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Abstract: Thin layers of silver nanowires are commonly studied for transparent electronics. However,
reports of their terahertz (THz) properties are scarce. Here, we present the electrical and optical
properties of thin silver nanowire layers with increasing densities at THz frequencies. We demonstrate
that the absorbance, transmittance and reflectance of the metal nanowire layers in the frequency
range of 0.2 THz to 1.3 THz is non-monotonic and depends on the nanowire dimensions and filling
factor. We also present and validate a theoretical approach describing well the experimental results
and allowing the fitting of the THz response of the nanowire layers by a Drude–Smith model of
conductivity. Our results pave the way toward the application of silver nanowires as a prospective
material for transparent and conductive coatings, and printable antennas operating in the terahertz
range—significant for future wireless communication devices.

Keywords: silver nanowire; AgNWs; terahertz time-domain spectroscopy; terahertz frequency-
domain spectroscopy

1. Introduction

Rapid digitization of the world results in higher and higher expectations for the
electronics industry [1]. In particular, the attention is focused on the new group of electronic
devices, which are expected to transfer information with speeds going up to hundreds of
Gigabits per second. For this reason, high hopes are pinned on terahertz (THz) radiation
that can carry high data rates with simplified modulation schemes. The THz frequency
range became the subject of intense research only in the 1990s [2,3]. This has been caused

Materials 2021, 14, 7399. https://doi.org/10.3390/ma14237399 https://www.mdpi.com/journal/materials

https://www.mdpi.com/journal/materials
https://www.mdpi.com
https://orcid.org/0000-0002-3143-5491
https://orcid.org/0000-0003-0368-1668
https://orcid.org/0000-0002-3578-8972
https://orcid.org/0000-0001-6616-2932
https://orcid.org/0000-0001-9265-3786
https://orcid.org/0000-0003-4948-2023
https://orcid.org/0000-0002-8867-0927
https://orcid.org/0000-0002-0735-4608
https://orcid.org/0000-0003-1229-0626
https://orcid.org/0000-0002-6898-4638
https://orcid.org/0000-0002-3138-5105
https://orcid.org/0000-0002-1610-4221
https://orcid.org/0000-0003-3339-9137
https://orcid.org/0000-0001-7261-8350
https://orcid.org/0000-0003-4537-8712
https://orcid.org/0000-0003-1443-403X
https://doi.org/10.3390/ma14237399
https://doi.org/10.3390/ma14237399
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/ma14237399
https://www.mdpi.com/journal/materials
https://www.mdpi.com/article/10.3390/ma14237399?type=check_update&version=2


Materials 2021, 14, 7399 2 of 12

by difficulties with designing devices capable of generating, detecting, and modulating the
signals [2,4]. The fast development of technology in various fields has opened new doors for
broad applications of THz radiation, not only for wireless high data rate communication but
also in medical diagnosis, imaging techniques, non-destructive testing, security screening,
sensing of contamination in water, food and medicines [3,5–9].

The conventional techniques that are currently used in antenna manufacturing cannot
fulfil the growing expectations of certain emerging applications which require antennas
with high transparency and flexibility [1]. To address this issue, the present research focuses
on implementing functional materials, e.g., graphene [10–12], carbon nanotubes [8,13],
and metallic nanostructures [14–21], for the design of miniaturized and tunable antennas.
The conductivity of the metal defines the antenna performance, such as radiation effi-
ciency [22]. In metal nanowire networks, adjusting the length, diameter, and concentration
of wires allows tuning of the optical/THz properties that may lead to improvement of
the efficiency of nanowire-based antennas [14,18,23,24]. Metal nanowires, especially silver
nanowires (AgNWs), are a prospective material for nanoelectronic circuits, transparent and
conductive coatings, printable antennas, and other applications [22,25–30]. There are nu-
merous reports on the fabrication of AgNW layers, such as vacuum filtration [31,32], transfer
printing [33–35], air-spraying from suspension [36,37], and rod-coating technique [38,39].
Nevertheless, all of these methods present several challenges related to the inability to
obtain layers that would simultaneously exhibit excellent high-frequency/THz properties,
low surface roughness, high transparency, flexibility, and stretchability [35,40]. The direct
deposition of AgNW layers by printing seems to be the most attractive and promising tech-
nique due to its advantages, such as low cost, the facility of production, and the feasibility
of large-scale integration [33,41].

One of the AgNW layers’ essential characteristic (which is crucial for THz antennas
and reflective surfaces) is the relatively high and frequency-independent conductivity in a
wide frequency range [14,36]. It has been demonstrated that AgNW films with relatively
high optical transparency are suitable for plasmonic devices operating in the THz range [25].
Additionally, a hybrid THz slot antenna based on a AgNWs network film was described as
a promising device for an extremely sensitive microbial detection [22].

The characterization of nano-sized materials in 2D layers is a challenging problem.
The reflection/transmission measurement based on the Nicolson-Ross-Weir parameter
extraction algorithm is the most commonly used characterization method [42]. There are
also various methods based on cavities and open resonators[43]. These methods, however,
are problematic when applied to very thin and lossy materials.

In this article, we present the deposition by vacuum filtration of thin silver nanowire
layers of various diameters, lengths, and surface densities. Except for the standard char-
acterization methods (AFM, UV-Vis-IR spectroscopy), we also present systematic trans-
mission and reflectivity measurements in the THz range (0.2 THz to 1.3 THz) with two
different systems: pulsed time-domain spectroscopy (TDS) and continuous-wave (CW)
frequency-domain spectroscopy. The experimentally observed dependencies are described
by establishing the relation between the nanowire layer structure and the network’s elec-
tromagnetic response. A modified Drude–Smith model of conductivity indicates that the
samples with a low density of nanowires follow the Drude–Smith model with a backscat-
tering coefficient close to −1, and samples with a high density form a semi-continuous
metallic layer. Our results indicate that silver nanowires are prospective material for nano-
electronic circuits, transparent and conductive coatings, and printable antennas operating
in the terahertz range—significant for 5G and beyond, wireless communications.

2. Experimental
2.1. Sample Preparation

The samples were prepared from commercial AgNWs in isopropanol (IPA) suspension
(MilliporeSigma; Burlington, MA, USA); 5 mg/mL, product numbers 807389, 807176,
and 807052) with three nanowire dimensions, detailed in Table 1. The volume equal
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to 100 µL of the AgNW-IPA suspension was next added to 300 mL of deionized H2O
and mixed in an ultrasonic bath for 30 min. Uniformly distributed AgNW layers were
obtained by vacuum filtration of the diluted suspension with volumes ranging from 2 mL
to 30 mL onto polyvinylidene difluoride membranes (MilliporeSigma; HVLP, 0.45 µm
pore size, 25 mm diameter, 125 µm thickness). The membranes were chosen as highly
transparent in the THz frequency range of interest. This sample preparation method
required no additional transfer of the nanowires to different substrates and enabled direct
THz characterization of the samples on the membranes. The samples were dried in air and
stored in N2 atmosphere in the special dry cabinet to avoid degradation of the nanowires,
in accordance with the recommendations in the safety data sheet [27].

Table 1. Nanowire dimensions.

Sample Diameter (nm) Length (µm)

A 40± 5 35± 5
B 35± 5 25± 5
C 30± 5 20± 3

2.2. Sample Characterization

Scanning electron microscope (SEM) imaging was performed with a high-resolution
SEM Zeiss Ultra 55 with a secondary electron detector, an acceleration voltage of 2 kV,
and a working distance of 3 mm. Figure 1 shows representative SEM images of the AgNW
layers with increasing densities from (a) individual nanowires on the porous substrate,
(b) an interconnected nanowire network at approximately the percolation threshold, to (c) a
dense nanowire layer forming a continuous network. The AgNWs were distributed on
the HVLP membrane uniformly. Please note that the dark circular features in Figure 1a,b
originate from the morphology of the porous substrate and the nanowires are represented
by the individual bright lines. As can be observed in the Figure 1d at higher magnifi-
cation, the nanowires surfaces are smooth and free from crystalline oxidation products.
Only sample C is illustrated in Figure 1, samples A and B were without any visual dif-
ferences in the SEM figures. Chemical composition of AgNWs on mixed cellulose esters
membrane (MilliporeSigma; MCE, 0.45 µm pore size) was analyzed using a combined scan-
ning electron/focused ion beam Quanta 3D FEG microscopy (SEM/FIB), equipped with
the integrated EDAX Pegasus EDS (Energy Dispersive X-Ray Analysis) and EBSD (Elec-
tron Backscatter Diffraction) system. Measurements were carried out with the acceleration
voltage of 20 kV. Figure 2 exhibits the SEM micrograph of AgNWs on membrane (sample B)
with corresponding EDS mapping. The performed EDS analysis confirmed the presence
of silver, oxygen and carbon on the sample surface. The percentage weight ratio of Ag,
O and C is 19.02, 17.25 and 63.73, respectively (Figure 2b). As can be observed, the presence
of carbon is related to the substrate on which the nanowires were deposited (Figure 2c).
In the mapping image, oxygen comes also from MCE membrane, but it is also found in the
AgNWs region (Figure 2d), which can be explained by the oxidation of AgNWs. The dis-
persion of Ag on analyzed area is shown in the in Figure 2e. As can be seen, this element is
in the area of silver nanowires.
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Figure 1. SEM images of AgNWs C samples with (a) lowest sample density, showing individual
nanowires and the morphology of the porous substrate (dark features), (b) intermediate sample
density at the percolation threshold, where the nanowires form a connected network, (c) highest
sample density with the nanowires forming a semi-continuous metallic layer, (d) high magnification
of (c).

Figure 2. SEM-EDS analysis of AgNWs B sample: (a) SEM image of the analyzed area; (b) cumulative
map of elements distribution in the area of interest with the percentage content of individual elements;
distribution maps of carbon (c), oxygen (d) and silver (e).

Atomic force microscopy (AFM) was performed with a Veeco Dimension 5000 sys-
tem. A typical AFM image of the AgNWs on a PET substrate is shown in Figure S1.
From the SEM and AFM images, the samples’ thicknesses were estimated to range from
an individual nanowire to a thick, dense layer: approximately between 50 nm and 1 µm.
The optical transmittance spectra were obtained with a Perkin Elmer UV-Vis-NIR Lambda
1050+ spectrometer in the wavelength range of 300 nm to 800 nm. The optical absorbance
of the samples in solution is shown in Figure 3, with a well-known, characteristic strong
peak between 370 nm and 390 nm originating from the transverse plasmon resonance of
the nanowires. The optical properties of AgNWs samples depending on the diameter,
was previously described in reference [27]. The AgNWs in IPA solution and after the vac-
uum filtration process were measured with Bruker Vertex 80v Fourier Transform Infrared
Spectrometer (FTIR), the spectra are shown in Figure S2.



Materials 2021, 14, 7399 5 of 12

Figure 3. Normalized optical absorbance of the three AgNW sample suspensions.

2.3. Terahertz Time-Domain Spectroscopy

A terahertz TDS was used in transmission mode to extract the complex conductance
of the AgNWs. An infrared femtosecond laser generates a series of pulses with a 1040 nm
central wavelength, 200 fs pulse duration, 70 MHz repetition rate, and 15 nJ pulse energy.
The laser beam is split into a probe beam and a pump beam with an energy ratio of 10%
to 90%. The path of the pump beam is controlled by an optical delay line and modulated
by a chopper at 667 Hz. The THz radiation is generated in an InAs crystal (in a magnetic
field of 2 T). After passing through an IR filter, the THz beam incidents on the sample and
reaches the CdTe semiconductor detector. The probe beam passes through a half-wave
plate, a Glan prism, and meets with the THz beam on the CdTe surface. The polarization of
the probe beam varies proportionally to the THz wave amplitude at a given time point,
depending on the position of the time delay line. The beam is split into two orthogonally
polarized components by a Wollaston prism and detected with balanced photodiodes.

The schematic diagram of the THz-TDS setup is illustrated in Figure S3. A signal to
noise ratio of 45 dB is achieved over the frequency range of 0.1 THz to 1 THz. The measure-
ments were carried out at room temperature and relative humidity of 55%. The sample
area under study was a circle of a diameter of 5 mm.

2.4. Terahertz Frequency-Domain Spectroscopy

A commercial continuous-wave terahertz spectrometer (Toptica TeraScan 1550) was
used for the frequency-domain measurements of the samples. The CW-THz spectrometer
contains two distributed-feedback diode lasers (laser 1 and laser 2) working in the system
using the photomixing technique, where the generated THz signal is equal to the frequency
of the laser heterodyne [44]. Scanning of the THz frequency is achieved by cooling one while
heating the other laser, which tunes the wavelength around the central value of 1.5 µm.
Both lasers are combined to a beating signal via a 50:50 fiber coupler. The beating signal is
split into the emitter (Tx) and the receiver (Rx) branch. The beat can be varied continuously
from 0 to 1.2 THz, defining the frequency range of the spectrometer, with a practical
lower limit of the setup around 50 GHz [45]. The laser beating signal is transformed via
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a self-complementary broadband antenna on an InGaAs photodiode into the terahertz
wave. The photomixers are placed on a hyper-hemispherical silicon lens, which suppresses
back-reflections and pre-collimates the THz radiation in free space. The emitter is gated
with a DC signal bias and a modulation AC lock-in signal. The receiver is connected to a
lock-in signal amplifier. The bare substrate without nanowires and a silicon wafer were
measured for reference.

A schematic diagram of the system is illustrated in Figure S4a. The THz quasi-optical
feed consists of four parabolic mirrors that can be configured in transmission or reflection
with an incident angle of approx 10 degrees. The system achieves a peak dynamic range
of 90 dB at 200 GHz (see Figure S4b) and a spectral resolution of 2 GHz. A control silicon
wafer and an empty porous membrane were measured for reference (see Figure S5).

3. Results and Discussion

Time-domain waveforms of the THz pulses transmitted through the samples (Ag-
NWs on the substrate), the bare substrate, and air as a reference are shown in Figure S6.
The amplitude and phase as a function of the frequency were calculated by fast Fourier
transform (FFT) of the time-domain pulses. For the CW system, the amplitude spectrum
was obtained from the measured frequency-domain photocurrent (see Figure S7). The am-
plitude of each local maximum was averaged with the adjacent minimum to remove DC
offsets in the photocurrent and was linearly interpolated to the original frequency point.

The transmittance for both systems was obtained as the ratio of amplitudes through
the samples and the bare substrate (see Figure S8, dashed lines for TDS and solid lines for
the CW system). The bare substrate shows a transparency of around 95% in the 0.1 THz
to 1.3 THz range due to its highly porous nature. The measurements from both TDS and
CW systems prove to be in good agreement showing that both methods are well adapted
for characterizing AgNW layers. The samples’ transmittances are decreasing with the
increasing nanowire densities and are relatively flat over the measured frequency range.
We attribute the differences in transmittance between the samples A, B, and C to differences
in the filling factor, i.e., the fraction of nanowires volume to the total volume of the layers.
As both the average diameter and length of the nanowires decreases from sample A to C,
more nanowires per unit volume are present in samples C than A for the same density.

The complex conductance of the nanowire layer as a function of the frequency ω was
calculated from the measured transmittance as [46]:

σ̂(ω) =
1

Z0
(n̂sub + 1)

(
Ê0(ω)

Ê(ω)
− 1
)

, (1)

where Z0 = 377 Ω is the impedance of free space, n̂sub is the complex refractive index of
the substrate, and Ê0(ω) and Ê(ω) are the complex electric field amplitudes of THz wave,
transmitted through the bare substrate and the substrate with the nanowires. The complex
refractive index of the substrate was extracted from a reference measurement of the filter
without nanowires. The calculated conductance of the samples is shown in Figure 4.
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Figure 4. Real and Imaginary parts of the samples’ THz conductance with different nanowire
densities, calculated from the TDS measurement data according to (Equation (1)).

The measured transmittance was fitted by a physical model of THz conductivity to
estimate the 3D filling factor of the nanowires f and the layer thickness h. The single-
scattering approximation of the Drude–Smith model was used in the form [47,48]:

εe f f (ω) = ε∞ −
ω2

p

ω(ω− iγ)

(
1 +

C1

1− iω/γ

)
, (2)

where ε∞ = 0.11, ωp is the effective plasma frequency, γ is the damping factor, and C1
is the backscattering parameter. The obtained fitting parameters are given in Table 2 for
decreasing nanowire densities of several samples C. The transmittance T of the NW layer
under normal incidence reads as [27]:

T =
2

2 cos (ke f f h)− i sin (ke f f h)
(√

εe f f + 1/√εe f f

) , (3)

where ke f f = k√εe f f , and k is the wavenumber in free space. The reflection coefficient is
expressed as:

R = 1− T
[
cos (ke f f h)− i

√
1/εe f f sin (ke f f h)

]
. (4)

The absorbance and reflectance were calculated according to A = 1− |T|2 − |R|2. The cal-
culated and fitted T, A, and R are shown in Figure 5 for AgNW samples C with differ-
ent densities.
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Table 2. Drude–Smith fitting parameters for AgNW samples C.

Sample h (nm) f C1 γ (Hz)

C8 1200 0.35 0 2.45 · 1015

C7 800 0.2 0 1.4 · 1015

C6 570 0.1 0 7.0 · 1014

C5 275 0.08 0 5.6 · 1014

C4 250 0.085 −0.983 5.95 · 1014

C3 180 0.08 −0.997 5.6 · 1014

C2 80 0.1 −1 7.35 · 1014

C1 80 0.11 −1 7.7 · 1014

Figure 5. Transmittance (solid lines—measured, dashed lines—calculated), Absorbance and Re-
flectance (calculated) of AgNWs samples C with different nanowire densities extracted from the
fitted Drude–Smith conductivity model according to (Equations (3) and (4)) and Table 2.

The fitted layer thicknesses h match those observed with AFM and SEM. For the
samples with the lowest nanowire densities (C1 to C4), the effective plasma frequency
is taken equal to the one of bulk silver ωp,Ag = 1.32 · 1016 rad/s. The fitted scattering
parameter C1 is close to −1, which indicates high carrier localization in the nanowires
and preferential backscattering. Such behavior can be explained by the backscattering of
electrons from the nanowire walls, usually observed for networks below the percolation
threshold. For the samples with the highest nanowire densities (C5 to C8), the scattering
parameter C1 is set to 0, equal to Drude-like scattering. In this case, the conductivity
corresponds to a semi-continuous metallic layer, with an effective plasma frequency taken
as ω2

p = ω2
p,Ag · f , with f the filling factor of the nanowire network. These two THz

conductivity models explain the measured effective conductivity, where the imaginary part
is negative for high density samples (C5 to C8) and positive for low density samples (C1 to
C4). We would like to stress that the theoretical approach describes well the experimental
results and therefore it shows that can be used for modelling/predicting the THz response
as a function of the nanowire layer structure.

The fitted parameters are compared to those found in the literature for bulk silver and
AgNW layers fabricated by different deposition methods in Table 3. Significant differences
are observed in the range of THz conductivities and carrier scattering times that we mainly
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attribute to the differences in cross-section area of the nanowires. The comparative table
highlights the importance of the selection of nanowire dimensions for achieving the desired
THz performance of thin AgNW layers.

Table 3. Comparison of the THz properties of AgNWs found in the literature. d—nanowire diameter, l—nanowire length, h—
layer thickness, f —filling factor, ω—frequency range, σ—real part of the THz conductivity, C1—backscattering parameter,
ωp—effective plasma frequency, 1/γ—carrier scattering time. N.A.—not applicable, “—” indicates that data have not been
reported. Adapted from [36], with the permission of AIP Publishing. Adapted with permission from [49], © 2014 American
Chemical Society.

Nanowire d l h f ω σ C1 ωp/2π 1/γ
Ref. Deposition (nm) (µm) (nm) (%) (THz) (S/cm) (THz) (fs)

[50] Bulk Ag N.A. N.A. N.A. 100 5.4–600 6 · 105 0 2181 230
[36] Bar coating 90± 10 5± 2 Monolayer 1.5–14.8 0.3–1.5 0–50 −0.99 174–187 25–28
[49] Spin coating 70–100 10 — 8–30 0.4–2 300–1600 −0.9–0 300–1500 20–80
[30] Spray coating 50 10 120–240 — 0.2–2 4–830 — — —

Here Vacuum filter. 30± 5 20± 3 80–1200 8–35 0.2–1.3 4–230 −1–0 590–2100 0.4–1.8

4. Conclusions

We have deposited and experimentally characterized thin layers of silver nanowires in
the 0.2 THz to 1.3 THz frequency range. In particular, samples with three different nanowire
morphologies and increasing densities were measured in a transmission geometry by
terahertz spectroscopy, both in time and frequency domains. The results obtained from the
two systems are in good agreement and allow the validation of both experimental methods
for the characterization of silver nanowire layers. We extracted from the measurements
the complex conductance of the samples with varying densities, which exhibits a real part
that ranges over two orders of magnitude (roughly between 1 mS and 100 mS) and an
imaginary part that shows a transition from negative to positive values. The results were
fitted with a modified Drude–Smith model of conductivity. The samples with a low density
of disconnected nanowires follow the Drude–Smith model with a backscattering coefficient
close to −1, indicating high localization of electrons in the nanowires. The samples with
a high density form a semi-continuous metallic layer that follows a Drude-like model of
conductivity with an effective plasma frequency adjusted by the 3D filling factor of the
nanowires. The relatively constant conductance of the nanowire layers in a broad frequency
range is of particular interest, as tunable transparent coatings are distinctly demanded
for high-frequency applications. Knowledge of the THz permittivity and conductivity of
silver nanowire networks paves the way toward the application of silver nanowires as
a prospective material for nanoelectronic circuits, transparent and conductive coatings,
and printable THz antennas, essential for future wireless communication systems.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/ma14237399/s1, Figure S1: AFM image of the AgNWs network, Figure S2: FTIR spectrum
of AgNWs, Figure S3: Schematic diagram of the THz-TDS system, Figure S4: (a) Schematic diagram
of the THz-CW spectrometer. (b) The signal-to-noise ratio of the system, Figure S5: Measured trans-
mittance of a bare substrate and a silicon wafer as reference, Figure S6: Measured time-domain
THz pulses through the air as a reference, the substrate, and several samples A with different
nanowire densities, Figure S7: Measured frequency-domain THz photocurrent through the air as a
reference, the substrate, and several samples A with different nanowire densities, Figure S8: Mea-
sured amplitude transmittance through the samples (normalized to the substrate) with increasing
nanowire densities.
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