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Abstract

In this paper we report on an automated procedure to capture and characterize the detailed

structure of a crop canopy by means of stereo imaging. We focus attention specifically on

the detailed characteristic of canopy height distribution—canopy shoot area as a function of

height—which can provide an elaborate picture of canopy growth and health under a given

set of conditions. We apply the method to a wheat field trial involving ten Australian wheat

varieties that were subjected to two different fertilizer treatments. A novel camera self-cali-

bration approach is proposed which allows the determination of quantitative plant canopy

height data (as well as other valuable phenotypic information) by stereo matching. Utilizing

the canopy height distribution to provide a measure of canopy height, the results compare

favourably with manual measurements of canopy height (resulting in an R2 value of 0.92),

and are indeed shown to be more consistent. By comparing canopy height distributions of

different varieties and different treatments, the methodology shows that different varieties

subjected to the same treatment, and the same variety subjected to different treatments can

respond in much more distinctive and quantifiable ways within their respective canopies

than can be captured by a simple trait measure such as overall canopy height.

Introduction

Plant breeders seek to identify new cereal plant varieties with potential for increased biomass,

grain yield and greater resilience to adverse environmental conditions. To support plant

breeder efforts and to accelerate the plant breeding process itself, new software methodologies

and hardware technologies for improved genotyping and phenotyping need to be developed

[1]. Given the advances made in modern genetics and genomics during the last two decades,

the bottleneck would appear to lie with the crop phenotyping pipeline. One small step toward

achieving the ideal pipeline involves the quantitative tracking of a multitude of phenotypic

traits during a season. In the particular context of in situ field studies and specifically of cereal

crop assessment, a number of determinant phenotypic crop traits are relevant: canopy cover-

age, canopy height, canopy health (NDVI), as well as the appearance of major growth stages
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(esp. tillering, heading and flowering times). In this paper we report on some particular pheno-

typing aspects of a field experiment which looked into the influence of nitrogen application on

the growth behavior of ten Australian wheat cultivars. We focus attention here on the specific

trait of canopy height distribution as derived from a time sequence of stereo images of field

plots of the ten cultivars. This is one of two ideas we present in this paper.

Canopy height distribution, as opposed to just canopy height, has not been considered as a

phenotypic trait due mostly to the difficulty in obtaining such detailed information, as well as

the difficulty in its quantitative utilization [2–4]. However, the distribution of leaf height

within a canopy is arguably a better quantitative measure than canopy height alone, which,

incidentally, is often determined manually and therefore open to subjective error. When com-

bined with canopy area distribution, height distribution can provide a more accurate measure

of in situ biomass, which in turn has been shown to be strongly correlated with grain yield [5,

6]. By inference, knowledge of canopy distribution development and understanding of its rela-

tion to environmental influences during a season can guide a plant breeder’s decision of which

varieties to continue assessing and which to discard.

Imaging and image analysis methods have gained popularity recently for applications in a

range of plant phenotyping situations [7–14]. Although, most techniques and methods for

plant phenotyping [10, 15, 16] have been designed and are presently used for assessing growth

and development in controlled environments such as glasshouses, a variety of image-based,

field phenotyping platforms are now being considered [4, 16–19]. However, their full utiliza-

tion is hampered by the lack of a suitable framework for the analysis of the images that are

being captured.

In the context of field phenotyping, the processing requirements are (a) full automation,

requiring little if any user input for high throughput applications (plant breeders typically

assess several thousand plots in any one season and at any one location), (b) robustness to

images taken under different imaging conditions, and, (c) quantitative accuracy of extracted

information. In a series of papers outlining plant image analysis methods for high throughput

processing of large volume image data of plants grown in closed environments [10, 20–23],

heavy reliance was made of controlled lighting and uniform background conditions to achieve

these goals. The convenience of uniform conditions, however, is not replicated in the field.

This poses some considerable difficulty for the expert and non-expert alike. However, for the

non-expert, but likely user, the difficulties are compounded by the lack of knowledge of image

processing and image analysis methods. For example, if camera settings such as focal length

and camera position are varied, a re-calibration of camera images is required in order to re-

estimate camera lens distortion in order to obtain accurate absolute quantitative information

on plant traits that can be used for comparisons over time and between varieties. This require-

ment is not often recognized let alone met although it is essential for a truly quantitative

analysis.

Thus, a second idea we convey in this paper is that of an innovative but simple approach to

obtaining absolute quantitative measures directly from stereo image pairs as an alternative to

the inconvenience of plant and crop scientists needing to become familiar with camera calibra-

tion and processing software. We have developed a software solution that will calibrate camera

images without need of any additional reference measures. This allows the user to take full

advantage of the vision system and deduce quantitative plant traits accurately. Embedded in

the approach, is the notion of normalized disparity from stereo images. This allows the algo-

rithm to be robust to small vibrations of the imaging system. As a result, the proposed

approach is suitable for plant phenotyping in field conditions.

In summary, the main contributions of this study are (a) an automated field phenotyping

framework, engineered to provide objective and accurate estimates of canopy height and
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canopy height distribution, and (b) a user friendly approach to robust camera calibration for

quantitative field phenotyping applications.

Experimental setup and data collection

Field experiment and mobile imaging platform

The field trial was conducted at Mallala, South Australia (latitude = −34.457062, longi-

tude = 138.481487), in a 5 × 12 split block design with a total of 60 plots consisting of ten

spring wheat (Triticum aestivum L.) varieties, two fertilizer treatments and three replicates.

The field was sown on July 8, 2016 at a seeding rate of 45 g/plot. To mitigate the effects of bor-

der rows, an additional plot, not included in the analysis, was planted at the beginning and end

of each row of plots. Plots were 1.2 × 4 m2, with a gap of approximately 1 metre between col-

umns and rows. Half of the replicates were treated with a top dressing of a standard mix of

16:8:16 N-P2O5-K2O at 37.5 g/m2 on August 12, 2016 followed on September 8, 2016 with a

top dressing of Urea at 4.3 g/m2. The remaining 30 plots received no treatment. Imaging of the

field took place between August 23, 2016 and December 2, 2016, at a desired rate of twice per

week, weather permitting. A total of 23 image sets were actually captured during the season,

but only a subset before the heading growth stage is included here.

A manually propelled wagon was used for the capture of these images. A pair of Canon

EOS 60D digital cameras for stereo image capture were mounted on a central overhead rail 20

centimetres apart and 190 centimetres above ground level, on a steel frame supported by a

base of four wheels. The overhead rail was also capable of supporting other imaging sensors (a

third RGB camera with an oblique view plus a multispectral camera), but these do not feature

in this report. A schematic of the camera arrangement is shown in Fig 1. Manual focus of the

stereo camera pair was used during all imaging sessions with cameras focused at 2 metres and

1.5 metres during early and late plant growth stages, respectively. Camera settings were as fol-

lows: focal length—18 millimetres; aperture—f/9.0; ISO setting—automatic; and, exposure

time—1/500 seconds. With such camera settings the image resolution was found to be approx-

imately 0.04cm per pixel. Cameras were synchronized to capture images within 1 millisecond

of each other. An X-rite colour checker was attached to the left side of the wagon, so that it

would be visible from the perspective of the left-side camera.

Manual height measurements

The height of each plot was measured manually at each imaging session using a one metre

ruler with markings every centimetre. The height of a plant was defined as its highest point,

including the spike but excluding the awns protruding from spikes. At earlier stages when

spikes were not present the heights recorded corresponded to the heights of the uppermost

level of leaves. Measurements at 3–5 positions across uniform regions of each plot were taken

and averaged to give a single measure per plot and per time point. These average heights pro-

vide the most representative measure of whole plots. In cases where a few spikes or flag leaves

protruded above the remainder of the canopy, these were ignored.

Results and discussion

Automated height estimation: Evaluation and consistency

From the (calibrated) stereo image pairs we applied a stereo matching procedure to generate

so-called depth maps, defined as 3D graphs of plant height as a function of position within the

respective plots. From this detailed depth map information we determine the theoretical plot

heights by thresholding the top 2% of the depth map histograms as indicated in Fig 2. We
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compared these derived measures with the manual measurements of average plot height.

Clearly, with this theoretical definition, plot height will not correspond to the highest point of

the plot, but be somewhat less than this. We return to this point later in the discussion.

The estimated canopy heights of Plot 52 (variety: Gregory and treatment: Fertilized) on

days 23/09/2016 and 11/10/2016, 44cm and 67cm, respectively, are seen to be very close to the

manual measures of 44cm and 65cm. However, the estimated canopy height of 82.8cm on 28/

10/2016 differed from the manual measure of 98cm by a non-negligible amount. This differ-

ence of 15.2cm is attributed to the lengths of a non-negligible number of spikes that were pres-

ent at this later stage, that appeared above the average leaf canopy and that were included in

the manual measurement. In the depth map distribution shown in Fig 2, we indeed find a

small peak at around 100cm height, which is due to those same spikes. However, our threshold

estimate of canopy height, which excludes the top 2% of the distribution, also excludes the con-

tribution from these spikes.

To avoid any confusion that might arise as a result of such discrepancies, we focus attention

in the remainder of this paper on canopy height estimation for the cases that precede spike

appearance. However, we point out that it is possible to estimate the average height of spikes

(and even their average length) by first detecting spikes in original images [24] and then

deducing heights and lengths in the identified regions of the depth maps.

We applied the stereo matching algorithm to automatically generate depth maps (i.e. height

distribution graphs) from images taken of the 60 plots over two months during the season up

to the time of spike appearance. Thresholding of the resulting histograms in the manner

described above gave estimates of canopy height for the 240 data points from four days that

are compared in Fig 3 with corresponding manual measurements. The comparison,

Fig 1. Stereo camera pair arrangement. Schematic showing the physical arrangement of the stereo pair of RGB cameras. Camera height above ground

level, H, was fixed at 190 cm. The distance between camera apertures was fixed at G = 20 cm. The cameras used were of the make Canon EOS 60D with

a focal length of 18 mm and resolution of approximately 0.04 cm per pixel.

https://doi.org/10.1371/journal.pone.0196671.g001
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Fig 2. Components in the height estimation pipeline. (a) Example single camera images of a field plot (Plot 52 of 60—variety: Gregory and treatment:

Fertilized), taken at three different time points (from l. to r.: 23/09/2016, 11/10/2016 and 28/10/2016). (b) Corresponding depth maps using the

disparity mapping technique described in the paper. (c) Frequency histograms showing leaf pixel height distributions on these days. Note that the

vertical axis gives the number of plant pixels in the image at a particular height (horizontal axis). Colour coded vertical arrows indicate the locations of

the common percentage threshold (98%) used to determine canopy height. The red arrow indicates the height of the spike distribution present on day

28/10/2016. Note also that a common rectangular region was considered in obtaining the data.

https://doi.org/10.1371/journal.pone.0196671.g002
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represented by a straight line of best fit y = αx, where x and y denote the measured and esti-

mated canopy heights, respectively, produced values of α = 0.9973, R2 = 0.9201, and a standard

deviation of 2.9 cm. The close to ideal (i.e., unbiased) quantitative comparison between esti-

mate and measured height, irrespective of growth stage and independent of field illumination

(which did vary over the season), can be compared with the results obtained by others [2, 3,

17] who, through analogous comparisons with ground truth measurements, achieved lower R2

comparisons and greater bias |α − 1|�0 values (e.g. R2 = 0.543 and α = 0.842 in the case of [25]

or R2 = 0.92, α = 0.817 and a shift of about 10 cm in the best case [3]). We can conclude that

our automated procedure is arguably more robust and comparably accurate to manual deter-

mination of height.

Fig 3. A whole-of-data comparison of automated height estimation and manual measurement. Manual measurements of canopy height for the field

trial of 60 plots taken on four occasions are compared with the canopy height estimated using depth map estimation from stereo images. The solid line

is the line of best fit to the data which, having a slope of 0.9973, is close to the ideal 45˚ line. Note that manual measurements as reported are the result of

averages of several observations sampled across the plot, and therefore are prone to some degree of variation. Data points with different colors are from

the four different days on 23/09/2016 (green squares), 27/09/2016 (yellow triangles), 11/10/2016 (blue diamonds) and 14/10/2016 (red circles).

https://doi.org/10.1371/journal.pone.0196671.g003
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From the differences between estimated and manually measured canopy heights at the later

stage of growth, and from their agreement at early and mid-growth stages, a number of infer-

ences can be drawn. First, if the protocol followed for manual measurements was to exclude

spikes from consideration, then good agreement between theoretical and manual measures

would likely result throughout the season, even with our convenient choice of a simple thresh-

old (top 2%). Secondly, with our depth map it is possible to identify spikes, if any are present,

and moreover it is possible to quantify their particulars. This is evidenced by the presence of

the small peak indicated by the red arrow in Fig 2. Finally, it is of course feasible that one could

employ a more sophisticated procedure to automatically estimate canopy height that would

include spikes in the estimate, if these were abundant. For example, fitting a suitable distribu-

tion model to the top 5% or top 10% of the depth map histogram, although it would add to the

computational effort, could establish canopy height as the height of the abundant spikes or

alternatively as height of the uppermost leaf level if spikes were either not present or present in

fewer numbers.

Fig 3 summarizes the strong correlation present between the theoretical height estimations

and the manual measurements on different days (pre-spike appearance). A somewhat more

detailed comparison as a function of individual plots is shown in Fig 4. Generally, heights

Fig 4. Graphical comparison of canopy heights for different days. Graphs of manual measurements (dashed lines) and the proposed depth map

estimations (solid lines) of canopy height for the complete data set comprising 60 plots and 4 days of results. The four colors represent the data for the

four different days: 23/09/2016 (green), 27/09/2016 (yellow), 11/10/2016 (blue) and 14/10/2016 (red).

https://doi.org/10.1371/journal.pone.0196671.g004
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estimated by stereo matching are close to those obtained manually. Using these manual mea-

sures as benchmark, the standard variance of the automated height estimation from ground

truth is found to be 2.9cm. Having said this, the reference to the manual measurements as a

“benchmark” should be considered with a degree of some scepticism. It was explained earlier

that the recorded manual measurements were the results of averaging of a number of height

samplings. This protocol presumes that the ground is even (which is unlikely since the planting

process creates furrows resulting in an uneven, indeed undulating, ground base) and that the

canopy is uniform (which is unlikely due to edge effects and possibly also to soil variability

across the plot). Consequently, it should be appreciated that some degree of error or variability

is inherent in the benchmark itself.

To highlight this variability we consider in Fig 5 the same data as in Fig 3 but separated for

clarity into manual measurements (Fig 5(a)) and theoretical estimations (Fig 5(b)). The curves

again represent the state of the plots on the four imaging days: 23/09/2016, 27/09/2016, 11/10/

2016 and 14/10/2016. Given the time differences, one would expect there to be a significant

difference in height between the data for the first pair of days and the data for the second pair

of days, which is indeed realized in both figures. However, although less difference would be

expected within each pair, which differ in time by only four and three days, respectively, it is

not always realized that plant heights on the second day of each pair are higher than on the

first day. Fig 5(a) indicates 12 exceptions, while Fig 5(b) indicates only two exceptions. In the

former case, the exceptions likely originate in either subjective errors made in measurements

of canopy height or in the variation of ground height where the ruler was positioned. As for

the automated height estimation by stereo matching, the method has two major advantages

over manual measurements. Firstly, the estimation is always objective, and secondly the

ground level reference is a constant. These facts contribute to the improvement over manual

determination. All the same, automated height estimation is not a perfect process and relies

on accurate stereo matching to produce accurate depth maps. The two exceptions shown in

Fig 5(b) are likely due to disparities in the stereo matching process. In relative terms, however,

the favourable comparison of self-consistency of Fig 5(b) over Fig 5(a), advocates for the more

objective approach to height determination as provided by our automated method.

Canopy height distributions as phenotypic traits

Plant height is without doubt one of the more important traits used for plant phenotyping pur-

poses. It has been used for crop lodging detection [2] and has been included as a component in

biomass estimation [3, 17]. In this section we demonstrate that far greater understanding of

canopy development is possible from the information contained in depth maps rather than

just the canopy height.

One particular value that depth maps add to our understanding of coverage and leaf distri-

bution at depth becomes highlighted when depth maps for canopies of different varieties or

different treatments are compared. For example, Fig 6 compares depth histograms of the Aus-

tralian wheat variety Drysdale under two treatments, with (solid lines) and without (dashed

lines) fertilizer, for the four imaging days during the season. Each line represents the mean of

the three corresponding replicates. The variations across those replicates are shown as error

bars (color coded for the respective days, and dotted and solid error bars, respectively, for

treated and untreated plots). The variety Drysdale was singled out for illustration as it appeared

to be the variety out of the ten studied that was most responsive to nitrogen treatment. From

this figure, a number of features are apparent.

Firstly, from 23/09/2016 to 14/10/2016, the plants in all plots grew, as measured by height

and canopy coverage. Secondly, plants in the fertilized plots grew significantly taller with
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Fig 5. Graphical comparison of canopy heights for a self-consistency study. Graphs of canopy height for the complete data set as per Fig 4,

except that manual measurements and theoretical estimations are separated for clarity of discussion. (a) Plant heights as obtained by manual

measurement; (b) plant heights obtained by stereo matching. As above, the four colors represent data from the four imaging days: 23/09/2016

(green), 27/09/2016 (yellow), 11/10/2016 (blue) and 14/10/2016 (red).

https://doi.org/10.1371/journal.pone.0196671.g005
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thicker canopies than plants in the unfertilized plots. Thirdly, comparing the average histo-

grams for fertilized plots for day 23/09/2016 with those for day 27/09/2016 one can see that

the whole histogram average has shifted which can be explained by stem elongation, which

resulted in the leaf canopy being raised further above the ground, without an accompanying

change in the shape of the distribution. This is demonstrably less so, but still arguably the case,

for the unfertilized plots. Similar statements describing the change in the histograms from day

11/10/2016 to 14/10/2016 cannot be made as internal adjustments in the distribution occur

alongside general height extensions. From these histograms, we also find that canopy cover-

ages (the areas under histogram curves) increase significantly during the 4 day period from 23/

09/2016 to 27/09/2016.

A canopy distribution also allows for a refined understanding of other canopy changes: the

canopy thicknesses on 14/10/2016 were lower than those on 11/10/2016 even though plant

heights increased slightly. This we understand to be the result of some plant senescence. That

is, we find that the upper portions of histograms are very similar, while the lower portions are

Fig 6. The effect of treatment on height distribution. Demonstration of the effect of treatment on canopy height distribution as registered by

differences in frequency histograms of leaf pixel height for the four days of imaging: 23/09/2016 (green), 27/09/2016 (yellow), 11/10/2016 (blue) and 14/

10/2016 (red). The Australian wheat cultivar Drysdale was chosen for study due to its pronounced dependence on canopy fertilization. The solid lines

for each respective day refer to averages of the three replicate fertilized Drysdale plots (error bars show variation over the three repeats). The dashed

lines for each respective day refer to averages of the three replicate un-fertilized Drysdale plots (error bars show variation over the corresponding three

repeats).

https://doi.org/10.1371/journal.pone.0196671.g006
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quite different: frequencies of the lower parts decreased significantly. This attributed to the

wilting and volume loss in the lower plant shoots following senescence which commonly starts

in the lower parts of plants. The canopy height distribution is thus useful in not only providing

information about growth overall but also the existence of some canopy senescence.

On the matter of varietal differences, Fig 7 shows depth map histograms for the varieties

Drysdale and Mace. The results are for fertilizer-treated plots. As in Fig 6 the mean values are

shown as continuous lines with error bars indicative of the variation across the respective

three replicates; color codes again reflect the four different days of imaging. The varieties have

been selected for illustration for their large relative difference in growth and development pat-

terns. The Drysdale results are identical to those shown in Fig 6. We point out that the canopy

height distributions for fertilized and unfertilized plots of Mace, in contrast to Drysdale, did

not show any major structural differences.

Fig 7. Comparison of canopy development for two varieties: Drysdale and Mace. Demonstration of the different rates and extents of development of

canopy for two Australian cultivars as captured by their leaf pixel height frequency histograms, as a function of time. The colour coding again refer to

the four days of imaging: 23/09/2016 (green), 27/09/2016 (yellow), 11/10/2016 (blue) and 14/10/2016 (red). The Australian wheat cultivars Drysdale and

Mace were chosen as these exhibited considerable differences in mean canopy height. Only data from fertilized plots is included in the analysis. The

solid lines for each respective day depict averages of the three replicate fertilized Drysdale plots (error bars show variation over the three repeats). The

dashed lines for each respective day depict averages of the three replicate fertilized Mace plots (error bars show variation over the corresponding three

repeats). Note that in this study in contrast to Drysdale (Fig 6), Mace did not show any significant variation with fertilizer.

https://doi.org/10.1371/journal.pone.0196671.g007
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In summary, Fig 7 shows that Drysdale (solid lines) performed better in terms of both can-

opy coverage and height on all four occasions, although the height difference between Drys-

dale and Mace is less obvious. The is probably the result of Drysdale’s breeder selection as a

water efficient variety, which is an important characteristic for wheat plants growing in non-

irrigated fields. In contrast, the rationale behind Mace’s selection was its ability to perform

well without fertilizer. If we consider the results in finer detail, we see that Drysdale performed

better in terms of canopy coverage but with similar heights on 23/09/2016 and 27/09/2016,

whereas on 11/10/2016 and 14/10/2016 Drysdale performed better on both counts. The situa-

tion for the first two days of imaging is somewhat atypical in that plant height is usually closely

correlated with plant canopy coverage. This may have implications for predictive applications.

For example, Bendig et al. [17] proposed a method to estimate plant biomass based on canopy

height and vegetation indices. Their biomass model would give consistent results in cases

where plant height was closely correlated with canopy coverage since vegetation indices have

been widely used in studies of senescence. However, the atypical behavior indicated by the

height distributions in Fig 7 clearly indicate that canopy height in itself is not always a reliable

measure for biomass estimation.

From both Figs 6 and 7, one can conclude overall that canopy height distributions can

reveal both subtle as well as not so subtle differences in growth trends for different wheat varie-

ties and for different treatments.

With regard to the growth behaviour as a function of time, Fig 8 depicts the growth in term

of height of all 10 wheat varieties under the two different fertilizer treatments, from 26/10/

2016 to 14/10/2016. The effects of fertilizer treatment on all 10 wheat varieties, in terms of

plant canopy height, are obvious from 06/09/2016. All varieties under fertilized treatment are

clearly taller than these without fertilizer treatment. It is also clear that the plant canopies

exhibited almost linear growth with time, for both fertilizer treatments from 06/09/2016 to 11/

10/2016. It is also interesting to note that growth slowed down just before the heading growth

stage as evidenced by the canopy heights from 11/10/2016 to 14/10/2016.

In the approach proposed here, the overall canopy height is estimated by thresholding the

top 2% of the depth map histograms. The advantage of this approach is that canopy height

estimations are consistent with manual measurements. However, the accuracy of the canopy

height estimation is sensitive to spike appearance as illustrated in Fig 2. As an alternative, it is

reasonable to use the medium canopy height, which can be estimated by thresholding the top

50% of the depth map histograms, as one of phenotypic traits. The major advantage of the

medium canopy height is its robustness to small variations in depth map histograms caused by

spikes. Fig 9 shows the medium canopy heights of plants under two different fertilizer treat-

ments from 26/08/2016 to 28/10/2016. By comparing the Figs 8 and 9, one can see that both

canopy height measures exhibit similar growth behaviours from 06/09/2016 to 14/10/2016.

Extending the observations by another two weeks in which time spikes appear we find that the

medium canopy heights are maintained at relatively the same levels, despite a height increase

of plants due to the presence of spikes.

Finally, we make the observation that since camera settings may differ for different imaging

platforms, it is important to provide an absolute basis for a quantitative comparison. For exam-

ple, a bigger image of a plant leaf will result for a camera that is closer to the leaf than for a

camera that is further away. A difference in distance will mean that the resolution of the

ground will also be different from that of the plant leaves. Similarly, the resolution of plant

leaves at different heights will also differ. Consequently, an analysis can either over-estimate or

under-estimate the actual plant canopy coverage, depending on camera position. To overcome

this complication one can generate normalized depth map histograms in which the frequency
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unit refers to (dimensional) leaf area as opposed to image pixel frequency. A comparison

between normalized and un-normalized histograms is shown in Fig 10.

It is worthwhile reflecting at this point how such normalized canopy height distributions

may feature in the definition of plant biomass. It is known that the different above-ground tis-

sues of a given plant have different mass densities due to their different cellular compositions

—in wheat we restrict attention to the major differences between the leaf, the stem and the

spike tissues. Assuming no dependence on plant position, we can denote their wet-weight den-

sities ρlf, ρst and ρsp, respectively. Suppose now that the normalized leaf, stem and spike area

distributions, as a function of height, are alf(h), ast(h) and asp(h), respectively. The plant bio-

mass of a given plot, Mbio, can then be defined as

Mbio ¼

Z T

0

rlf alf ðhÞdhþ
Z T

0

rstastðhÞdhþ
Z T

0

rspaspðhÞdh: ð1Þ

Fig 8. The overall growth behaviour of all 10 wheat varieties under two different fertilizer treatments. Y: fertilized (solid lines) and N: without

fertilizer (dashed lines).

https://doi.org/10.1371/journal.pone.0196671.g008
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where all three contributions are expressed in the form of integrals over height from the

ground level (h = 0) to the absolute top of the canopy (h = T). Thus, apart from the wet-weight

densities, we see that for a true estimate of (wet) biomass one needs to know the respective tis-

sue areas as a function of height. Taking the rather debatable approximation of constant and

equal tissue densities, ρ, the above expression simplifies to

Mbio ¼ r

Z T

0

ðalf ðhÞ þ astðhÞ þ aspðhÞÞdh: ð2Þ

Our normalized canopy height distribution captures the sum total argument of the integrand.

The integral itself is the area under the normalized distribution shown in Fig 10. Consequently,

a proper estimation of biomass requires just the normalized distribution that we have

Fig 9. Comparison of plant development as a function of time in terms of medium canopy height under the two fertilizer treatments for all

varieties. Y: fertilized (solid lines) and N: without fertilizer (dashed lines).

https://doi.org/10.1371/journal.pone.0196671.g009
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determined using stereo images. In contrast, the typical approach involves the top view of can-

opy coverage, which we denote as, A, and canopy height, T giving the product ρAT, which is a

significant overestimation of the actual canopy biomass (it conveys the idea of a uniform rect-

angular block of plant material). If possible this simple product is to be discouraged in prefer-

ence to Eq (2).

Conclusions

On the practical side, we have demonstrated that our effective and novel camera self-calibra-

tion approach can facilitate the extraction of quality depth maps from stereo images. More-

over, we have shown that from these depth maps one can accurately extract canopy heights

and canopy height distributions as well as other phenotypic information. The main advantage

of the self-calibration method is that it does not require any image processing knowledge nor

any additional calibration steps. The user is only required to obtain a stereo image of a rela-

tively flat area of ground at the time of imaging. The method is particularly suitable for field

applications.

The results of our study, based on a sequence of images taken of 60 plots in a field experi-

ment involving 10 wheat varieties subjected to two different fertilizer treatments, have com-

pared favorably with manual measurements of canopy heights, indeed to a high degree of

high accuracy (an R-squared value of 0.92). In fact, the level of consistency based on our auto-

mated approach is far superior to the level of consistency possible by manual means. The few

Fig 10. Normalization of leaf height frequency histograms. Comparison of frequency histograms between un-normalized and normalized canopy

height distributions. Normalization, allowing comparisons with different hardware configurations, involves a conversion to leaf pixel distribution (un-

normalized, blue line and left vertical axis) to leaf area distribution (normalized, black line and right vertical axis).

https://doi.org/10.1371/journal.pone.0196671.g010
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deviations from consistency were attributed to minor discrepancies in the stereo matching

step. In contrast, manual measurements were found to exhibit a greater number of inconsis-

tencies, which we attributed to the subjective nature of the method used. An important conclu-

sion to draw from the comparison is the potential for a more robust and more objective means

of quantifying this important phenotypic trait.

A significant outcome of our comparisons of canopy height distributions (for different vari-

eties subjected to the same treatment as well as for the same variety subjected to different treat-

ments) is the potential with this quantity to now reveal more detail about the different extents

to which plants respond to growth conditions. From our analysis it may no longer be clear that

a simple overarching trait such as canopy height is sufficient to describe all aspects of growth

behavior.

Canopy height and even a canopy height distribution are not the sole nor sufficient means

of characterizing crop growth and health. Other traits are needed. However, to determine

these in a field setting is challenging for a variety of reasons. The most obvious factors are vari-

able weather and lighting conditions, the considerable spatial extents to be covered, but also

the fact that plants in fields are grown in close proximity resulting in considerable occlusion

thus preventing direct observation. In this paper we have focused attention on a better estima-

tion of one trait. However, it is possible to take further advantage of the 2D and 3D informa-

tion obtained from RGB images to derive other quantitative phenotypic information. In

separate studies, for example, we address the variable lighting issue, biomass estimation and

wheat spike identification. Many of these features can be obtained from 3D information which

we have shown is possible to obtain using high-resolution images from a land-based imaging

platform. LiDAR can also provide 3D canopy information [12]. However, it is difficult to inte-

grate 2D images with 3D information from LiDAR sensors in the field due to the constant and

irregular movement of plant leaves during the LiDAR scanning process by the action of wind.

Simple synchronized RGB stereo imaging methods such as the one employed here, on the

other hand, can avoid such problems. To further exploit the merits of a land-based imaging

system, we are developing a novel algorithm for plant segmentation and plant senescence anal-

ysis that does not rely on complicated numerical methods such as machine learning, which

usually requires tedious manual labelling during a training process [23].

Methods

Stereo matching

After self calibration and lens distortion correction as described in the supporting document,

we can rectify the images to create stereo image pairs and this process is called image rectifica-

tion. In this study, Hartley’s algorithm [26] is implemented in our procedure for image rectifi-

cation due to its robustness. With stereo image pairs, we can estimate the disparity between

pairs of stereo images and create depth maps. Semi-global matching [27] is an efficient strategy

for approximately minimizing a global energy that comprises a pixel-wise matching cost and

pair-wise smoothness terms. Due to its performance in terms of speed and accuracy, we apply

this algorithm to estimate disparity from stereo image pairs and then generate depth maps.

Some examples of rectified images and their corresponding estimated depth map are shown in

Fig 11.

Once the depth maps of field plots have been generated, they are converted to height distri-

butions. The first step of the plot height estimation procedure is to estimate the heights of indi-

vidual pixels in a depth map. These are then used to generate a height histogram, which is then

used to generate the canopy height distribution of plants and estimate the representative plot

height. The disparity dxy of a point P at (x, y) in a depth map can be converted to a depth Pxy in
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a conventional computer vision sense [28]. The depth Pxy can be calculated using

Pxy ¼
fG

dxySc
; ð3Þ

Fig 11. Image rectification and depth map. Top: A stereo image pair taken of plot 57 on day 26/08/2016. The rectified image from the left camera is

shown in (a) and the rectified image from the right camera is shown in (b). Bottom (Fig (c)): The resulting depth map.

https://doi.org/10.1371/journal.pone.0196671.g011
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where Pxy is the depth between P in real world and camera apertures, f is the effective focal

length, G is the distance between camera apertures illustrated in Fig 1 and Sc is the pixel size

of the camera sensor. This assumes that camera apertures are at zero depth. The height of the

point above the ground level can be obtained by

hxy ¼ H � Pxy; ð4Þ

where H is the camera height above ground level.

In our approach we propose to treat the ground level as zero height. The plant height at

(x, y) is then

hxy ¼
H2ZxySc

fGþ ðZxyScHÞ
; ð5Þ

Zxy ¼ dxy � dg ; ð6Þ

Fig 12. Comparison of height estimation techniques. A single time stamp (27/09/2016) comparison of different methods of canopy height estimation for

the 60 plot set of ten wheat varieties, two treatments and three replicates. The solid red line represents the heights estimated by the proposed automated

method based on stereo images and derived depth maps. The dashed line depicts heights obtained by manual measurement, while the dotted line

represents canopy heights estimated from images that have been calibrated using a more conventional approach that relies on additional reference data.

https://doi.org/10.1371/journal.pone.0196671.g012
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where ηxy is the normalized disparity and dg is the average disparity of the ground level. The

use of Eq 6 has one major advantage over the use of Eq 4, that is the robustness to the vibration

of the phneotyping platform. Unlike a laboratory environment, it is inevitable that there is

vibration when the platform is operated in filed environment. Usually the vibration can cause

small errors in disparity estimation and it transmits to the depth estimation errors if Eq 4 is

used. However, these errors will cancel out in Eq 6 as vibrations cause the same error in dxy

and dg in the same depth map. Therefore, our approach has a practical advantage in field con-

ditions over the approach by Szeliski [28], which is widely used in the computer vision com-

munity and is designed for laboratory conditions.

In Fig 12 we compare the height estimation results based on the method of calibrating cam-

era images using the stereo pair method proposed here, with results based on a conventional

camera image calibration method [29, 30], which uses speeded up robust features (SURF) [31].

for pattern recognition and requires multiple images of specifically designed patterns for a ref-

erence. Also included are the manual measurements taken as described in the paper. Given

that the difference between the two theoretical sets of results lies in the method applied to cali-

brate camera images, the agreement between all three approaches is good. This provides fur-

ther support for the approach proposed in this paper as an effective method of accurate height

estimation.

Supporting information

S1 File. Camera self-calibration is achieved by three steps: Lens distortion modelling, the

process of self-correction and the optimization.

(PDF)
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