling cell growth, prolifer-

ation and survival [62–66]. Hence, the pathological role of the

Hippo pathway in tumourigenesis is primarily caused by the

aberrant activation of Yki/YAP/TAZ. On the contrary, little is

known about how Yki/YAP/TAZ is inactivated in living cells

(i.e. hyperactivation of the Hippo signalling pathway). In

order to gain further understanding and consider potential dis-

ease implications of Hippo pathway activation, this review

discusses the current knowledge of how and where the Hippo

pathway is hyperactivated.
2. Hyperactivation of the Hippo pathway
Both intrinsic and extrinsic mechanisms modulate the Hippo

pathway to maintain tissue homeostasis. This section will

focus on recent advances in regulatory mechanisms that

contribute to hyperactivation of the Hippo pathway.

2.1. Extracellular cues to regulate the Hippo pathway
The Hippo pathway can be regulated by various upstream

stimuli, including G protein-coupled receptor (GPCR) signalling,

adhesion cues through cell–cell contact, polarity, mechanical sig-

nals and cellular stress. Studies have built on observations that

soluble hormones or growth factors act through GPCRs to acti-

vate or inactivate the Hippo pathway. Epinephrine, glucagon

or dopamine receptor agonist can induce Hippo pathway acti-

vation through binding to Gas and increase YAP

phosphorylation [67]. However, in most cases, soluble factors

have been shown to inhibit Hippo signalling activity. For

instance, EGF and IGF can inhibit LATS and stimulate nuclear

accumulation of YAP through phosphoinositide 3-kinase

(PI3K) and pyruvate dehydrogenase kinase 1 (PDK1) signalling

[68–70]. Lysophosphatidic acid (LPA), sphingosine 1-phosphate

(S1P) and thrombin signal have been reported to act through

G12/13 and Gq/11 to inactivate the Hippo pathway via
stimulating Rho GTPases [67,71,72]. Moreover, Wnt ligands,

such as Wnt5a/b and Wnt 3a, are found to mediate Ga12/13

and Rho to inhibit LATS activity, and then activate YAP/TAZ-

dependent transcription. Many secreted Wnt inhibitors, includ-

ing DKK1, BMP4, IGFBP4 and WNT5a/b, are YAP/TAZ

target genes of this Wnt–Ga12/13-Rho–LATS–YAP/TAZ sig-

nalling (also called alternative Wnt-YAP/TAZ signalling) [73].

Therefore, alternative Wnt–YAP/TAZ signalling acts as a nega-

tive regulation of canonical Wnt signalling. Recently, studies

have revealed several aspects regarding integrations between

the Hippo pathway and Wnt pathway. As both signalling path-

ways are known to play essential roles in numerous cellular

functions, understanding the crosstalk of Hippo and Wnt path-

ways may provide potential therapeutic targets.

Several upstream regulators established by cell–cell con-

tact are known to promote the Hippo pathway by linking

YAP to both adherens junctions (AJ) and tight junctions (TJ)

proteins and reveal additional mechanisms of YAP inacti-

vation. For example, homophilic binding of E-cadherin at AJ

suppresses transcriptional activity of YAP by modulating

MST activity [74]. An AJ component, a-catenin, has been

shown to sequester YAP in the cytoplasm through physical

interactions in mouse keratinocytes. Depletion of a-catenin

leads to nuclear accumulation of YAP, thus triggering

over-proliferative effects [75,76]. Recruitment of AMOT to AJ

protein complexes (E-cadherin–catenin) also leads to

cytoplasmic retention of YAP and stimulation of Hippo

signalling, which is required to maintain pluripotent embryo-

nic stem cells (ESCs) of inner cell mass in early blastocyst.

Conversely, in outer cells of trophectoderm, the cell polarity

restricts AMOT localization in the apical domain of outer

cells, thereby inactivating the Hippo pathway [55]. In addition,

fibronectin (an extracellular matrix protein) mediated cell–cell

adhesion has been reported to act through focal adhesion

kinase (FAK)–Src signalling to promote nuclear accumulation

of YAP in a LATS-dependent manner. Inhibition of FAK–Src

signalling is able to activate the Hippo pathway through cyto-

plasmic retention of YAP [77]. These studies indicate that

differential inputs (e.g. adhesion cues or cell polarity) may

regulate diverse cellular functions through modulating the

Hippo pathway in distinct ways. The physical properties of

cells, such as cell shape and cytoskeletal tension, have also

been found to regulate the Hippo pathway [78,79]. GPCR-

mediated regulation on YAP/TAZ activity is likely to act

through modulating the actin cytoskeleton [67]. Disruption

of the actin cytoskeleton activates Hippo signalling in a

LATS-dependent manner [79–81]. By contrast, other studies

proposed that this mechanical regulation controls YAP/TAZ

activity independently of the LATS kinases, but through the

Rho–Rock pathway [78,82–84]. This discrepancy could be

due to different cell contexts or methodology, or the actual

mechanism may involve LATS-dependent and -independent

regulation of YAP/TAZ activity. Taken together, these find-

ings illustrate how Hippo signal transduction is tightly

regulated by the presence of neighbouring cells.

2.2. Intrinsic mechanisms for Hippo pathway activation
Intracellular mechanisms are also important for the activation of

Hippo signalling. Although Wnt signal is initiated by secreted

ligand binding, studies have revealed crosstalk between the

Hippo pathway and Wnt pathway in various intracellular

axes: (i) the cytoplasmic retention of phosphorylated
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YAP/TAZ interacts with Disheveled (DVL), thereby inhibiting

Wnt target gene expression [85,86]; (ii) phosphorylated YAP/

TAZ sequesters b-catenin in the cytoplasm [87], then b-TRCP

is in turn recruited to this complex and triggers the proteaso-

mal degradation of b-catenin [88,89]; and (iii) the tyrosine

phosphatase SHP2 is restricted by phosphorylated YAP/TAZ

in the cytoplasm of high density cells. Conversely, unpho-

sphorylated YAP/TAZ facilitates nuclear translocation of

b-catenin and SHP2, which in turn promotes Wnt/b-catenin

target gene expression [90]. Therefore, phosphorylation of

YAP/TAZ plays a critical role in controlling the integrated

Hippo/Wnt signalling. Recent study has reported that protein

kinase C zeta (PKCz, belongs to atypical PKCs (aPKC)) can

inhibit YAP and b-catenin via phosphorylation, indicating

that PKCz is a positive regulator to activate the Hippo pathway.

This regulation is essential to maintain intestinal epithelial

homeostasis [91]. Conversely, overexpression of aPKC stimu-

lates Yki activity to promote cell proliferation and survival in

Drosophila epithelial cells [52,54]. The discrepancy is also

found in breast cancer cells where PKC acts downstream of

an oestrogen-stimulated GPCR (G protein-coupled oestrogen

receptor, GPER) to inhibit LATS, thereby activating YAP/

TAZ [92]. In addition, different PKC isoforms can oppositely

regulate the Hippo pathway in different cell types [93]. Conven-

tional PKC (cPKC, including a, b and g) inhibits LATS kinase

activity while novel PKC (nPKC, including d, u, e and h) pro-

motes YAP/TAZ phosphorylation in HEK293A cells, HeLa

cells and U251MG glioma cells. On the contrary, the effects of

LATS-dependent YAP/TAZ phosphorylation in response to

cPKC or nPKC are completely different in Swiss3T3 cells,

MEF cells and A549 lung cancer cells [93]. It is likely that

LATS-dependent phosphorylation is differentially regulated

by different PKC isoforms in a cell type-specific manner.

The Hippo pathway has been shown to be regulated by

the important transcriptional regulators of organogenesis, E pro-

teins and ID proteins [94,95]. The widely expressed E proteins

belong to the basic helix-loop-helix (bHLH) family, which het-

erodimerize with tissue-specific bHLH proteins to regulate cell

growth, commitment and differentiation in many tissues

[96,97]. The heterodimeric bHLH proteins bind to the E-box

sequence (CANNTG) and drive gene expression. ID proteins

lack a basic DNA-binding motif, so that the heterodimers of

bHLH proteins with ID proteins inhibit their regulatory activi-

ties. Recent study in Drosophila has demonstrated that high

levels of Drosophila E protein homologue (or loss of Drosophila
ID protein) can activate ex transcription and promote Hippo sig-

nalling independent of any responses to cell–cell interactions.

The hyperactivation of the Hippo pathway inhibits cell survival,

which prevents progenitor cells from undergoing misspecified

differentiation, thereby functioning as an intrinsic surveillance

mechanism [94]. Previously, the binding with transcription fac-

tors (e.g. Sd/TEAD, Hth, RUNX, PAX, TBX5 and SMAD) is

thought to be required for the transcriptional activity of Yki/

YAP/TAZ and results in the inhibition of Hippo signalling

[63–66,98–104]. Discovery of this regulation by which the

Hippo pathway is hyperactivated by bHLH transcription factors

may provide novel insights into the pathological involvement of

hyperactive Hippo signalling.

In response to intracellular oxidative stress or DNA damage,

nuclear translocated YAP binds to p73, a transcription factor that

belongs to the tumour suppressor p53 family, and induces trans-

activation of proapoptotic genes such as PUMA and BAX,

thereby triggering apoptosis [105–107]. A tumour suppressor,
Ras association domain family 1A (RASSF1A), has been

shown to mediate YAP phosphorylation and facilitate YAP–

p73-mediated cell death [106]. The role of RASSF1A in YAP

phosphorylation is thought to scaffold the interaction between

MST and LATS and enables activation of their kinase activities

[106,108]. In contrast with the common model that phosphory-

lated YAP is restricted in the cytoplasm, RASSF1A-dependent

YAP phosphorylation induces nuclear translocation of YAP

[106]. As decreased expression of RASSF1A has been reported

in various cancers, which accounts for the tumour suppressor

function of RASSF1A, these findings provide one possible mech-

anism by which elevated RASSF1A levels may contribute to

apoptosis through enhancing MST–LATS–YAP phosphoryl-

ation (i.e. hyperactivation of the Hippo pathway). Future

studies will be needed to address whether and how RASSF1A

is induced in response to cellular stimuli. In addition, YAP can

be phosphorylated by AKT (also known as protein kinase B),

a downstream effector of PI3K signalling. Intriguingly, AKT-

dependent YAP phosphorylation plays an opposing role in reg-

ulating YAP–p73 mediated apoptosis. AKT-dependent YAP

phosphorylation results in a cytoplasmic retention of YAP,

thereby attenuating YAP–p73 mediated apoptosis [105]. Collec-

tively, these findings indicate that different sites of YAP

phosphorylation may result in different subcellular localizations

of phospho-YAP and cause distinct consequences of Hippo sig-

nalling [109], although the underlying mechanisms remain to be

addressed in detail.
3. Prospective disease model of hyper-
Hippo signalling

Over-proliferative effects caused by inactivation of Hippo signal

transduction have been extensively studied in various cancers

[1–6]. Conversely, the hyperactivation of the Hippo pathway

is implicated in some human diseases. Cells with hyperactive

Hippo signalling have been shown to undergo apoptosis and

be eliminated in vivo. Excess cell death is often associated with

neurodegenerative disease, ischaemia, autoimmune disease

and metabolic disease [110]. This section includes current evi-

dence, that has linked the hyperactivation of the Hippo

pathway to human disease or disease models (table 1).

3.1. Hippo activation leads to adipogenesis in
arrhythmogenic cardiomyopathy

Activation of the Hippo pathway has been linked to adipogen-

esis in the heart disease model. Increased levels of

phosphorylated NF2, MST1/2, LATS1/2 and YAP have been

detected in the myocardial samples with arrhythmogenic car-

diomyopathy (AC) from human patients and mouse models.

b-Catenin activity has been shown to be affected in AC,

suggesting that the involvement of the Hippo pathway may

also require the Wnt pathway [7]. AC, also known as arrhyth-

mogenic right ventricular cardiomyopathy because it

predominantly affects the right ventricular walls, is a heredi-

tary cardiomyopathy that accounts for 15–25% of sudden

cardiac deaths in patients younger than 35 years. The patho-

logical hallmark of AC is the replacement of myocardium by

fibroadipocytes, ventricular enlargement and dysfunction

and lethal ventricular arrythmias. AC is a disease of the desmo-

somes, intercellular junctional complexes that join the ends of
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cardiomyocytes [111]. Desmosome disruption results in

changes of mechanical control of upstream regulators of the

Hippo pathway, leading to alteration of YAP/TAZ activity

and localization [7]. Additionally, deregulated desmosome

proteins have been considered to contribute to AC pathogen-

esis by enhancing adipogenesis driven by adipogenic

transcription factor PPARg [112]. The adipogenic effects can

be antagonized by downregulation of Hippo kinases, indicat-

ing that hyperactive Hippo signalling could be a potential

pathogenesis for AC [7]. This is consistent with the previous

finding that adipogenesis can be induced by low YAP/TAZ

activity [78,99]. It is likely that loss of mechanical integrity

causes aberrant activation of the Hippo signalling pathway

and promotes adipogenesis, thus resulting in AC. However,

it is unclear whether desmosome mutation is exclusively

required for Hippo-mediated AC pathology. Several questions

remain to be addressed. For instance, is there Hippo pathway

mutation(s) existing in AC patients? If so, is the Hippo pathway

mutation(s) sufficient to trigger AC? It will be noteworthy to

study in depth the underlying mechanisms in the future.

3.2. Degenerative disease
Sd/TEAD is the best-characterized DNA-binding partner of

Yki/YAP/TAZ. The binding of Sd/TEAD with Yki/YAP/

TAZ ensures its transcriptional activity [62–66]. Recent pro-

gress proves the interaction between YAP/TAZ and TEAD is

essential for the maintenance and differentiation of retinal pig-

ment epithelium in zebrafish [113]. Interestingly, a missense

mutation in TEAD1 has been identified that leads to Sveinsson’s

chorioretinal atrophy, a rare genetic disease in which choroid

and retina are gradually degenerated [8,9]. This missense

mutation disrupts the interaction of TEAD with YAP/TAZ

and therefore blocks its transcriptional activity [9,62–66].

These findings imply that activation of the Hippo pathway

(i.e. disruption of YAP/TAZ–TEAD function) may contribute

to the pathogenesis of Sveinsson’s chorioretinal atrophy and

other ocular diseases. The Tondu-domain-containing proteins,

Drosophila Vestigial (Vg) and Tgi (Vestigial-like proteins 1–4

(VGLL1–4) in vertebrates), also regulate Sd/TEAD-dependent

transcription through physical interactions. Binding of Vg/

VGLL1–3 with Sd/TEAD stimulates its transcriptional activity

[114–117], whereas Tgi/VGLL4 acts as a repressor when inter-

acting with Sd/TEAD and may compete for Yki/YAP/TAZ

binding to Sd/TEAD [118,119]. This raises the possibility that

disease-associated TEAD mutations might disrupt its binding

to VGLL proteins, although this warrants further investigation.

In addition to the final effectors of Hippo signalling,

Matsumoto et al. [4] demonstrate that MST2 kinase acts as a

regulator to trigger photoreceptor apoptosis in a mouse

model of retinal detachment [10]. Retinal detachment can

cause permanent vision loss due to photoreceptor cell death.

Apoptotic indications are reduced in MST2 homozygous null

mice after retinal detachment [10]. It will be interesting to

further study whether (i) the effect of MST2 in retinal detach-

ment requires YAP/TAZ activity and (ii) this regulation is

involved in other retinal degenerative disorders.

Moreover, activation of MST1/2 has been connected to

multiple neurodegenerative diseases. Alzheimer’s disease

(AD), the most common progressive neurodegenerative dis-

ease, is defined by the formation of amyloid plaques and

neurofibrillary tangles in the brain and apoptotic cell death

that causes synapse and neuron loss. AD pathogenesis is
considered to be the accumulation and oligomerization of

amyloid b (Ab) peptide produced by defective proteolytic

processing of the precursor of Ab (AbPP) [120,121]. Recent

study has reported that AbPP can promote nuclear transloca-

tion of a Forkhead transcription factor FOXO3a by inducing

MST1-dependent phosphorylation of FOXO3a [11]. The

nuclear FOXO proteins (e.g. FOXO1 and FOXO3) activate a

pro-apoptotic member of Bcl-2 family and trigger an intrinsic

apoptotic pathway, thus resulting in neuron death [11,122].

The MST–FOXO-mediated neuron death could be con-

sidered as a branch of the Hippo pathway. Activation of

MST kinase is also induced by oxidative stress, which has

been associated with various diseases including neurodegen-

eration [122–124]. Knockdown of FOXO can rescue MST1

overexpression- or oxidative stress-induced neuron death

[125], supporting that FOXO acts as a downstream effector of

MST1. However, it remains unclear whether depletion of

MST1 is sufficient to rescue the AbPP-mediated neuron death.

AKT has also been reported to phosphorylate FOXO, whereas

AKT-dependent FOXO phosphorylation blocks the kinase

activity of MST1 towards FOXO [126]. In contrast with MST1

phosphorylation, FOXO phosphorylation by AKT promotes

its cytoplasmic retention, thereby preventing FOXO-mediated

apoptosis [127–131]. In addition, activation of AKT can prevent

the toxic effect of AbPP [132–134]. Collectively, these studies

suggest a protective role of AKT in AbPP-mediated neuron

death. Notably, AKT activation is inhibited by MST phosphoryl-

ation, indicating a mutual inhibition between MST and AKT

kinases in FOXO regulation [126]. Intriguingly, YAP/TAZ has

been proposed to act as downstream mediators of amyloid pre-

cursor protein signalling through physically interacting with the

amyloid precursor protein and forming a transcriptionally

active protein complex [12]. These findings may link the core

components of the Hippo pathway to AD pathogenesis,

although the detailed mechanisms await further investigation.

MST1 kinase has also been reported as an important

regulator in skeletal muscle atrophy caused by denervation,

ageing and metabolic diseases. Upregulation of MST1 induces

muscle atrophy through phosphorylating and inducing nuclear

accumulation of FOXO3a, thereby activating multiple auto-

phagy genes. Furthermore, the neurogenic atrophy can be

attenuated in Mst1 homozygous null mice [13]. Amyotrophic

lateral sclerosis (ALS) is a severe progressive neurodegenerative

disorder that involves the death of motor neurons. When the

motor neurons die, patients progressively lose the ability to

control muscle movement, thereby disrupting speech, eating,

moving and breathing. The elevation of MST1 activity has

been reported in motor neurons from a mouse model of ALS

[14]. Mutations of Cu/Zn superoxide dismutase type-1

(SOD1), a crucial enzyme for cellular antioxidant defence mech-

anisms, have been linked to a hereditary form of ALS [135].

ALS-associated SOD1 (G93A) mutant induces MST1 activation

in neurons in an oxidative stress-dependent manner. Increased

MST1 causes autophagosome accumulation and death of

motor neurons through activation of p38 and caspases. ALS

phenotypes can be attenuated when MST1 is depleted in an

ALS mouse model [14], indicating that MST1 activity plays a

critical role for ALS pathogenesis. In this regard, future studies

on the pathogenic roles of MST1 in ALS will inspire a potential

route for targeting therapies. Moreover, YAP–p73-mediated

neuron death has been reported in an ALS mouse model [15].

These findings indicate that the pro-apoptotic signalling

mediated by MST1–YAP–p73 not only causes multiple types
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of neurodegenerative disorders but also suppresses tumourigen-

esis in certain tumour types [106,107,136,137].

3.3. Metabolic disorder
Recent study has revealed that hyperactivation of MST1 kinase

plays an essential role in triggering the initiation of b-cell death

and disruption of insulin secretion, thereby resulting in dia-

betes [16]. The destruction of insulin-producing b-cells

caused by apoptotic cell death is a hallmark of both type 1

and type 2 diabetes. In diabetic human and mouse b-cells,

MST1 is highly activated and directly phosphorylates the criti-

cal b-cell transcription factor, pancreatic and duodenal

homeobox 1 (PDX1), leading to the subsequent degradation

of PDX1 and insulin secretion failure. Notably, loss of MST1

is sufficient to rescue survival and insulin tolerance of pan-

creatic b-cells through preservation of PDX1 [16]. Mst12/2

mice are also protected from diabetogenic stimulation,

suggesting MST1 could be a potential therapeutic target for

treating diabetes. TEAD–YAP has been shown to activate

key pancreatic transcription factors such as PDX1 [138]. How-

ever, it is currently unknown whether YAP/TAZ activity is

inhibited in the MST1-mediated b-cell death. Hence, it will

be attractive to elucidate the cellular mechanisms by which

MST1 is hyperactivated under diabetic stimuli.

3.4. Infertility disease
Polycystic ovarian syndrome (PCOS) is the most common endo-

crine disorder among reproductive-age women, which results

in infertility, menstrual disorders, metabolic symptoms and

endometrial cancer. Although PCOS has been strongly

suggested as a genetic disease, the pathology and cause of

PCOS is largely uncertain. In patients with PCOS or primary

ovarian insufficiency (POI), infertility treatment has been pro-

posed to promote ovarian follicle growth. Facilitating ovarian

follicle growth by promoting actin polymerization is sufficient

to induce the nuclear translocation of YAP and subsequent

activation of the downstream target genes BIRC (baculoviral

inhibitors of apoptosis repeat containing) and CTGF (connec-

tive tissue growth factor) in a PCOS mouse model and POI

patients [139,140]. Hence, inhibition of Hippo signal transduc-

tion provides a treatment for ovarian disorders, although the

underlying mechanism remains elusive. It will be noteworthy

to further address: (i) whether the Hippo pathway is hyperacti-

vated in defective ovaries, (ii) which component(s) of the Hippo

pathway is deregulated in animal models or human patients

with defective ovaries and (iii) whether the pathogenesis of

PCOS or POI is caused by decreased cellular proliferation

and/or increased apoptosis upon Hippo pathway activation.

3.5. Disease implications of helix-loop-helix proteins
and the Hippo pathway

Deregulated E proteins and ID proteins are known to contribute

to a variety of diseases [95,141–143]. Therefore, the discovery

of the regulatory mechanism between E/ID proteins and the

Hippo pathway [94] pinpoints an important insight for

the physiological control to maintain organ integrity. To date,

there has been no direct evidence linking the hyperactivated

Hippo pathway, HLH proteins and disease, but there are

some intriguing clues for the potential involvement in diseases.
For instance, Id4 homozygous null (Id42/2) mice have been

shown to enhance adipogenesis and reduce osteogenenic differ-

entiation [144]. Similarly, depletion of TAZ has been reported to

promote adipogenesis [99]. The promising phenotypes may

motivate further investigations to study whether the aforemen-

tioned intrinsic regulation involving the HLH proteins–Hippo

pathway axis can promote adipogenesis. Future studies may

also extend the current view that the involvement of YAP/

TAZ in mesenchymal stem cell differentiation (adipogenesis

and osteogenesis) is governed by mechanical cues.

A role for ID proteins has been suggested in circadian

rhythm. ID proteins have been reported to regulate circadian

rhythm through sequestering the circadian bHLH transcription

factors CLOCK and BMAL, thus reducing expression of the

Period (Per) clock protein [145,146]. By modulating the activity

of CLOCK, BMAL and Per, casein kinase 1 (CK1) has been

thought to be an important regulator for circadian rhythms.

Intriguingly, CK1 promotes YAP/TAZ degradation through

b-TRCP E3 ligase [38,41], suggesting YAP/TAZ may be impli-

cated in circadian regulation. Deregulation ofb-TRCP E3 ligase-

dependent protein degradation has been reported to contribute

to autosomal dominant polycystic kidney disease (PKD), which

is frequently caused by inactivating mutations in the PKD1 and

PKD2 genes [147]. TAZ homozygous null mutant mice display

symptoms of PKD due to accumulation of product of the PKD2
gene, polycystin-2. TAZ binds and targets polycystin-2

for degradation through the b-TRCP E3 ligase pathway [148].

Polycystin-2 can sequester ID proteins in the cytoplasm through

direct interaction. PKD phenotypes have been observed when

the interaction between polycystin-2 and ID2 is disrupted

[149]. Taken together, these findings suggest that the crosstalk

between E/ID proteins and the Hippo pathway may be

involved in circadian rhythm and PKD. However, the connec-

tions between these lines of evidence are only correlations

without clear mechanistic support. Further studies are needed

to characterize the connection and involvement of YAP/TAZ

and ID proteins in circadian cycles and PKD pathogenesis.

Id3 homozygous null mice have been reported to induce

features of Sjogren’s syndrome [150], a chronic autoimmune

disease, which disrupts salivary and lachrymal glands. Unex-

pectedly, the nuclear accumulation of TAZ has been reported

to be sufficient to cause Sjogren’s syndrome [151]. Although

this is in opposition to the current knowledge of the HLH–

Hippo regulatory aspect (figure 2), it remains interesting to

determine the potential connection between E/ID proteins

and Hippo pathway in Sjogren’s syndrome. For instance, it

will be useful to understand whether depletion of TAZ in

Id32/2 mice relieves the symptoms of Sjogren’s syndrome.
4. Conclusion
At present, most dysfunctions of upstream regulators, kinases

and downstream effectors of the Hippo pathway often lead to

inhibition of Hippo signal transduction and are associated

with overproliferative disorders such as cancer. However,

aspects regarding activation of the Hippo pathway are also fun-

damental. By describing the recent advances in disease

implications of Hippo activation, this review attempts to inspire

future research of the underlying mechanisms and potential

therapeutics for these diseases. Accumulating evidence has

strongly linked TEAD1 disruption or MST kinases activation

to many diseases, such as Sveinsson’s chorioretinal atrophy,
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Figure 2. Intrinsic Hippo activation by Drosophila HLH proteins. Depletion of
Drosophila ID protein results in elevated Drosophila E protein. The high levels
of E protein activate ex transcription through binding to the E-box sites in the
cis-regulatory element, thereby activating the Hippo pathway. The hyperacti-
vated Hippo pathway prevents cellular proliferation and survival, leading to
the elimination of misspecified progenitor cells.
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AC, AD, skeletal muscle atrophy, ALS and diabetes. Neverthe-

less, how these diseases are related to the roles of the Hippo

pathway in normal development is still unclear and remains

to be investigated. Small molecule inhibitors targeting Hippo

pathway components have been reported to suppress tumouri-

genesis in various cancer cell lines [1]. However, some

molecules may function oppositely. For instance, compound

9E1 has been shown to inhibit MST1 kinase activity and LPA,

S1P or thrombin can target GPCR signalling to inhibit LATS

kinase activity, thus promoting transcriptional activity of

YAP/TAZ [67,71,72,152]. Therefore, these kinase inhibitors

could be considered as potential therapeutic strategies to treat

disorders caused by hyperactive Hippo signalling.

Interestingly, aberrant activation of MST kinases appears to

cause a broad range of diseases occurring in multiple organs.

For instance, MST activation can result in AD and diabetes.
A possible mechanistic link between diabetes and AD is

suggested by studies indicating that type 2 diabetes patients

have a higher risk of developing AD [153]. It is interesting to

speculate that hyperactive Hippo signalling is a common

cause of diverse diseases in different organs. Future studies

will be required to determine whether and how the Hippo

pathway becomes globally hyperactive in vivo.

Apoptosis caused by hyperactive MST has been shown to

act through FOXO (FOXO3) or AKT in some cases, although

it remains to be tested if, and how, YAP/TAZ is involved

in MST–FOXO- or MST–AKT-mediated apoptotic signalling.

Interestingly, it has been reported that YAP can act as a

transcriptional co-activatorof FOXO1 in regulating the transcrip-

tion of antioxidant genes in cardiomyocytes. Thus, hyperactive

Hippo signalling stimulates cell death by inhibiting YAP–

FOXO1-mediated gene expression in response to oxidative

stress [154]. Recent work illustrates that dysregulated HLH tran-

scription factors are sufficient to activate the Hippo signalling

pathway. Results from this work demonstrate that the hyperac-

tive Hippo pathway indeed contributes to apoptosis dependent

upon the elimination of Yki/YAP/TAZ activity [94]. So far, con-

nections between HLH proteins and core components of the

Hippo pathway have not been proposed as direct causes of par-

ticular diseases or defects. However, independent evidence has

implicated the roles of HLH proteins or Hippo components in

adipogenesis, circadian regulation and Sjogren’s syndrome. It

would be informative to substantiate the association of HLH

proteins with Hippo components in adipogenesis, circadian

regulation, Sjogren’s syndrome and other potential diseases.

Clear challenges remain to clarify the pathogenesis at the

molecular and cellular level.
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