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See the editorial comment for this article ‘Polygenic risk score: a tool ready for clinical use?’, by M. Kavousi and H. Schunkert, https://doi.
org/10.1093/eurheartj/ehab923.

Aims To construct a polygenic risk score (PRS) for coronary artery disease (CAD) and comprehensively evaluate its po-
tential in clinical utility for primary prevention in Chinese populations.

Methods
and results

Using meta-analytic approach and large genome-wide association results for CAD and CAD-related traits in East
Asians, a PRS comprising 540 genetic variants was developed in a training set of 2800 patients with CAD and
2055 controls, and was further assessed for risk stratification for CAD integrating with the guideline-recommended
clinical risk score in large prospective cohorts comprising 41 271 individuals. During a mean follow-up of 13.0 years,
1303 incident CAD cases were identified. Individuals with high PRS (the highest 20%) had about three-fold higher risk
of CAD than the lowest 20% (hazard ratio 2.91, 95% confidence interval 2.43–3.49), with the lifetime risk of 15.9 and
5.8%, respectively. The addition of PRS to the clinical risk score yielded a modest yet significant improvement in C-
statistic (1%) and net reclassification improvement (3.5%). We observed significant gradients in both 10-year and life-
time risk of CAD according to the PRS within each clinical risk strata. Particularly, when integrating high PRS, inter-
mediate clinical risk individuals with uncertain clinical decision for intervention would reach the risk levels (10-year of
4.6 vs. 4.8%, lifetime of 17.9 vs. 16.6%) of high clinical risk individuals with intermediate (20–80%) PRS.

Conclusion The PRS could stratify individuals into different trajectories of CAD risk, and further refine risk stratification for CAD
within each clinical risk strata, demonstrating a great potential to identify high-risk individuals for targeted intervention
in clinical utility.

Key question

• The potential clinical utility of the polygenic risk score (PRS) for coronary artery disease (CAD), especially integrating with the current
established clinical risk, was unknown among East Asian populations with significant disparities in both genetics and lifestyles.

Key finding

• The PRS comprising 540 genetic variants could stratify individuals into different trajectories of CAD risk, and further refine risk stratifica-
tion for CAD within each clinical risk category.

Take-home message
The incorporation of polygenic risk into clinical care setting may provide a valuable risk stratification guidance to identify high-risk individuals
for targeted intervention in primary prevention of CAD.

Structured Graphical Abstract The polygenic risk has a great potential to refine CAD risk stratification within each guideline-recom-
mended clinical risk category and inform clinical decisionmaking for primary prevention. Among individuals at intermediate clinical risk whose
guideline-based recommendations are unclear, those with high polygenic risk should be recommended to initiate lifestyle and pharmacologic-
al intervention. Individuals with both high polygenic risk and high clinical risk urgently need intensive prevention. Combination of polygenic
risk and clinical risk could promote precision prevention of CAD and reduce the disease burden, particularly considering inadequate primary
prevention or statins and antihypertensive treatment in China.

Keywords Coronary artery disease • Polygenic risk score • Clinical risk score
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Introduction
Cardiovascular disease (CVD), which is driven by both genetic sus-
ceptibility and environmental risk factors, is the leading cause of
death and disease burden in China and worldwide.1 There has
been a tremendous increase in the incidence of coronary artery
disease (CAD) in China, due to ageing demography, unhealthy life-
styles, and environmental changes after several decades of rapid
economic development.2 Cardiovascular risk assessment is recom-
mended to identify those at high risk for lifestyle and pharmaco-
logical intervention by the current guidelines on the primary
prevention of CVD issued by ESC and ACC/AHA.3–5 We have de-
veloped the Prediction for Atherosclerotic cardiovascular disease
Risk in China (China-PAR) risk prediction equations, which were
recommended by the ACC/AHA Guidelines to facilitate the pri-
mary prevention and management of CVD in clinical practice for
populations of Chinese ethnicity.3,6

Genetic factors have also been recognized to make a substantial
contribution to CVD risk. In the last decade, genome-wide associ-
ation studies (GWAS) have successfully identified hundreds of gen-
etic loci, which are robustly associated with CAD or CAD-related
traits, such as blood lipid levels, blood pressure (BP), Type 2 dia-
betes (T2D), and body mass index (BMI).7 Genetic variants are at-
tractive biomarkers because they are quantifiable at the time of
birth, long time before the onset of clinical risk factors. Recently,
polygenic risk scores (PRSs) for CAD by combining multiple risk al-
leles have been developed exclusively in European-descent popu-
lations and have shown promise in the prediction of CAD and risk
stratification.8–15 However, the genetic prediction power was sub-
stantially lower in non-European populations due to the ancestry-
specific differences in variant frequencies, effect sizes, and linkage
disequilibrium patterns.16–19 Accordingly, it is of utmost import-
ance to generate ancestry-specific PRS by performing the
large-scale GWAS on non-European ancestries from which refer-
ence effect sizes are taken for PRS calculation. More importantly,
the PRSs of CAD derived from European ancestry demonstrated
modest improvements of predictive accuracy over existing clinical
risk scores, such as pooled cohort equations (PCEs) or QRISK,20,21

while the clinical utility of PRS in risk prediction remains unclear.5

Therefore, it is imperative to evaluate the performance of PRS in a
prospective setting among non-Europeans and the interplay of PRS
and the clinical risk score in impacting the risk of CAD.

Here, we constructed a PRS for CAD by incorporating the large
genome-wide association results for CAD and CAD-related traits
in East Asians. Then we applied the PRS in large population-based
prospective cohorts to assess how the polygenic risk affected life-
time trajectories of CAD risk and whether the polygenic score
could refine risk stratification for CAD beyond the clinical risk
prediction.

Materials and methods

Study design and population
The study design is shown in Figure 1. A training set with 2800 cases
of CAD and 2055 controls (see Supplementary material online,
Table S1) was used to test the PRS performance. The CAD cases

were enrolled from Fuwai Hospital, National Center for
Cardiovascular Diseases, China. Diagnoses of cases with myocar-
dial infarction (MI) followed strict diagnostic rules based on signs,
symptoms, electrocardiograms, and the activity of cardiac en-
zymes.22 Individuals having .70% stenosis in one or more major
epicardial vessel, or .50% stenosis for the left main coronary ar-
tery, were also diagnosed as CAD. The controls were randomly se-
lected from individuals in the China-PAR project.

The validation cohorts were derived from three cohorts in the
China-PAR project, including the International Collaborative
Study of Cardiovascular Disease in Asia (InterASIA), the China
Multi-Center Collaborative Study of Cardiovascular
Epidemiology (ChinaMUCA-1998), and Community Intervention
of Metabolic Syndrome in China and Chinese Family Health
Study (CIMIC). Details of the project’s design have been described
elsewhere.6 Briefly, the ChinaMUCA-1998, InterASIA, and CIMIC
were established in 1998, 2000–01, and 2007–08, respectively.
According to a uniform protocol, both InterASIA and
ChinaMUCA-1998 cohorts were first followed up during 2007–
08, and all three cohorts were further followed up in 2012–15
and 2018–20. For CIMIC, we utilized a subset of 23 805 individuals
based on the stratified sampling method according to survey sites.
For this study, blood samples and the main covariate data were
available for 43 582 participants, independent of individuals in the
training set. We further excluded 561 individuals with high geno-
type missing rate (.5.0%) or low average sequencing depth
(,30 reads), 1352 individuals aged ,30 years or more than 75
years at baseline, and 398 participants with CAD at baseline. The
final sample for analysis comprised 41 271 participants.

All studies were approved by the Institutional Review Board at
Fuwai Hospital (Beijing, China). Written informed consent was ob-
tained from each participant before data collection.

Data collection and outcomes
Information on baseline status and vital information during follow-
up visits were collected by trained healthcare staff under strict
quality control. A standard questionnaire was used to provide per-
sonal information, lifestyle information, disease conditions, and
CAD family history. Participants also received a physical examin-
ation (weight, height, BP, etc.) and provided fasting blood samples
to measure blood lipid and glucose levels.

To obtain disease outcomes and death information during
follow-up duration, study participants or their proxies were iden-
tified and interviewed. Hospital records or death certificates
were also collected. Two endpoint assessment committee mem-
bers who were unaware of baseline information verified the events
independently, and discrepancies were discussed to consensus
with an additional committee member. Incident CAD was defined
as the first occurrence of unstable angina, non-fatal acute MI, or
CAD death. Unstable angina was identified as angina pectoris
that changes or worsens. Acute MI was defined as changed bio-
chemical markers of myocardial necrosis accompanied by any
one of the following four characteristics: ischaemic symptoms,
pathological Q waves, ST-segment elevation or depression, or cor-
onary intervention. Fatal events resulting from MI or other coron-
ary deaths were defined as CAD death. Person-years of follow-up
for each participant were calculated as the interval between the
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date of the baseline examination and the date of occurrence of
CAD, the date of death, or the last follow-up visit, whichever oc-
curred first.

Variant selection and genotyping
We developed the PRS using the genetic variants that showed
genome-wide significant associations (P, 5× 10−8) with CAD
and CAD-related traits based on the previous GWASs in East
Asian ancestry (see Supplementary material online, Table S2). For
CAD and stroke, we also included the variants identified by
European populations. We finally selected 600 genetic variants as-
sociated with CAD or CAD-related traits, including stroke, BP, li-
pid, T2D, and obesity. The information of all variants was available
in Supplementary material online, Table S3.
Individuals in the training set were genotyped with the Infinium

Multi-Ethnic Genotyping Arrays covering �2 million markers.
Subsequently, imputation to �47 million makers was carried out
using the 1000 Genomes Phase 3 haplotype resource panel. In
the validation set, we genotyped samples using multiplex PCR tar-
geted amplicon sequencing technology. We designed multiplexed
primers targeting the 600 genetic variants and amplified the target
regions for high-throughput sequencing with Illumina Hiseq X Ten
sequencer. After excluding 12 variants with a genotype call rate of
,95% or being not available in the training dataset, 588 variants or
their proxies remained for subsequent analyses, with 99.9% call
rate and 982× median sequencing depth (see Supplementary
material online, Figure S1). We performed strict quality control
to assess genotyping reproducibility of genetic data and compared
the genotyping consistency with Fludigm platform. A total of 1648
duplicate samples were genotyped, and the concordance rate was
determined to be .99.4%. The principal component analysis

showed minimal evidence for population stratification (see
Supplementary material online, Figure S2).

Genome-wide association studies
summary statistics and generation of
trait-specific polygenic risk scores
Nine trait-specific PRSs (CAD, stroke, BP, T2D, TC, LDL-C, TG,
HDL-C, and BMI) were separately constructed by summing the
number of corresponding risk alleles (0, 1, or 2) for each individual,
weighted by the effect size of variants on the corresponding trait
(see Supplementary material online, Table S3). For CAD, to esti-
mate the precise effect sizes of the selected variants in East
Asian ancestry, we conducted a large GWAS meta-analysis in the
East Asian population with a total sample size of 267 465 (51 531
CAD cases and 215 934 controls) from 12 cohorts, including BBJ,
CAS, BAS.23,24 A detailed list of studies for CAD GWAS
meta-analysis is available in Supplementary material online,
Table S4. For CAD-related traits, the effect sizes were directly ob-
tained from the large-scale GWASs for each trait conducted
among East Asian populations, and those containing Chinese sam-
ples were selected in priority if more than one GWAS were re-
ported. If a given variant was associated with an identical trait at
GWAS significance in more than one GWAS, we selected the ef-
fect size with a minimal P-value. It was worth noting that each vari-
ant for BP PRS was weighted by the average effect size
(β-coefficient) of systolic and diastolic BP.

To construct an optimized PRS for each trait, we generated a
series of scores containing independent variants (r2, 0.2) at 12 dif-
ferent significance thresholds (P= 0.5, 0.4, 0.3, 0.2, 0.1, 0.05, 0.01,
10−3, 10−4, 10−5, 10−6, 10−7) based on trait-specific summary

Figure 1 Flow chart of the study. (A) Derivation of metaPRS for CAD in training dataset. (B) Validation of metaPRS in prospective cohorts. PRS,
polygenic risk score; CAD, coronary artery disease; BP, blood pressure; BMI, body mass index; T2D, type 2 diabetes; TC, total cholesterol;
LDL-C, LDL cholesterol; HDL-C, HDL cholesterol; TG, triglycerides.
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statistics from the large-scale GWAS in East Asian ancestry. The in-
formation on the variants and their weights used for trait-specific
PRSs construction was provided in Supplementary material
online, Table S3. The score with the largest magnitude of OR per
PRS standard derivation (SD) for CAD in the training set was de-
fined as the optimal PRS for each trait (see Supplementary
material online, Figure S3). Each optimal PRS was standardized by
calculating the z-score (zero mean, unit standard deviation).

MetaPRS calculation
A combined PRS (metaPRS) was then generated by integrating the
nine optimal trait-specific PRSs. We conducted an elastic-net logis-
tic regression with 10-fold cross-validation using the R package
‘glmnet’, a method having been used to construct a PRS for stroke
with consideration of the correlation between distinct PRSs,25 to
assess the association between the nine optimal PRSs and CAD
in the training set, adjusting for age and sex. A series of models
with different penalties were evaluated, and the model with the
best performance, defined as the maximum cross-validated area
under the receiver operator curve, was selected as the final model.
Finally, the metaPRS for CAD was constructed by summing the
standardized optimal trait-specific PRSs weighted by adjusted esti-
mates β1,…, β9 derived from the final elastic-net model. The
metaPRS can be calculated via a weighted sum by using
variant-level genotype,

metaPRSi /
∑m
j=1

xij
b1

s1
a j1 + · · · + b9

s9
a j9

( )

wherem is the total number of variants, σ1,…, σ9 are the empirical
standard deviations of each of the nine PRSs in the training set,
αj1, …, αj9 are the variant effect sizes for the jth variant in each
of the PRSs, respectively, and xij is the genotype for the ith indivi-
dual’s jth variant. A variant’s effect size αjk was considered to be
zero for the kth score if the variant was not included in that score.
All these procedures resulted in 540 variants for inclusion in the
metaPRS. The weights of all variants for metaPRS were provided
in Supplementary material online, Table S3.

Statistical analysis
Characteristics of study participants were described as mean (SD)
for continuous variables and frequency (percentage) for categoric-
al variables as appropriate. The participants in the validation co-
horts were categorized into low (bottom quintile), intermediate
(the second to the fourth quintile), and high (top quintile) polygenic
risk categories according to quintiles of the metaPRS. The
China-PAR equations for predicting 10-year atherosclerotic CVD
(ASCVD) risk were developed from gender-specific Cox propor-
tional hazards models, with variables in the equations including age,
treated or untreated systolic BP, TC, HDL-C, current smoking, dia-
betes, waist circumference, geographic region, urbanization, and
family history of ASCVD, as well as available interaction terms
for age with risk factors that met predefined statistical criteria.6,26

The Chinese guideline on the assessment and management of car-
diovascular risk recommended a scale of risk stratification for CVD
prevention by classifying participants into low (,5%), intermediate

(5–9.9%), and high (≥10%) clinical risk groups. For individuals with
ASCVD risk ≥10%, drug therapy should be recommended in add-
ition to lifestyle changes.27,28 The China-PAR model for ASCVD
was recalibrated by estimating the baseline survival function and fit-
ting the predicted log-hazard ratios (HRs) as covariates to predict
CAD risk, as performed previously by Elliott et al.21 C-statistic and
net reclassification improvement (NRI) for survival data were used
to estimate the improvement in discrimination and reclassification
after adding the metaPRS to the recalibrated China-PAR
model.29,30 A risk threshold of 4.5% for 10-year CAD risk (equiva-
lent to the ASCVD risk of 10%) was used to calculate NRI.We also
obtained the 10-year and lifetime CAD risk in clinical risk categor-
ies (low: ,2.5%, intermediate: 2.5–4.4%, high: 4.5–5.9%, and very
high: ≥6%) and PRS categories using the recalibrated models,
which were standardized to the mean of the predictor variables
within each population.14 Fine and Gray’s proportional hazards
model which accounted for competing risk of non-CAD deaths
was used to evaluate the lifetime risk (up to 80 years of age) of in-
cident CAD after adjustment of sex and the first four principal
components with age as the time scale.31 A two-sided P-value of
,0.05 is considered statistical significance. Statistical analysis
was performed in R software, version 3.5.0 (R Foundation for
Statistical Computing, Vienna, Austria) or SAS statistical package,
version 9.4 (SAS Institute Inc., Cary, NC, USA).

Results

Study population
The mean age of disease onset was 51.59 years (SD, 7.36 years) for
2800 CAD cases in the training set while the age at entry into the
study was 54.77 years (SD, 7.53 years) for 2055 controls (see
Supplementary material online, Table S1). For 41 271 individuals
in the validation cohorts, the mean age at baseline was 52.3 years
(SD, 10.6 years), and 42.5% of them were men (Table 1). Men had a
higher proportion of current smokers and higher clinical risk scores
than women. During a total of 534 701 person-years (mean follow-
up duration, 13.0 years), 1303 incident CAD cases occurred.

Construction of polygenic risk score
To accurately assess the associations of 588 successfully genotyped
variants with CAD, we carried out the large GWAS meta-analyses
for CAD in the East Asian population comprising a total of 267 465
individuals from 12 cohorts (see Supplementary material online,
Table S4). Among the 209 CAD variants, 140 showed nominal sig-
nificance (P, 0.05) with CAD, whereas 91 variants showed signifi-
cant associations even at a Bonferroni-corrected threshold
(P-values ranged from 2.0× 10−4 to 3.76× 10−112 ,0.05/209)
(see Supplementary material online, Table S3 and Figure S4). As ex-
pected, the variants associated with CAD-related traits also dis-
played associations with CAD at different levels of significance.

We compared the effect sizes of CAD with those observed in
the UK Biobank, and 180 out of 209 (86%) CAD variants displayed
associations with CAD in a consistent direction and the strengths
of effect on CAD were moderately correlated (r2= 0.266) (see
Supplementary material online, Figure S5A). We generated a set
of CAD PRSs using effect size derived from our CAD GWAS at
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different significance thresholds and observed the strongest asso-
ciation of CAD PRS comprising 311 variants in the training set
(see Supplementary material online, Figure S3 and Table S3). The
ORs of CAD PRS would decay markedly when using effect sizes
from the European population (see Supplementary material
online, Figure S5B). Similarly, we obtained another eight optimal
PRSs for specific traits using effect sizes from the East Asian popu-
lation, which were correlated with each other to different degrees
(see Supplementary material online, Figure S6). Then the metaPRS
was generated by integrating the nine individual PRSs using
elastic-net logistic regression with 10-fold cross-validation, with
the estimate for each PRS being significantly adjusted (see
Supplementary material online, Figure S7). As expected, the
metaPRS had the greatest association with CAD risk than any
other individual PRS in the validation cohorts (see
Supplementary material online, Figure S8), with the HR of 1.44
[95% confidence interval (CI) 1.36–1.52] per SD increment in
metaPRS (P= 2.84× 10−39) and 1.41 (95% CI 1.33–1.49) per SD
increment in CAD-only PRS. We also observed a more marked
gradient of CAD risk across quintiles of metaPRS than CAD-only
PRS. The metaPRS had a greater HR of 2.91 (95% CI 2.43–3.49)
in the top quintile vs. the bottom quintile than the CAD-only
PRS (HR: 2.59, 95% CI 2.17–3.10) (Figure 2 and Supplementary
material online, Figure S9).

Polygenic risk and the lifetime
trajectories of coronary artery
disease risk
We then assessed how the metaPRS affected lifetime trajectories
of CAD risk in 41 271 individuals. The cumulative risks by age of

80 for coronary events were 5.8% for individuals with low polygen-
ic risk (bottom quintile of the metaPRS) and 15.9% among those
with high polygenic risk (top quintile of the metaPRS), respectively
(Figure 2). Similar results were observed in both sexes, with men
having higher HR and cumulative risks (see Supplementary
material online, Figure S10). These associations with the metaPRS
were largely independent of the traditional risk factors, including
CAD family history and the clinical risk score (see
Supplementary material online, Table S5). The combination of
CAD family history and PRS category would help further discrim-
inate individuals. The lifetime risk of CAD was 5.6% among indivi-
duals with low polygenic risk and without a family history, whereas
the presence of both could obtain the lifetime risk of CAD as high
as 27.7%, conferring 5.66-fold increased risk of CAD (95%CI 3.98–
8.04) (see Supplementary material online, Figure S11).

Predicting coronary artery disease risk by
polygenic and clinical risk score
The recalibrated China-PAR model for CAD risk demonstrated
good agreement between observed rate and expected rate (see
Supplementary material online, Figure S12 and Table S6). We fur-
ther evaluated the potential of PRS for CAD prediction beyond
the recalibrated model. The addition of the metaPRS to a baseline
model including age and sex increased the C-statistic from 0.705 to
0.728 (difference, 2.4%; P= 4.86× 10−12). Adding the metaPRS to
the recalibrated clinical risk model also significantly improved risk
discrimination of incident CAD (C-statistic change, 1%; P= 7.72×
10−7) (see Supplementary material online, Table S7). There was a
significant reclassification improvement in a two-category risk
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Table 1 Baseline characteristics of the prospective cohorts

Items Total
(n=41271)

Men
(n= 17560)

Women
(n= 23711)

Age at baseline, years 52.3 (10.6) 52.8 (10.8) 51.9 (10.5)

Current smokers 10 026 (24.4) 9380 (53.5) 646 (2.7)

Family history of CAD 2255 (5.5) 965 (5.5) 1290 (5.4)

Body mass index, kg/m2 23.8 (3.6) 23.4 (3.4) 24.1 (3.8)

Systolic blood pressure, mmHg 128.4 (21.9) 129.1 (20.9) 127.9 (22.6)

Diastolic blood pressure, mmHg 79.4 (11.9) 80.6 (12) 78.5 (11.8)

Total cholesterol, mg/dL 180.5 (36.3) 177.9 (36) 182.4 (36.5)

Blood glucose, mg/dL 94.2 (27.2) 93.2 (25.4) 94.9 (28.4)

Hypertension 14 038 (34) 6187 (35.2) 7851 (33.1)

Diabetes 2705 (6.8) 1012 (6) 1693 (7.4)

Dyslipidaemia 13 399 (33) 6063 (35.2) 7336 (31.5)

China-PAR scorea

Low (,5%) 24 892 (62.2) 9052 (53.2) 15 840 (68.9)

Intermediate (5–9.9%) 8342 (20.9) 4057 (23.9) 4285 (18.6)

High (≥10%) 6768 (16.9) 3898 (22.9) 2870 (12.5)

Incident CAD events 1303 (3.2) 635 (3.6) 668 (2.8)

Person-years of follow-up 13.0 (4.8) 12.9 (5.1) 13.0 (4.6)

aTen-year ASCVD risk score using the Prediction for Atherosclerotic cardiovascular disease Risk in China equations; values are presented as mean (standard deviations) or
n (%); CAD, coronary artery disease.
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assessment (,4.5%,≥4.5%) (NRI 3.5%, 95% CI 1.2–6.0%; continu-
ous NRI= 25.8%, 95% CI 18.5–32.5%) (Table 2).

We also performed sensitivity analysis to compare the perform-
ance of the PCE model. The recalibrated China-PAR model had
better discrimination of CAD risk than the recalibrated PCE among
Chinese population, regardless of adding metaPRS to the clinical
risk models (see Supplementary material online, Table S7).

Polygenic and clinical risk stratification
for coronary artery disease
We further assessed the interplay of the metaPRS and the clinical
risk in impacting the risk of CAD. We observed significant gradi-
ents in the 10-year and lifetime risk of incident CAD across PRS
categories within each clinical risk strata (Figure 3). For example,
among individuals with high clinical risk, the 10-year absolute
CAD risk varied from 3.3% for those with the low genetic risk to
7.1% for those with the high genetic risk, and their corresponding
lifetime absolute risk ranged from 11.3 to 24.1%. More interesting-
ly, individuals at intermediate clinical risk with high genetic risk de-
monstrated the 10-year CAD risk of 4.6% over the threshold for

high clinical risk of CAD (equating to the established treatment
threshold of 10% ASCVD risk). The 10-year (4.6 vs. 4.8%) and life-
time risk (17.9 vs. 16.6%) of incident CAD for these 20% individuals
at intermediate clinical risk also reached the risk levels of those at
the high clinical risk group with intermediate (20–80%) genetic risk.
We repeated the analysis and observed the similar patterns of
the interplay between PCE score and metaPRS, although the
absolute risk predicted by the recalibrated PCE seemed to be low-
er than the values predicted by the recalibrated China-PAR model
(see Supplementary material online, Figures S13 and S14).

We also observed marked variability in the 10-year and lifetime
risk of incident CAD across PRS categories, regardless of the age
and gender categories (see Supplementary material online,
Figures S15 and S16). For example, among men aged 35–44 years
and with a clinical risk score of 6% and above, 10-year absolute
risk varied dramatically from 5.8 to 14.2%, which depended on
the polygenic risk categories. The corresponding values of lifetime
risk ranged from 15.8 to 35.0%. It is particularly noteworthy for in-
dividuals at intermediate clinical risk score (2.5–4.4%) due to their
clinical uncertainty in primary prevention, the high genetic score
made both the 10-year and lifetime risk of CAD be close to or

Figure 2 Cumulative incidence curves for incident coronary artery disease across polygenic risk categories. Fine and Gray’s proportional ha-
zards model accounting for competing risk was used to estimate the hazard ratios (95% confidence intervals) and the cumulative risk of coronary
artery disease adjusted for sex and the first four principal components with age as the time scale. Polygenic risk categories: low (bottom quintile),
intermediate (2nd–4th quintile), or high (top quintile) risk according to quintiles of the metaPRS. CAD, coronary artery disease; HR, hazard
ratio; CI, confidence interval.
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exceed the values (20–80% of metaPRS) of high clinical risk score
(4.5–6.0%) in all the sex and age-specific groups.

Discussion
We developed and evaluated a PRS for CAD incidence combined
with the traditional clinical risk score in East Asian ancestry based
on population-based prospective cohorts.We found that the poly-
genic score could enhance risk stratification for incident CAD be-
yond the clinical risk score, demonstrating substantial gradients in
the 10-year and lifetime risk of CAD across the polygenic risk cat-
egories. In particular, the CAD risk for individuals at the intermedi-
ate clinical risk would reach the risk level of those at the high clinical
risk when integrating high polygenic risk (Structured Graphical
Abstract).
Polygenic scoring studies have primarily been conducted in

European ancestry populations, but its predictive utility decreased
largely in other ethnic groups.16,17 Due to the lack of comprehen-
sively characterized and genotyped cohorts, few studies have eval-
uated the performance of PRS in a prospective setting among
non-Europeans. The large-scale meta-analysis of GWAS of CAD
we conducted allowed us precisely assess the effect sizes of the
variants in East Asian population. The metaPRS we constructed
by incorporating genetic information of CAD-related traits had
the best performance compared with the trait-specific PRS.
We further compared the performance of our metaPRSwith the

reported genome-wide PRSs of CAD in our training dataset (see
Supplementary material online, Table S8). As expected, our
metaPRS comprising 540 genetic variants showed better perform-
ance than the two genome-wide PRSs (i.e. metaGRS and LDPred,
1.7M and 6.6M variants) derived from the European studies8,9

despite its limited number of variants, with ORs per SD-PRS of
1.83 (95% CI 1.70–1.96) for our metaPRS being higher than that
for metaGRS (OR 1.69, 95% CI 1.57–1.81) and LDPred (OR:
1.52, 95% CI: 1.42, 1.63). We also constructed a set of genome-
wide PRSs based on the summary statistics of our CAD GWAS
and BBJ datasets by using the LDpred algorithm and pruning and
thresholding strategies (see Supplementary material online,
Table S9). The two best CAD PRSs (comprising 5.1M and 4.9M var-
iants) obtained from our CADmeta-analysis and BBJ-only had ORs
for per SD-PRS of 1.78 (95% CI 1.66–1.91) and 1.62 (95% CI 1.51–
1.74), respectively. Of note, the trans-ancestry CAD PRS compris-
ing 75 028 variants developed based on the trans-ancestry
genome-wide meta-analysis (BBJ, C4D, and UKBB) had the largest
OR of 1.97 (95% CI 1.83–2.12) in our training dataset. When using
other two measurements, Nagelkerke’s pseudo-R2 and C-statistic,
our metaPRS also demonstrated comparable predictive perform-
ance to the genome-wide PRSs. Our metaPRS conferred an HR
of 1.44 per SD increment of the metaPRS in the validation cohorts,
which was larger than the scores derived by dozens to hundreds of
variants,11,15,32–34 and was even comparable to the genome-wide
polygenic scores derived from European population.9,14,20,21

Consistent with the genome-wide PRSs in European population,
the metaPRS demonstrated a great potential to substantially strat-
ify individual CAD risk trajectories.

The clinical utility of PRS in CAD risk reclassification was uncer-
tain when combining the traditional clinical score. Several studies
examined whether the genome-wide CAD PRSs improved risk
prediction beyond the PCE in European ancestry popula-
tions.14,20,21 Adding the PRS to the PCE yielded an increment of
about 0.02 in the C-statistic and a NRI of 4.0% at a risk threshold
of 7.5% in the UK biobank. We also demonstrated that the
metaPRS provided a statistically significant yet modest
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Table 2 Net reclassification improvement after adding metaPRS to clinical risk score

Clinical risk score MetaPRS+++++ clinical risk score

,4.5% ≥4.5% Total

CAD

,4.5% 405 65 470

≥4.5% 36 334 370

Totals 441 399 840

Non-CAD

,4.5% 28 154 870 29 024

≥4.5% 866 2969 3835

Totals 29 020 3839 32 859

Net reclassification improvement (NRI)

NRI for CAD (95% CI), % 3.2 (0.9–5.8)

NRI for Non-CAD (95% CI), % 0.3 (0.1–0.5)

NRI (95% CI), % 3.5 (1.2–6.0)

Continuous NRI for CAD (95% CI), % 15.7 (7.7–22.2)

Continuous NRI for Non-CAD (95% CI), % 10.1 (9.1–11.1)

Continuous NRI, % 25.8 (18.5–32.5)

NRI, net reclassification improvement; CAD, coronary artery disease; CI, confidence interval; PRS, polygenic risk score.
The clinical risk score of CAD was obtained from the recalibrated 10-year China-PAR model. The risk of 4.5% for 10-year CAD risk is equivalent to the ASCVD risk of 10%.
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discrimination over China-PAR score. Of note, the NRI would be
0.165 in the UK biobank when assessed the reclassification in a
four-category PCE risk (,5, 5–7.5, 7.5–20, and .20%).14

Accordingly, a striking gradient of longitudinal risk across CAD
PRS categories was observed within each of the four PCE risk stra-
ta. Our metaPRS consistently displayed the ability to substantially
stratify CAD risk trajectories within each China-PAR risk category.
In particular, among individuals with clinical uncertainty, the abso-
lute risk for those at the highest 20% of genetic risk would reach
the level of high clinical risk group. Moreover, recent evidence
from three US health care systems suggested that individuals at
high polygenic risk for CAD were not well identified by current
clinical risk estimators and the high CAD PRS were considered a
risk-enhancing factor to up-classify risk in a guideline framework.35

Risk-enhancing factors are those independently associated with
CAD and conferred a nearly two-fold risk of disease.36,37 In our
analysis, we observed a comparable level of risk (HR 1.92, 95%
CI 1.63–2.27) among those in the top 20% of the metaPRS com-
pared with the remainder of the population, supporting that the
metaPRS may serve as a risk-enhancing factor for CAD.

Age is the most important risk driver in the clinical risk equation,
therefore resulting in overestimation or underestimation of risk,
whereas genetic risk is age independent and can be determined
early in life when few individuals express risk factors that exceed
treatment thresholds established for older adults. Our findings
highlight the concept that PRS may provide complementary infor-
mation within guideline-supported frameworks to better stratify

different trajectories of CAD risk and inform clinical decision-
making for primary prevention, although not substantially influen-
cing C-statistic.13,38 For individuals at intermediate clinical risk
whose guideline-based recommendations are unclear, the addition
of a polygenic risk estimate could clarify their risk and favour to de-
cide against (low polygenic risk) or for (high polygenic risk) taking
lifestyle and medical intervention action. For the individuals with
high clinical risk, the incorporation of high genetic risk would facili-
tate capturing individuals who need intensive lifestyle changes and
drug treatments, particularly when considering that treatment with
statins and antihypertensive drugs in them was still inadequate.39 It
has been demonstrated that high genetic risk of CAD may be mi-
tigated by statin use and healthy lifestyle in both primary and sec-
ondary prevention and that individuals at high genetic risk were
found to derive the greatest benefit from the therapeutic interven-
tion.11,40–43 The randomized controlled trials focusing on indivi-
duals at intermediate or high clinical risk, especially for Chinese,
are required to confirm the clinically meaningful benefit and the
cost-effectiveness of polygenic risk stratification for CAD.

The major strengths of the current study include the large sam-
ple size of participants with up to 20 years’ follow-up, and rich base-
line phenotyping according to a well-defined and standardized
protocol, which enabled us to comprehensively evaluate the com-
bination of polygenic risk and traditional clinical risk. Furthermore,
to derive a PRS for CAD, we used the current large GWAS of CAD
and CAD-related traits in East Asians. However, some limitations
should also be noted. First, our metaPRS did not include all the

Figure 3 Ten-year and lifetime risk of coronary artery disease according to clinical and polygenic risk categories. (A) Ten-year risk of coronary
artery disease obtained from the recalibrated clinical risk and metaPRS model with follow-up time as the time scale. (B) Lifetime risk of coronary
artery disease (till 80 years of age) obtained from the recalibrated clinical risk and metaPRS model accounting for competing risk with age as the
time scale. Participants were stratified into low (,2.5%), intermediate (2.5–4.4%), high (4.5–5.9%), and very high (≥6%) 10-year risk of CAD
categories, approximately equating to the atherosclerotic cardiovascular disease risk of ,5, 5–9.9, 10–14.9, and ≥15%. According to the risk
assessment guideline from China, the established treatment threshold for atherosclerotic cardiovascular disease is the 10-year risk of athero-
sclerotic cardiovascular disease of 10%. CAD, coronary artery disease; ASCVD, atherosclerotic cardiovascular disease; PRS, polygenic risk
score.
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variants that underlay CAD risk, which might result in underestima-
tion of the true effect. Future studies that construct PRS capturing
the full spectrum of genomic variants will likely provide additional
gains in prediction and risk stratification. Second, it has been demon-
strated that the performance of PRS varied across different ances-
tries, even populations of similar ethnic but different countries.44

Further external evaluation of our metaPRS in other populations
of East Asian ancestry other than Chinese is warranted.

Conclusion
We developed a CAD polygenic score with good performance in
risk stratification beyond the clinical risk score. The incorporation
of polygenic risk into clinical care setting may provide a valuable
risk stratification guidance to identify individuals who should be in-
itiated or given intensive lifestyle changes and drug treatments.

Supplementary material
Supplementary material is available at European Heart Journal
online.
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