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The existence of multiple stable equilibria in models of parasitic helminth
transmission was a ground-breaking discovery over 30 years ago. An impli-
cation of this discovery, that there is a level of infection below which
transmission cannot self-sustain called the transmission breakpoint, has in
part motivated the push towards the elimination of many human diseases
caused by the multiple species of helminth worldwide. In the absence of
vaccines, the predominant method in this push towards elimination is to
repeatedly administer endemic populations with anthelmintic drugs, over
several treatment rounds, in what has become to be known as mass drug
administration (MDA). MDAwill inevitably alter the distribution of parasite
burdens among hosts from the baseline distribution, and significantly,
the location of the transmission breakpoint is known to be dependent
on the level of aggregation of this distribution—for a given mean worm
burden, more highly aggregated distributions where fewer individuals
harbour most of the burden, will have a lower transmission breakpoint.
In this paper, we employ a probabilistic analysis of the changes to the
distribution of burdens in a population undergoing MDA, and simple
approximations, to determine how key aspects of the programmes (includ-
ing compliance, drug efficacy and treatment coverage) affect the location
of the transmission breakpoint. We find that individual compliance to treat-
ment, which determines the number of times an individual participates
in mass drug administration programmes, is key to the location of the break-
point, indicating the vital importance to ensure that people are not routinely
missed in these programmes.
1. Introduction
A defining feature of the epidemiology of macroparasites is that the parasite
burden of an individual is positively correlated to infectiousness and morbidity
[1]. These macroparasites are largely helminth species (digeneans and nema-
todes) some of which are widespread infections of humans and livestock and
a major health burden in regions of endemic infection. The generation time
of macroparasites in the human host is typically on the scale of years, and
hosts who harbour large numbers of parasites are responsible for a much
greater proportion of transmission than those who are infected with smaller
burdens. A phenomenon that is typically observed when measuring the inten-
sity of parasitic infections within a population is that the distribution of
parasites among hosts is overdispersed where the variance in parasite load is
much larger than the mean value. The negative binomial probability model is
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widely used to describe these distributions of parasite burdens.
Stated more simply, there tends to be a small number of hosts
who harbour very large burdens while the majority of hosts
harbour low burdens. Typically, over 80% of the parasites are
harboured by fewer than 20% of the hosts [2].

The negative binomial distribution is typically a good fit to
observed patterns in both humans and other vertebrate host
species. The distribution has two parameters, the mean, m,
and an aggregation parameter, k, which is inversely related to
the degree of over dispersion and hence is small in value
when parasites are highly aggregated within the host popu-
lation. The distribution converges to Poisson in the limit
k→∞ (the Poisson distribution is a close approximation for
k > 5) and corresponds to parasites infecting each host inde-
pendently with equal probability, while k being small
indicates high aggregation. The negative binomial probability
model is chosen largely for convenience as a flexible distri-
bution which fits a large range of ecological data, and which
is unspecific about possible causal mechanisms which generate
it [2]. It can arise from compounding Poisson distributionswith
different mean values or by generalization [3].

Parasitic worms, also known as helminths, are a leading
cause of human morbidity around the globe. Among the
important macroparasites that infect humans, it is estimated
that soil-transmitted helminths, schistosomes and filarial
worms currently infect over one billion peopleworldwide, dis-
proportionally affecting low-income and developing countries
in sub-Saharan Africa, Asia and the Americas. Controlling
the morbidity of these diseases is primarily performed by
large-scale deworming programmes employing anthelmintic
drugs, referred to as mass drug administration (MDA), in
which drugs are supplied towhole communities at a given fre-
quency (once a year or more or less frequently depending on
the intensity of transmission as measured by the basic repro-
ductive number R0) to suppress the prevalence and average
intensity of infection. These interventions may have a major
effect on the distribution of worm burden, and may, in some
circumstances, invalidate the common assumption that the
distribution is well characterized by a negative binomial distri-
bution. An example of such a situation would be when
individual compliance to treatment varies greatly in a popu-
lation, such that a few individuals never receive treatment
either via personal choice or poor access to treatment
provision.

The importance of the degree of parasite aggregation to
the transmission dynamics of these helminth parasites has
been documented in a number of publications. Mathematical
models of transmission suggest the existence of three possible
equilibria in the mean parasite burden, where two stable
states of endemic infection and parasite extinction are separ-
ated by an unstable state which is termed the transmission
breakpoint [1,4,5]. The quantitative difference between the
mean worm load at the unstable state and parasite extinction
decreases as the degree of parasite aggregation rise and the
two converge as k tends to zero [5,6].

Good quality data describing the distributional changes in
parasite loads under repeatedMDA rounds is scarce because it
is not possible to directly count worm burdens in humans
except via worm expulsion or at autopsy. Typically, diagnos-
tics measure the intensity of infection using eggs counts
from urine, stool or blood samples or DNA detection (qPCR)
methods. However, information is beginning to emerge from
large scale trials of how best to conduct deworming
programmes, such as TUMIKIA and DeWorm3, that suggest
under repeated rounds of treatment the degree of worm aggre-
gation in the targeted communities rises steeply [7–9].
The generative mechanism or mechanisms are poorly under-
stood at present, but non-compliance to treatment in a small
proportion of the population looks to be one of great impor-
tance [10,11]. In this paper, we examine how this change in
the degree of aggregation, shifting the pattern away from the
negative binomial assumption impacts on the transmission
dynamics if the parasite, and most importantly how it influ-
ences the existence of a transmission breakpoint. Employing
a probabilistic model, we focus on the expected effect of
MDA on a population of helminth parasites which prior to
intervention is distributed as a negative binomial among its
human host population.

We characterize MDA by the number of repeated rounds,
the coverage (the proportion of people who receive treat-
ment), the efficacy of the drug regimen and the degree of
compliance as measured by the correlation of an individual’s
treatment over repeated rounds to record how past behaviour
in treatment dictates future behaviour. By considering these
four factors, we derive exact expressions for the parasite
distribution following rounds of repeated MDA, and com-
pare the resulting distributions to the negative binomial
distributions with the same moments up to second order.
We compare our analytic results, which ignore the transmis-
sion dynamics between MDA rounds, to those generated by a
numerical experiment in which a stochastic transmission
model simulates the dynamics between MDA rounds. We
also generate analytical expressions for the mean and a
measure of parasite aggregation (using various statistics
such as k and the variance to mean ratio) as the system relaxes
to equilibrium for a linear model, which allows us to account
for the dynamics of parasite aggregation over time as influ-
enced by many repeated MDA rounds. Finally, we use our
derived values for the mean and aggregation after succes-
sive MDA rounds to determine if it is possible to reach the
transmission breakpoint for different coverages and levels
of non-compliance.
2. A simple probability model of repeated mass
drug administration

2.1. The general post-mass drug administration
distribution

We begin with an initial population of parasites that is distrib-
uted as a negative binomial with mean m0 and aggregation k0,
and let X0 be a random variable sampled from this distri-
bution. The probability generating function for this negative
binomial distribution is the following expectation

GX0 (z) ¼ E zX0 ¼ 1þm
k
(1� z)

� ��k
: ð2:1Þ

We suppose that there are n rounds of chemotherapy, and
that in each round a fraction of the population c [ (0,1) is ran-
domly selected for treatment. Chemotherapy is modelled by
assuming the drug used has an efficacy, ε ∈ (0, 1), so that for
each individual parasite within the host the probability that
the drug kills the parasite is ε. For a single round of
chemotherapy, this means that if an individual host has a
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random initial parasite burden X0, and this host is selected for
the chemotherapy, then post chemotherapy the burden, X1

conditioned on X0, has distribution X1|X0∼ Binomial(X0,
1− ε). The probability generating function for the binomial
distribution is GX1jX0¼x(z) ¼ (1þ (1� 1)z)x so using the law
of total expectation we find that the probability generating
function for the post MDA distribution is

GX1 (z) ¼ EX0 GX1jX0 (z) ¼ GX0 (1þ (1� 1)z)

¼ 1þm
k
(1� 1)(1� z)

� ��k
, ð2:2Þ

and hence the post-MDA distribution for those people who
receive treatment in a single round is a negative binomial
with mean m0(1− ε) and aggregation k0. (This result or one
very close using moments is in Anderson & May, 1991, and
detailed in Anderson et al. 2016, based on compounding
distributions with different means to represent either
age, exposure to infection or acquired immunity [1,12].)
Applying this reasoning inductively, and ignoring trans-
mission dynamics between MDA rounds, we find that the
distribution after n rounds of MDA is

P(Xpost ¼ i) ¼ Pn
j¼1

pjP(X ¼ ijN ¼ j) , ð2:3Þ

where πj is the probability of an individual attending j out of
the n rounds, and X|N = j∼NegBin(m0(1−ε) j, k0). If we
denote N as a random variable sampled from the distribution
π, then the probability generating function of the distribution
(2.3) can be written as

GXpost (z) ¼ EN 1þm0

k0
(1� 1)N(1� z)

� ��k0
" #

: ð2:4Þ

We stress at this stage, we have not proposed a specific
form for the distribution of rounds attended, π, and in this
section present results for a general distribution.

2.2. Mean and parasite aggregation within the host
population post-mass drug administration

We can use the probability generating function (2.4) to calcu-
late the first and second moments for a given distribution π.
The mean is

mpost ¼ G0
Xpost (1) ¼ m0GN(1� 1) , ð2:5Þ

and the variance is

s2
post¼G00

Xpost (1)þG0
Xpost (1)þG0

Xpost (1)
2

¼m0
2 1þk0

k0

� �
GN((1�1)2)þm0GN(1�1)(1�m0GN(1�1)):

ð2:6Þ

There are many ways to characterize the aggregation for a
given distribution of burdens. Some authors characterize
aggregation using the dispersion index (also called the
variance-to-mean ratio) [3,13]. In this analysis, we define
aggregation of a distribution to be the following function of
the mean, m, and variance, σ2,

k :¼ m2

s2 �m
, ð2:7Þ

which ensures the definition is consistent with the aggregation
parameter defined for the negative binomial probability
distribution. This means the aggregation of the post MDA
distribution, kpost, is

kpost :¼ k0GN(1� 1)

(1þ k0)GN((1� 1)2)� k0G2
N(1� 1)

: ð2:8Þ

In the full drug efficacy limit ε→ 1

kpost ¼
k0mpost

(1þ k0)m0 � k0mpost
: ð2:9Þ

We can conclude from this that when the drug efficacy is
high, the precise form of the compliance model has limited
effect on the relationship between the mean and aggregation
of the post chemotherapy distribution, and that when mpost is
small the relationship is approximately linear with gradient
k0/(m0k0 +m0).
3. Modelling systematic non-compliance
The aim of repeated MDA is to supply treatment to as large a
proportion of the population as possible, ideally more than
once, to suppress the prevalence of parasite infection and
the mean intensity of infection to below a point (ideally redu-
cing the effective reproduction number Re < 1) at which a
rapid resurgence of transmission and concomitant infection
is unlikely to occur. The coverage for a round of chemother-
apy is defined as the fraction of people who receive treatment
out of the eligible population. It is practically very difficult
to achieve perfect coverage on each round, and on average
only a fraction ci ∈ (0, 1) receive treatment on the ith round
(i = 1,… , n). If each host is equally likely to receive treatment
in the ith round, then ci also represents the probability of a
randomly selected individual receiving treatment. We label
this behaviour as full random non-compliance (and the
converse—random compliance). In real MDA interventions,
it is far more common to observe patterns of compliance
where each individual does not appear to have the same
probability of attendance [10,11]. For example, we may
observe that individuals either attend all rounds, or no
rounds, more frequently than would be expected if the prob-
ability of attendance is equal across the population. We label
the behaviour where individuals attend either all possible
rounds or none as full systematic non-compliance. In
general, observed patterns, where there is variability in host
behaviour, is better approximated by patterns where the
probability of an individual attending in round i, pi, is
sampled from a distribution of probabilities of attendance fi
[10,11]. Note that in the fully random compliance model,
we may consider the distribution to be the generalized distri-
bution fi( p) = δ( p− ci) where δ is the Dirac-delta function,
while in the fully systematic non-compliance model, the
generalized distribution is fi( p) = ciδ(1− p) + (1− ci)δ( p).

The probability of an individual attending N out of a
possible n rounds is given by the sum of independent
Bernoulli trials with probabilities p1,… , pn. In particular, if
each round has the same expected coverage, ci = c for each
round, then N∼ Binomial(n, p), where p is drawn from a dis-
tribution f with mean c. Given N is conditionally a binomial,
a convenient choice for f is the beta distribution, as used
by Dyson et al. since the beta distribution is the binomial
distribution’s conjugate prior [14]. The resulting distribution
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for N is the beta-binomial distribution with two parameters
(α, β). To ensure that the expected coverage in each round
is c, and the correlation of compliance with treatment
between any two rounds is ρ ∈ (0, 1), the parameters of the
beta-binomial distribution are uniquely specified as

a ¼ c(1� r)
r

ð3:1Þ

and

b ¼ (1� c)(1� r)
r

: ð3:2Þ

The correlation parameter ρ controls the strength of the
systematic compliance. In the limit ρ→ 0, the fully random
non-compliance model is recovered, resulting in a binomial
distribution for N. In the limit ρ→ 1, the fully systematic
non-compliance model is recovered, where hosts either
attend all or no rounds. Figure 1 shows the distribution of
N for various values of ρ.

With this beta-binomial distribution, the probability
generating function for N is

GN(z) ¼ 2F1 (�n,a,� b� nþ 1; z)
2F1 (�n,a,� b� nþ 1; 1)

, ð3:3Þ

where 2F1 is the hypergeometric function.
In figure 2, we compare a post-MDAdistribution to a nega-

tive binomial distributionwith the samemean and value of the
aggregation parameter k, by generating 200 samples from each
and calculating the two-sample Kolmogorov–Smirnov (KS)
test statistic. We find that the post-chemotherapy distribution
is well approximated by a negative binomial, as indicated by
KS test statistics that are below the αKS = 0.05 significance
level on each chemotherapy round.

We note that where good data are available, it may be
possible to empirically fit models that generate the joint dis-
tribution for the probabilities of attending in each round,
( p1,… , pn), where the random attendance probabilities pi
and pj are not independent for i not equal to j, such as
in a paper under review by Hardwick et al. which uses a
Markov chain model. Such models with a greater number
of free parameters will be able to better capture observed pat-
terns of individual compliance. However, we suspect that
they will not create a large difference in the distribution for
the number of rounds attended, N.
4. Comparison with a stochastic nonlinear
parasite transmission and treatment model

4.1. A stochastic nonlinear parasite model
In this section, we compare the mean and aggregation of the
post-chemotherapy distribution to estimates that we obtain
from a stochastic nonlinear dynamic model. First, we describe
a general parasite model, in which hosts can be infected by
parasites from a reservoir of infective eggs and larvae,
which sexually reproduce within the host when mature. We
let Xt,i (superscript M) and Xt,i (superscript F ) be stochastic
processes that represents the burden of males and female
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parasites in individual host within a population of size nh,
indexed by time t, and host i, and let Lt be the reservoir of
infectious material at time t. The simple model is

li � Gamma
l

k
,k

� �
initialized at t ¼ 0, ð4:1Þ

XM=F
t,i ! XM=F

t,i þ 1 at rate 0:5 liLt, ð4:2Þ

XM=F
t,i ! XM=F

t,i � 1 at rate mXM=F
t,i , ð4:3Þ

and Lt ¼
X
i

F(XM
t,i ,X

F
t,i), ð4:4Þ

where λi is the contact rate between host and infectious reser-
voir, k is the aggregation parameter, µ is the death rate of
parasites within host. The function F describes the relationship
between parasite burden and contribution to the reservoir Lt. If
we assume polygamous parasite mating (which is more suited
to STH and filarial helminth species), where the number of
mated parasite pairs in a host is zero if no male parasites are
present and equal to the number of female worms otherwise,
and a negative exponential density-dependent adult female
fecundity function (see deterministic models for the outline
form of the model [5,6]) then F is

F(XM
t,i ,X

F
t,i) ¼ XF

t,i(X
M
t,i . 0) exp (�g(XM

t,i þ XF
t,i � 1)) , ð4:5Þ

where the parameter γ controls the strength of density
dependent fecundity.

In figure 3, we plot themean dynamics of theworm burden
and prevalence (blue line, individual realizations in light grey),
during four rounds of monthly MDA, and overlay the equival-
ent post-MDA distribution (red markers) which uses the
assumption that there are no dynamics between MDA rounds.
We see that the post-MDAdistribution very accurately approxi-
mates the mean burden and aggregation through the rounds
of MDA when the time between rounds is small. Because the
relaxation of the aggregation k(t) is fast, the dynamics of the
aggregation between rounds needs to be considered to obtain
an accurate approximation of the aggregation if the time
between rounds is large, so in the following section, we derive
a linearmodel of the dynamics.Note that the simulatedpatterns
are similar to those reported in Werkman et al. using an
individual based stochastic model of parasite transmission [9].
4.2. A linear approximation to the dynamics
To approximate the dynamic relationship between the mean
burden m(t) = E [Xt] and aggregation k(t) =m(t)2/(σ(t)2−
m(t)), where Xt =XM +XF and σ2 = var[Xt], we fix the reser-
voir Lt = L* which removes the nonlinearity from the model,
and also the dynamical dependence between individuals in
the same population. The linearized model is

l� � Gamma
l

k1
,k1

� �
, ð4:6Þ

X0 ¼ x0, ð4:7Þ
Xt ! Xt þ 1 at rate l�L�, ð4:8Þ

and Xt ! Xt � 1 at rate mXt: ð4:9Þ

Conditioned on l�, this model is an M/M/∞ queue (a
well-studied stochastic model) and so conditionally the
moments have the unique solution

m(t) ¼ l�L�

m
(1� e�mt)þ x0e�mt ð4:10Þ

and

s2(t) ¼ (1� e�mt)
lL�

m
þ x0e�mt

� �
: ð4:11Þ

Using the laws of total expectation and variance to
remove the conditioning on l�, the moments are

m(t) ¼ m1(1� e�mt)þ x0e�mt ð4:12Þ

and

s2(t) ¼ m2
1

k1
(1� e�mt)2 þ (m1 þ x0e�mt)(1� e�mt) , ð4:13Þ

where m∞ = L*/µ. In the limit t→∞, we have m(t)→m∞,
σ2(t)→m2/k∞ +m∞, and k(t)→ k∞. Further to this, since the
limiting distribution of the M/M/∞ queue is Poisson, the
limiting distribution of Xt is negative binomial.

Next, we suppose that X0 has a negative binomial
initial condition, with mean m0 and aggregation k0, (the
common assumption for distributions of parasite burdens
at baseline). Using the law of total expectation and variance,
the moments are

m(t) ¼ m1(1� e�mt)þm0e�mt ð4:14Þ
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and

s2(t) ¼ s2
0e

�2mt þm2
1

k1
(1� e�mt)2 þ (m1 þm0e�mt)(1� e�mt) ,

ð4:15Þ
and hence the aggregation is

k(t) ¼ (m1(1� e�mt)þm0e�mt)2

ðm21=k1Þe�2mt þ ðm21=k1Þ(1� e�mt)2
: ð4:16Þ

By eliminating e−µt out of the above expressions, we find
the following expression for the aggregation k(t) purely in
terms of m(t) and the other parameters

k(t) ¼ m(t)2(m1 �m0)

ðm21=k1Þ(m(t)�m0)
2 þ ðm2

0=k0Þ(m(t)�m1)2
: ð4:17Þ
5. The effect of aggregation on the unstable
equilibrium

5.1. Mean field approximation to the nonlinear
stochastic process

By assuming that the distribution of macroparasites is distrib-
uted as a negative binomial with dynamically varying mean
burden m(t) and constant aggregation k, Anderson & May
[5,6] derived the mean field equation for the mean burden

dm
dt

¼ m(R0f(m; k,z)f(m; k,z)� 1)m , ð5:1Þ

where R0 is the basic reproduction number for macroparasite
transmission, which is defined as the average number of
female offspring that survive to reproductive age, produced
by a single female macroparasite over the course of its
lifespan in the absence of density dependent effects. For hel-
minth models, this is a product of the rate egg of production
per female helminth, the life expectancy of adult helminths,
the life expectancy of infective larvae, and on the probability
an infective larvae makes contact with an infective host. The
function f(m; k,z) represents the negative density dependence
caused by overcrowding of helminths within the host, which
reduces egg output. When the density dependence of egg
production within the host is exponential, with gradient of
exponential decay g, the function f has the form

f(m; k,z) ¼ 1þm
k
(1� z)

� ��k�1
, ð5:2Þ

where z ¼ exp(�g). The mating function f(m; k,z) represents
the fraction of egg output that is fertilized. STH parasite
species are generally assumed to be polygamous, which
produces the mating function

f(m; k,z) ¼ 1� 1þ ðð1� zÞm=kÞ
1þ ðð2� zÞm=2kÞ

� �kþ1

: ð5:3Þ

Schistosome species are generally assumed to be monog-
amous, and a result of this is that the density dependence
effects does not neatly factorize into f(m; k,z) f(m; k,z). How-
ever, the approximation

f0(m; k) ¼ 1� (1� v)kþ1

2p

ð2p
0

1� cos u

(1þ v cos u)kþ1 du, ð5:4Þ

where v ¼ m=(mþ k) which is found in the weak density
dependence limit z ! 1, is considered to provide close
approximation for the monogamous worm mating
function [15].

The ODE (5.1) together with the density dependent
effects ((5.1)–(5.4)) are well studied dynamical systems,
and have a saddle-node bifurcation at R0 ¼ R� . 1 . For
R0 , R�, there is one equilibrium (mean burdens m∗ for
which the time derivative dm/dt = 0) at m = 0, which is
stable. For R0 . R�, there are two non-trivial equilibria (see
figures 4 and 5). The density-dependent mating probability
produces a critical value R* for parasite persistence is greater
than one, because producing one fertile female offspring does
not guarantee the presence of a male to mate with in the same
host. Note, this definition of R0 is different to the more
familiar microparasite definition of R0, which measures the
average number of secondary infections of hosts produced
by an index case in a wholly susceptible population

The existence of the unstable equilibrium, also referred to
in the literature as the transmission breakpoint, is created by
the requirement of both parasite sexes to be present in an
individual host for mating and the production of fertile trans-
mission stages, which produces an Allee effect in the system.
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If the mean burden is below the breakpoint there are not
enough mated worm-pairs expected to be in the population
to sustain transmission.

The aim ofMDA is to reduce themean burden to below the
breakpoint (or more generally to reduce the value of the basic
reproductive number below the level needed to sustain trans-
mission), after which no further rounds of MDA are necessary
for the mean burden to decay to zero. Crucially, the location of
the breakpoint is dependent on the degree of parasite aggrega-
tion, inversely measured by k, which increases with more
rounds of MDA, and as seen in figure 3 and figure 6. As
shown in this paper, its value is also dependent on the cover-
age and level of compliance. That is, each round of MDA
reduces the mean burden, but also reduces the value of k
and lowers the breakpoint value towards zero. If (m(i), k(i))
denotes the mean and aggregation after the ith round of
MDA, then the number of rounds after which the disease
can no longer sustain itself, n∗, is the smallest number of
rounds for which the time gradient of m(t) is negative, that is

n� ¼ min i [ N:
dm
dt

¼ F (m(i); k(i)) , 0
� �

, ð5:5Þ
Foran initialmeanparasite burdenm0andaggregation k0weare
able to calculate n∗ up to amaximumof 15, for givenMDA cov-
erage c, non-compliance correlation ρ and drug efficacy ε, using
the analytical expressions for themeanwormburdenandaggre-
gation level from §2. It is unrealistic for a location to receive 15
rounds of continuousMDA, but we use this number to indicate
that it would be practically impossible to reach the breakpoint
with the parameters under consideration.

Figure 7 shows n∗ for coverages between 0.5 and 1
and compliance correlations between 0 and 0.5, for R0 = 3
(left column) and R0 = 5 (right column), and for a poly-
gamous mating helminth with typical hookworm
parameters (top row) and monogamous mating helminth
with typical Schistosoma mansoni parameters (bottom row).
For each parameter combination, increasing the coverage c
decreases n∗ while increasing non-compliance correlation ρ
increases n∗. The majority of the MDA parameter space
explored has n∗ > 15, where it appears that either only a
very large number of MDA rounds will result in decaying
mean burdens post MDA cessation, or reaching the break-
point is not possible with any number of rounds. This
means that for such parameters, on average there are
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always high-risk individuals who have persistently missed
treatment either from personal choice or failure to gain
access to treatment, and as a consequence are able to cause
a resurgence of the infection in the rest of the host population.

The region of coverage and correlationwhich separates areas
where the breakpoint is achieved in under 10MDA rounds, and
thosewhich require 15 or over is relatively narrow,whichmeans
that there will be a large amount of uncertainty regarding how
many rounds are needed to reach a breakpoint if the MDA
implementation parameters are in this region.

Figure 8 shows n∗ for different initial degrees of parasite
aggregations k0. Published studies for helminth parasites put
these values in the range of 0.1 to 1.0 [1]. k0 does not greatly
affect the number of rounds required to reach the breakpoint.
6. Discussion
The definition of a transmission breakpoint in either the
meanworm burden or prevalence (by a very sensitive diagnos-
tic) of helminth infections of humans, below which parasite
transmission although continuing is too low to sustain the
persistence of infection in the longer term, is central to studies
of the epidemiology and control of infectious diseases [1]. For
microparasites, the boundary R0 = 1 provides the definition of
this breakpoint. For helminth infections, the definition is more
complex, and often confusing to those not familiar with math-
ematical models of parasite transmission. Because of the
influence of the need for sexual reproduction to sustain trans-
mission involving the presence of both female and male
worms within the human host, the breakpoint may lie at a
point whereR0 > 1. The exact location of the breakpoint is deter-
mined by the degree of parasite aggregation within the host
population since highly aggregated patterns even when overall
prevalence is low, ensuremale and femaleworms exist together
in the same host. The greater the degree of parasite aggregation
the lower the breakpoint is in terms of either the mean worm
load or the prevalence of infection and in the limit where all
parasites are within one host (the negative binomial k tends to
zero), the breakpoint is convergent on a mean burden or
prevalence of zero. This has been known for some time [6].

What has not been appreciated, however, is that repeated
rounds of MDA, the favoured control option for human
helminth infections, tend to drive parasite aggregation to
higher and higher levels (very small k values) [9]. Very
recent studies point to persistent non-adherence to treatment
being the causative mechanism [10,11]. It is too early to say if
this is universally true for all helminths, and all control
programmes, since very few studies of scale have been com-
pleted to date on individual compliance to treatment over
many rounds of MDA. Those that have been done recently
are focused on STH. More needs to be done for the filarial
worms and schistosome infections.

In this paper, we build a probabilistic framework for a
stochastic individual based model of transmission and control
that permit assessing the influence of non-compliance in MDA
rounds on the change in the distribution of parasites over time.
We also make some simple approximations to obtain some
analytical insights into where the breakpoint in transmission is
influencedbyparasite aggregation.The results of these analytical
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and numerical studies show clearly that non-compliance in a
small fraction of the treated population first drives aggregation
higher (k smaller) and concomitantlymakes transmission elimin-
ation more difficult than predicted by deterministic models and
stochasticmodels that assume randomcompliance at each round
of MDA [18]. This implies that in practice transmission elimin-
ation will be more difficult and require both higher levels of
coverage inMDA rounds across all age groups and an increased
focus on what are the causes of non-compliance by the few and
how can they be remedied.

The analytical and numerical results reported in this paper
may be too pessimistic because of mean field approxima-
tions to what are stochastic fluctuations that become highly
important when population sizes of parasites (at very low pre-
valences) become very small. The mean field approximation is
only robust for large and well-mixed populations. For small
populations, random fluctuations in both parasite population
dynamic processes (successful transmission events, meeting a
mate and deaths) and MDA delivery to individuals are likely
to cause interruptions in effective transmission, regardless of
the mean expected behaviour. Other simplifications that may
impact the pessimistic conclusions are the approximations
made such as no dynamics between rounds of treatment,
and neglecting age structure which is important for the trans-
mission and control of disease that primarily effect children
such as schistosomiasis. As such, the results from this analysis
should not be used as precise predictions for how many
rounds are needed to reach a transmission breakpoint for
specific scenarios.

The major practical lesson emerging from these analyses is
that much more attention must be paid to both measuring
individual compliance to treatment and to what causes non-
compliance with the aim of ensuring all those that it is aimed
to treat get treated [19,20]. Finally, this study also highlights the
importance of sustainable surveillance systems for monitoring
the real-time distributions of helminths in the target commu-
nities, because high coverage and compliance is particularly
important when the distribution is highly aggregated.
Data accessibility. All data used in this study are generated by numerical
evaluation of the equations and output of stochastic models. All
numerical and plotting code are available upon request.

Authors’ contributions. B.S.C. performed the analysis and numerical simu-
lations. B.S.C. and R.M.A. conceived and drafted the manuscript.

Competing interests. We declare we have no competing interests.

Funding. The authors thank the Bill and Melinda Gates Foundation
(OPP1129535), and The London Centre for Neglected Tropical
Disease Research (LCNTDR) for research grant support.

Acknowledgements. We thank James Truscott and Robert Hardwick for
useful theoretical discussions.
References
1. Anderson RM, May RM. 1992 Infectious diseases
of humans: dynamics and control. Oxford,
UK: Oxford University Press. See https://global.
oup.com/academic/product/infectious-
diseases-of-humans-9780198540403?cc=
gb&lang=en&.
2. Woolhouse MEJ et al. 1997 Heterogeneities in
the transmission of infectious agents: implications
for the design of control programs. Proc. Natl

https://global.oup.com/academic/product/infectious-diseases-of-humans-9780198540403?cc=gb&lang=en&
https://global.oup.com/academic/product/infectious-diseases-of-humans-9780198540403?cc=gb&lang=en&
https://global.oup.com/academic/product/infectious-diseases-of-humans-9780198540403?cc=gb&lang=en&
https://global.oup.com/academic/product/infectious-diseases-of-humans-9780198540403?cc=gb&lang=en&
https://global.oup.com/academic/product/infectious-diseases-of-humans-9780198540403?cc=gb&lang=en&


royalsocietypublishing.org/journal/rsif
J.R.Soc.Interface

18:20210200

10
Acad. Sci. USA 94, 338–342. (doi:10.1073/pnas.
94.1.338)

3. Bartlett MS. 1978 An introduction to stochastic
processes: with special reference to methods and
applications. Cambridge, UK: Cambridge University
Press.

4. May RM. 1977 Thresholds and breakpoints
in ecosystems with a multiplicity of stable
states. Nature 269, 471–477. (doi:10.1038/
269471a0)

5. Anderson RM, May RM. 1985 Helminth infections of
humans: mathematical models, population
dynamics, and control. Adv. Parasitol. 24, 1–104.
(doi:10.1016/S0065-308X(08)60561-8)

6. Anderson RM, May RM. 1982 Population dynamics
of human helminth infections: control by
chemotherapy. Nature 297, 557–563. (doi:10.1038/
297557a0)

7. Pullan RL et al. 2019 Effects, equity, and cost of
school-based and community-wide treatment
strategies for soil-transmitted helminths in Kenya: a
cluster-randomised controlled trial. Lancet 393,
2039–2050. (doi:10.1016/S0140-6736(18)32591-1)

8. Ásbjörnsdóttir KH et al. 2018 Assessing the
feasibility of interrupting the transmission of soil-
transmitted helminths through mass drug
administration: the DeWorm3 cluster randomized
trial protocol. PLoS Negl. Trop. Dis. 12, e0006166.
(doi:10.1371/journal.pntd.0006166)

9. Werkman M, Wright JE, Truscott JE, Oswald WE,
Halliday KE, Papaiakovou M, Farrell SH, Pullan RL,
Anderson RM. 2020 The impact of community-wide,
mass drug administration on aggregation of soil-
transmitted helminth infection in human host
populations. Parasites Vectors 13, 290. (doi:10.
1186/s13071-020-04149-4)

10. Oswald WE et al. 2020 Patterns of individual non-
treatment during multiple rounds of mass drug
administration for control of soil-transmitted
helminths in the TUMIKIA trial, Kenya: a secondary
longitudinal analysis. Lancet Glob. Health 8, e1418-
e1426. (doi:10.1016/S2214-109X(20)30344-2)

11. Hardwick RJ, Truscott JE, Oswald WE, Werkman M,
Halliday KE, Pullan RL, Anderson RM. 2020 Individual
adherence to mass drug administration in neglected
tropical disease control: a probability model conditional
on past behaviour. medRxiv, 2020.04.17.20069476.
(doi:10.1101/2020.04.17.20069476)

12. Anderson RM, Turner HC, Farrell SH, Truscott JE.
2016 Chapter Four - Studies of the transmission
dynamics, mathematical model development and
the control of schistosome parasites by mass drug
administration in human communities. In
Mathematical models for neglected tropical diseases
(eds RM Anderson, M-G Basáñez), pp. 199–246.
New York, NY: Academic Press.

13. Anderson RM, Gordon DM. 1982 Processes
influencing the distribution of parasite numbers
within host populations with special emphasis on
parasite-induced host mortalities. Parasitology 85,
373–398. (doi:10.1017/S0031182000055347)

14. Dyson L, Stolk WA, Farrell SH, Hollingsworth TD.
2017 Measuring and modelling the effects of
systematic non-adherence to mass drug
administration. Epidemics 18, 2. (doi:10.1016/j.
epidem.2017.02.002)

15. May RM. 1977 Togetherness among schistosomes:
its effects on the dynamics of the infection. Math.
Biosci. 35, 301–343. (doi:10.1016/0025-
5564(77)90030-X)

16. Truscott JE, Turner HC, Farrell SH, Anderson RM.
2016 Soil-transmitted helminths: mathematical
models of transmission, the impact of mass drug
administration and transmission elimination criteria.
Adv. Parasitol. 94, 133–198. (doi:10.1016/bs.apar.
2016.08.002)

17. Medley G, Anderson RM. 1985 Density-dependent
fecundity in Schistosoma mansoni infections in man.
Trans. R. Soc. Trop. Med. Hyg. 79, 532–534. (doi:10.
1016/0035-9203(85)90087-2)

18. Truscott JE, Hollingsworth TD, Brooker SJ,
Anderson RM. 2014 Can chemotherapy alone
eliminate the transmission of soil transmitted
helminths? Parasites Vectors 7, 266. (doi:10.1186/
1756-3305-7-266)

19. Shuford KV, Turner HC, Anderson RM. 2016
Compliance with anthelmintic treatment in the
neglected tropical diseases control programmes: a
systematic review. Parasites Vectors 9, 29. (doi:10.
1186/s13071-016-1311-1)

20. Wright JE, Werkman M, Dunn JC, Anderson RM.
2018 Current epidemiological evidence for
predisposition to high or low intensity
human helminth infection: a systematic review.
Parasites Vectors 11, 65. (doi:10.1186/s13071-018-
2656-4)

http://dx.doi.org/10.1073/pnas.94.1.338
http://dx.doi.org/10.1073/pnas.94.1.338
http://dx.doi.org/10.1038/269471a0
http://dx.doi.org/10.1038/269471a0
http://dx.doi.org/10.1016/S0065-308X(08)60561-8
http://dx.doi.org/10.1038/297557a0
http://dx.doi.org/10.1038/297557a0
http://dx.doi.org/10.1016/S0140-6736(18)32591-1
http://dx.doi.org/10.1371/journal.pntd.0006166
http://dx.doi.org/10.1186/s13071-020-04149-4
http://dx.doi.org/10.1186/s13071-020-04149-4
http://dx.doi.org/10.1016/S2214-109X(20)30344-2
http://dx.doi.org/10.1101/2020.04.17.20069476
http://dx.doi.org/10.1017/S0031182000055347
http://dx.doi.org/10.1016/j.epidem.2017.02.002
http://dx.doi.org/10.1016/j.epidem.2017.02.002
http://dx.doi.org/10.1016/0025-5564(77)90030-X
http://dx.doi.org/10.1016/0025-5564(77)90030-X
http://dx.doi.org/10.1016/bs.apar.2016.08.002
http://dx.doi.org/10.1016/bs.apar.2016.08.002
http://dx.doi.org/10.1016/0035-9203(85)90087-2
http://dx.doi.org/10.1016/0035-9203(85)90087-2
http://dx.doi.org/10.1186/1756-3305-7-266
http://dx.doi.org/10.1186/1756-3305-7-266
http://dx.doi.org/10.1186/s13071-016-1311-1
http://dx.doi.org/10.1186/s13071-016-1311-1
http://dx.doi.org/10.1186/s13071-018-2656-4
http://dx.doi.org/10.1186/s13071-018-2656-4

	Probability distributions of helminth parasite burdens within the human host population following repeated rounds of mass drug administration and their impact on the transmission breakpoint
	Introduction
	A simple probability model of repeated mass drug administration
	The general post-mass drug administration distribution
	Mean and parasite aggregation within the host population post-mass drug administration

	Modelling systematic non-compliance
	Comparison with a stochastic nonlinear parasite transmission and treatment model
	A stochastic nonlinear parasite model
	A linear approximation to the dynamics

	The effect of aggregation on the unstable equilibrium
	Mean field approximation to the nonlinear stochastic process

	Discussion
	Data accessibility
	Authors' contributions
	Competing interests
	Funding
	Acknowledgements
	References


