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Abstract

Enterohemorrhagic Escherichia coli (EHEC) is a food-borne pathogen that causes diarrheal

disease and the potentially lethal hemolytic uremic syndrome. We used an infant rabbit

model of EHEC infection that recapitulates many aspects of human intestinal disease to

comprehensively assess colonic transcriptional responses to this pathogen. Cellular com-

partment-specific RNA-sequencing of intestinal tissue from animals infected with EHEC

strains containing or lacking Shiga toxins (Stx) revealed that EHEC infection elicits a robust

response that is dramatically shaped by Stx, particularly in epithelial cells. Many of the differ-

ences in the transcriptional responses elicited by these strains were in genes involved in

immune signaling pathways, such as IL23A, and coagulation, including F3, the gene encod-

ing Tissue Factor. RNA FISH confirmed that these elevated transcripts were found almost

exclusively in epithelial cells. Collectively, these findings suggest that Stx potently remodels

the host innate immune response to EHEC.

Author summary

Enterohemorrhagic Escherichia coli (EHEC) is a potentially lethal foodborne pathogen.

During infection, EHEC releases a potent toxin, Shiga toxin (Stx), into the intestine, but

there is limited knowledge of how this toxin shapes the host response to infection. We

used an infant rabbit model of infection that closely mimics human disease to profile

intestinal transcriptomic responses to EHEC infection. Comparisons of the transcrip-

tional responses to infection by strains containing or lacking Stx revealed that this toxin

markedly remodels how the epithelial cell compartment responds to infection. Our find-

ings suggest that Stx shapes the intestinal innate immune response to EHEC and provide

insight into the complex host-pathogen dialogue that underlies disease.
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Introduction

Enterohemorrhagic Escherichia coli (EHEC) is an important foodborne pathogen responsible

for up to 2 million annual cases of acute gastrointestinal illness [1]. Chiefly colonizing the

colon, EHEC typically leads to self-limited hemorrhagic colitis; however, 5–10% of infected

individuals also develop hemolytic uremic syndrome (HUS), a potentially life-threatening

complication that can lead to renal failure [2,3]. Supportive rehydration therapy remains the

primary treatment for EHEC infection, as antibiotics are associated with elevated frequencies

of HUS and therefore contraindicated [4]. There is no vaccine available. EHEC infection is

associated with an inflammatory response in the colon, and patients have elevated fecal leuko-

cytes and calprotectin levels. Colonic biopsy samples from patients with EHEC infection

exhibit inflammation, edema, fibrin deposition, neutrophil invasion, and hemorrhage [5–9].

E. coli O157:H7 is the most common EHEC serotype, but other serotypes have been

described. All serotypes share two primary virulence factors: the ‘LEE’ pathogenicity island

that encodes a type III secretion system (T3SS), and prophages that encode one or more Shiga

toxins [10]. The activities of EHEC’s T3SS effector proteins mediate the pathogen’s tight

adherence to the colonic mucosa [11], and can promote or antagonize the inflammatory

response in epithelial cells [12–15].

During infection, EHEC produces and releases Shiga toxins (Stx) into the intestinal lumen.

Stxs are potent AB5 subunit exotoxins which can bind to the host cell surface glycosphingolipid

globotriaosylceramide (Gb3). Once internalized into the eukaryotic cell cytosol, Stx catalyzes a

site-specific depurination of the 28s rRNA, which leads to inhibition of protein synthesis and

triggers the ribotoxic stress response, production of cytokines, and cell death [16–20]. Absorp-

tion of Stx into the blood results in its systemic circulation and damage to endothelial cells,

particularly in the renal microvasculature, leading to the characteristic findings of HUS.

The role of Stx in EHEC pathogenicity in the colon is controversial. Although Stx has been

associated with colonic pathology [5,6,21–23], the mechanisms that explain these observations

are unclear because the presence of Gb3 in the colonic epithelium has been disputed [24–

26,22]. Some suggest that Stx does not directly act on the colonic epithelium, but instead passes

through the epithelial layer to primarily act on endothelial and immune cells [27–31]. Stx may

also enter colon epithelial cells through binding alternative receptors [26,32]. Despite the

ambiguity surrounding the mechanisms by which Stx exerts toxic effects in the colon during

EHEC infection, purified Stx can stimulate inflammatory responses in cultured cells [33–

36,17,22,37–40,20,19]. Analyses of the transcriptional responses to EHEC infection in cultured

epithelial cells and organoids have also demonstrated that processes linked to inflammatory

signaling, cytoskeletal organization, and apoptosis are altered [41–44]. However, to date, our

knowledge of the host response to EHEC infection is almost exclusively derived from tissue-

culture based studies. Because mice do not develop overt diarrhea or colonic pathology during

EHEC infection [45], no comprehensive in vivo analyses of how EHEC modifies colonic gene

expression patterns during infection have been reported. Moreover, the extent to which Stx

contributes to such gene expression changes in vivo is unclear.

Here, we used infant rabbits, a small animal model of EHEC infection where orogastric

inoculation of the pathogen leads to a disease that closely mimics the intestinal manifestations

of human EHEC disease [21,23,46], to investigate how Stx production in the gut modifies the

cellular response of the colonic mucosa during EHEC infection. We compared the colonic epi-

thelial and lamina propria transcriptional responses to WT and mutant EHEC lacking Stx

genes. Collectively, our findings provide a comprehensive profile of the colonic transcriptional

responses to EHEC and suggest that Stx markedly remodels the gene expression of epithelial

cells.
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Results

Shiga toxin promotes apoptosis and hemorrhage in the colonic mucosa

We used EDL933, a prototypical E. coli O157:H7 clinical isolate (WT) [47,48], to investigate

how Shiga toxins modify the response of the colonic mucosa to EHEC infection. This strain

encodes two Stx variants, Stx1 and Stx2, which were both deleted to yield strain ΔΔstx. WT

and ΔΔstx were orogastrically administered to infant rabbits to determine if Stx influences

EHEC intestinal colonization or the colonic mucosal response to infection. As described pre-

viously in experiments with a different EHEC clinical isolate [21], the burden of WT and

ΔΔstx in the colon did not differ (S1 Fig), suggesting that Stx does not alter EHEC coloniza-

tion in this model. Nonetheless, Stx appeared to contribute to the development of diarrhea as

described (89% diarrhea in WT-inoculated animals vs 40% in ΔΔstx-inoculated animals)

[21].

Histopathologic analyses of colon samples from animals inoculated with WT, ΔΔstx, or PBS

(mock) were carried out at peak colonization (36–40 hours post inoculation). Compared to

mock-treated control animals, colon samples from both WT and ΔΔstx infected rabbits had

prominent pathologic changes in the mid and distal colon, sites of maximal colonization. WT

and ΔΔstx infections led to similar levels of overall colonic inflammation, characterized by an

increased number of small mononuclear cells in the submucosal tissue, as well as comparable

levels of heterophil (lapine neutrophil) infiltration (S2 Fig). Both WT and ΔΔstx infection elic-

ited minor epithelial sloughing in the colon (S3 Fig). However, compared to the colonic

pathology associated with the ΔΔstx strain, there was significantly more apoptosis, indicated

by widespread fragmented nuclei, and edema/hemorrhage, indicated by widespread blood and

fluid accumulation in tissue, observed in samples from animals infected with WT EHEC (Fig

1). These observations are consistent with previous descriptions of histopathologic changes

associated with other EHEC strains in this model [21] and also support the hypothesis that

EHEC production of Stx in the intestine provokes local pathology including apoptosis and

hemorrhage in the colonic mucosa.

Shiga toxin shapes the colonic mucosal transcriptomic response to EHEC

To further investigate how Stx modifies the colonic mucosa’s response to EHEC infection, we

used RNA-seq to characterize the transcriptomes of colonic epithelial and lamina propria cells

derived from infant rabbits orogastrically inoculated with WT, ΔΔstx, or PBS (mock). In the

colon, epithelial cells make initial contact with EHEC and Stx. Beneath the epithelial layer,

cells in the lamina propria, including stromal and immune cells, respond to signals from the

epithelial cells or potentially from direct contact with PAMPs to trigger additional immune

responses [49]. To profile transcriptional changes in these cell populations, we harvested

colons at the time of peak colonization and performed enrichment protocols for epithelial and

lamina propria cells from 3 rabbits per inoculum type.

RNA was extracted from these cell fractions, subjected to next-generation sequencing, and

mapped to the rabbit genome. Normalized expression of marker genes associated with epithe-

lial, stromal, and immune cells were compared between epithelial and lamina propria fractions

(S4 Fig). Epithelial cell markers, such as EPCAM, VIL1, and MUC1 were enriched in the epi-

thelial cell fraction (S4A Fig), and stromal cell markers such as COL1A and immune cell mark-

ers such as PTPRC were enriched in the lamina propria fraction (S4B and S4C Fig),

confirming the enrichment of desired cell populations. We were also able to detect enrichment

in the Gb3-synthase A4GALT [50] in the epithelial cell fraction (S4D Fig), validating previous

data that the Stx receptor is present in infant rabbit tissue [23].
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Next, the global gene expression profiles for individual samples were evaluated and com-

pared using the differential gene expression package DESeq2. Principal component analysis

(PCA) revealed that epithelial samples from each group clustered separately, highlighting the

Fig 1. Apoptosis and hemorrhage/edema in the colon is more prominent in animals infected with WT vs ΔΔstx
EHEC. (A) Apoptotic nuclei in colon sections from infant rabbits inoculated with PBS (mock), WT or ΔΔstx EHEC.

Scores for individual animals are plotted with the median (red line). Statistical comparisons were made using a Mann-

Whitney U, p<0.05 (�), 0.01 (��), or 0.001 (���). (B-D): Example images from mock (score = 0), WT (score = 4), and

ΔΔstx (score = 2) infected colons. White arrows indicate apoptotic nuclei. (E): Severity of hemorrhage/edema. (F-H):

Representative example images from mock (score = 0), WT (score = 3) and ΔΔstx (score = 1) infected colons. Scale bars

indicate 50 μm. Orange boxes denotes inset.

https://doi.org/10.1371/journal.ppat.1009290.g001
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specificity of the transcriptomic responses elicited by each inoculation type in this compart-

ment (Fig 2A). PCA did not segregate the lamina propria samples as neatly based on the pres-

ence or absence of stx (Fig 3A), suggesting that the transcriptional response to Stx is

concentrated in the epithelial compartment.

Relative to the mock infected samples, WT infection stimulated more transcriptomic

changes than ΔΔstx infection in colonic epithelial cells. Of the ~30,000 rabbit genes surveyed,

Fig 2. Profiles of colonic epithelial cell transcriptional responses differ between animals infected with WT and ΔΔstx
EHEC. (A) Principal component analysis of rlog-transformed expression values. (B) Average expression level (base mean) and

log2 fold change of transcript abundance from rabbits inoculated with WT or ΔΔstx EHEC. Red dots are genes with significantly

different (p<0.05) transcript abundance. Dashed line indicates log2 fold change>2 or<-2. (C) Heat map of rlog-transformed

read counts for top 25 and bottom 25 genes by rank. Rows are Z-normalized. Gene names are colored by function: red–immune,

orange–metabolism, green–proliferation/apoptosis, blue–coagulation, purple–translation/protein folding, pink–barrier

function/cytoskeleton, black–uncharacterized or other. (D) Hallmark gene sets significantly associated with WT or ΔΔstx
infection. (E) Gene set enrichment plot for selected pathways. Black tick marks are genes within pathway organized by rank. (F)

Heat map of rlog-transformed read counts for top 5 genes in the leading edge for indicated pathway organized by rank.

https://doi.org/10.1371/journal.ppat.1009290.g002
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1126 had significantly different expression in WT/mock; for ΔΔstx/mock, 497 genes were dif-

ferentially expressed (S5 Fig and S1 and S2 Tables). 321 genes were similarly differentially

expressed in both infection types (S6A Fig). Most of these shared genes were associated with

Fig 3. Profiles of colonic lamina propria cell transcriptional responses differ between animals infected with WT

and ΔΔstx EHEC. (A) Principal component analysis of rlog-transformed expression values of lamina propria cells. (B)

Average expression level (base mean) and log2 fold change of transcript abundance from rabbits inoculated with WT

or ΔΔstx EHEC. Red dots are genes with significantly different (p<0.05) transcript abundance. Dashed line indicates

log2 fold change>2 or<-2. (C) Heat map of rlog-transformed read counts for top 25 and bottom 25 genes by rank.

Rows are Z-normalized. Gene names are colored by function: red–immune, orange–metabolism, green–proliferation/

apoptosis, blue–coagulation, purple–translation/protein folding, pink–barrier function/cytoskeleton, black–

uncharacterized or other. (D) Gene set enrichment plot for selected pathways. Black tick marks are genes within

pathway organized by rank. (E) Heat map of rlog-transformed read counts for top 5 genes in the leading edge for

indicated pathway organized by rank.

https://doi.org/10.1371/journal.ppat.1009290.g003
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GO Molecular Function terms commonly linked to bacterial infection, including cytokine/

chemokine signaling and binding, and LPS recognition through TLR4 signaling (S6B Fig),

implying that many typical pathogen-response pathways are activated similarly in the presence

or absence of Stx. Similar patterns were observed in the lamina propria transcriptome (S6C

and S6D Fig and S3 and S4 Tables).

Although the WT and ΔΔstx strains stimulated a set of shared transcripts, we also found

robust and widespread differences in the epithelial transcriptomic responses to WT vs ΔΔstx
infection. 390 genes exhibited significantly different expression between these two conditions

(Fig 2B and S5 Table). Genes were ranked by adjusted p-value, and hierarchical clustering was

performed on rlog transformed read counts. The clustering analysis confirmed that WT and

ΔΔstx infection elicit markedly distinct transcriptomic signatures in the epithelium (S7A Fig).

Many of the top 50 genes by rank were involved in processes related to coagulation and

immune signaling (Fig 2C). Gene set enrichment analysis (GSEA) was performed to further

identify transcriptional processes associated with WT or ΔΔstx infection. We identified a num-

ber of pathways specifically associated with WT or ΔΔstx infection (Fig 2D and S5 Table).

Notably, apoptosis, coagulation, and NFκB signaling were associated with the transcriptomic

response to WT infection, whereas pathways linked with IFNα and IFNγ signaling were asso-

ciated with ΔΔstx infection (Fig 2E). Using hierarchical clustering on rlog transformed counts

of the top five genes from each enrichment-driving leading-edge subset, we observed dramatic

differences between the transcriptional responses to WT and ΔΔstx infection (Fig 2F). Specifi-

cally, drivers of coagulation, including the gene coding for tissue factor F3, as well as pro-

inflammatory cytokines IL23A and IL1A were specifically associated with WT infection (Fig

2F). In ΔΔstx infection, many interferon-stimulated genes (ISGs) were differentially upregu-

lated, including the T-cell chemokine CXCL11. Collectively, these analyses suggest that Stx

shapes the epithelial cell innate immune response to EHEC.

In samples from the lamina propria, far fewer genes exhibited differential expression in

comparisons between WT and ΔΔstx-infections than in epithelial samples (91 vs 390) (Fig 3B

and S6 Table). Similar to the PCA analysis (Fig 3A), hierarchical clustering of the full tran-

scriptome did not separate the transcriptional profiles of WT and ΔΔstx-infected colons as

clearly as observed in epithelial samples (S7A and S7B Fig). However, clustering analysis

showed that the top 50 genes by rank were distinguishable by inoculum type (Fig 3C). Many of

these genes function in coagulation and immune signaling pathways, including several matrix

metalloproteases (MMPS), IFNγ, ISGs, and SLAMF6 and CD207 (Fig 3C). GSEA was per-

formed using gene sets defined by the Immune Signatures Database (S6 Table) [51]. Pathways

of interest associated with WT infection included “Th17 vs Th1,” “Th17 vs Naive,” and

“TREM1 signaling” and revealed that signatures associated with immune responses to extra-

cellular pathogens are present in the lamina propria (Fig 3D). Gene-sets associated with ΔΔstx
infection included “Newcastle Virus,” which induces a strong interferon response (Fig 3D).

Examining the leading-edge subset of these pathways underscored that genes associated with

Th17 cells are associated with WT infection while IFNγ-stimulated genes such as CXCL11 are

associated with ΔΔstx infection in the lamina propria (Fig 3E). Together, these analyses suggest

that in the lamina propria, Stx induces the expression of genes typically associated with type 3

immune cells and that in the absence of this toxin, IFN-related pathways are more prominent.

EHEC stimulates expression of coagulation-associated genes in a Stx-

dependent manner

Comparison of expression profiles from epithelial and lamina propria samples from animals

infected with WT vs ΔΔstx EHEC revealed differences in many genes associated with

PLOS PATHOGENS Host innate immune response to EHEC infection
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coagulation. Samples from WT infection had higher levels of transcripts for F3, a gene encod-

ing the initiator of the clotting cascade, MMPs and SERPINs, which are proteases that regulate

the processing of coagulation cascade proteins, as well as urokinase and the urokinase recep-

tor, which regulate fibrin deposition. Stx is known to cause thrombosis in vascular beds out-

side of the GI tract and has been investigated in the kidney microvasculature [20,52,53], but

comparatively few studies have focused on Stx-linked coagulation in the intestine.

As antibodies to detect rabbit proteins in tissue are not readily available, we used RNA

FISH to investigate the localization of transcripts of interest identified in the RNAseq data. We

probed for Tissue Factor (F3) transcripts in infected and control samples and found that there

was markedly greater F3 expression in samples from WT-infected vs ΔΔstx-infected or control

rabbits (Fig 4A). F3 transcripts were observed in >10% of total DAPI+ colon tissue in WT

infection and in only ~0.1% of tissue in ΔΔstx infected animals (Fig 4B). Mean fluorescence

intensity (MFI), a proxy for transcript abundance, was much higher in WT vs ΔΔstx samples

Fig 4. Expression of F3 in epithelial cells is much greater in animals infected with WT vs ΔΔstx EHEC. (A) Micrographs of

colon sections from rabbits inoculated with WT EHEC, ΔΔstx EHEC, or PBS (mock) stained with a probe to rabbit F3 mRNA

(red) and DAPI (blue). Scale bar is 500 μM. (B) Percentage of tissue section with F3 signal from individual colons. Distributions

compared using Mann-Whitney U test, p<0.01 (��), n.s. indicates not significant. (C) Mean fluorescent intensity (MFI) from

individual colons plotted with mean. Distributions compared using Mann-Whitney U test, p<0.01 (��), n.s. indicates not

significant. (D) Percent F3 signal within E-cadherin positive cells. Distributions compared using the Mann-Whitney U test,

p<0.05 (�). (E) Sections stained with a probe to rabbit F3 mRNA (red), DAPI (blue), and anti-E-cadherin antibody (white).

Scale bar is 500 μM. Example immune cell (IC) and epithelial cell (EC) are indicated. (F) Normalized expression of F3 and TFPI
in HT29 cells infected with WT EHEC, ΔΔstx EHEC, or PBS. Expression levels compared with a Students two-tailed t-test,

p<0.001 (���), n.s. indicates not significant.

https://doi.org/10.1371/journal.ppat.1009290.g004
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and the MFI in the latter samples did not differ from the values found in mock infected sam-

ples (Fig 4C), suggesting that Stx is critical for stimulating F3 expression. Notably, almost all

(>90%) of the F3-hybridizing signal in WT samples was detected in cells expressing E-Cad-

herin, an epithelial marker (Fig 4D and 4E). The uniformity of F3 expression along the epithe-

lium, even in sections where few EHEC cells were detected (S8 Fig), suggests that Stx may

diffuse along the epithelium to modify transcriptional programs in cells that do not have

attached EHEC; alternatively, epithelial cells with attached EHEC may secrete factors that

modify transcription in neighboring cells.

We also explored whether Stx stimulates F3 transcription in HT29 cells, a human colonic

epithelial cell line. qPCR was used to quantify F3 transcripts in HT29 cells after infection with

WT, ΔΔstx EHEC, or PBS (mock). With WT infection, F3 gene expression was 5-fold higher

than in uninfected cells (Fig 4F); moreover, as in rabbits, induction of F3 expression in HT29

cells was largely dependent on Stx and there was little difference in F3 expression in uninfected

cells vs those infected with ΔΔstx infection (Fig 4F). However, the ability of the ΔΔstx mutant

to induce F3 in HT29 cells was restored by addition of pure Stx2 (S9A Fig). Stx2 itself, without

bacteria, also induced F3 expression (S9A Fig). It has been reported that Stx leads to increases

in Tissue Factor pro-coagulant protein activity in renal proximal tubule cells and endothelial

cells [54–57]; this effect is thought to be primarily driven by a decrease in the expression of Tis-

sue Factor Protein Inhibitor (TFPI), and not an increase in F3 gene expression [54,58]. We

also measured TFPI transcript levels in the samples used to measure F3 expression, to assess if

this pathway is also active in HT29 cells. Both WT and ΔΔstx infection similarly stimulated

expression of TFPI transcripts >10-fold compared to the uninfected cells (Fig 4F). Thus, Stx

appears to regulate Tissue Factor by different mechanisms in colonic epithelial cells vs endo-

thelial cells.

Stx alters cytokine gene expression

Analyses presented above revealed that Stx markedly alters colonic mucosal gene expression

during EHEC infection, stimulating expression of several transcripts coding for pro-inflamma-

tory cytokines, such as IL23, relative to levels observed in ΔΔstx infection (Figs 2 and 3). We

used RNA FISH to compare the fluorescence intensity and distribution of IL23A transcripts in

colons from rabbits infected with WT or ΔΔstx (Fig 5A). The intensity and percent of tissue

expressing IL23A signal in samples from animals infected with WT EHEC were strikingly

higher than those in animals infected with ΔΔstx EHEC (Fig 5B and 5C). These values did not

differ in ΔΔstx and control samples, suggesting that Stx stimulates IL23A expression. Unex-

pectedly, nearly all of the IL23A expression in WT samples was detected within epithelial cells

(E-cadherin positive cells) compared to cells in the lamina propria (Fig 5D). We validated this

finding using tissue-cultured HT29 cells; IL23A expression was induced in cells infected by

WT but not ΔΔstx (Fig 5F). Similar to the findings above with F3 expression, addition of pure

Stx2 restored ΔΔstx’s capacity to stimulate IL23A expression to WT levels (S9B Fig). Stx2 by

itself also induces IL23A (S9B Fig).

IL23 also promotes the expression of other cytokines such as the chemokine CXCL8, which

is a neutrophil chemoattractant. Similar to F3 and IL23A expression, CXCL8 transcripts were

observed at much greater intensity and in a much larger area of tissue in samples from WT vs

ΔΔstx infection (S8A–S8C Fig). Furthermore, these CXCL8 transcripts were primarily present

in epithelial cells (S10D–S10F Fig). Also similar to F3, CXCL8 and IL23A signals were uniform

throughout epithelial tissue, showing no apparent correlation with EHEC foci along the epi-

thelium (S10 Fig). Together these observations suggest that Stx stimulates expression of cyto-

kine-related genes in the colonic epithelium during EHEC infection.
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In the RNAseq data, we found that animals infected with ΔΔstx had statistically significant

higher levels of IFNG transcripts than those infected with WT (Fig 3B), suggesting that Stx

may inhibit production of IFNγ. Reduction in IFNγ-mediated STAT-1 phosphorylation has

been linked to Stx activity in vitro [59]. In vivo, IFNγ is produced mainly by Th1 cells, ILC1s,

NK cells and macrophages in the lamina propria. IFNγ signaling stimulates transcription of

ISGs, many of which were found to be differentially expressed in animals infected with WT vs

ΔΔstx (Figs 2 and 3). One of those genes, CXCL11, is an IFNγ-inducible chemokine produced

by macrophages that acts as a chemoattractant for CXCR3+ T cells; macrophage engagement

of CXCR3+ T cells promotes Th1 cell development. RNA FISH analyses revealed that the MFI

of the CXCL11 signal was more intense and detected in more tissue area in samples from ani-

mals infected with ΔΔstx vs WT (Fig 6A–6C). Approximately 50% of the CXCL11 transcript

signal was found in epithelial cells, with the remainder in E-cadherin negative cells in the

Fig 5. Expression of IL23A in epithelial cells is much greater in animals infected with WT vs ΔΔstx EHEC. (A) Micrographs

of colon sections from rabbits inoculated with WT EHEC, ΔΔstx EHEC, or PBS (mock) stained with a probe to rabbit IL23A
mRNA (red) and DAPI (blue). Scale bar is 500 μM. (B) Percentage of tissue section with IL23A signal from individual colons.

Distributions compared using Mann-Whitney U test, p<0.01 (��), n.s. indicates not significant. (C) Mean fluorescent intensity

(MFI) from individual colons plotted with mean. Distributions compared using Mann-Whitney U test, p<0.01 (��), n.s.

indicates not significant. (D) Percent IL23A signal within E-cadherin positive cells. Distributions compared using the Mann-

Whitney U test, p<0.05 (�). (E) Sections stained with a probe to rabbit IL23A mRNA (red), DAPI (blue), and anti-E-cadherin

antibody (white). Scale bar is 500 μM. Example immune cell (IC) and epithelial cell (EC) is indicated. (F) Normalized expression

of IL23A in HT29 cells infected with WT EHEC, ΔΔstx EHEC, or PBS. Expression levels compared with a Students two-tailed t-

test, p<0.001 (���), n.s. indicates not significant.

https://doi.org/10.1371/journal.ppat.1009290.g005
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lamina propria (Fig 6D and 6E). These observations suggest that Stx inhibits IFNγ signaling in

the colonic epithelium during EHEC infection.

Discussion

Orogastric inoculation of infant rabbits with EHEC leads to diarrheal disease and colonic

pathology that closely resembles many of the intestinal aspects of human EHEC infection

[21,23,46]. Here, we used this model to study how Stx modifies the host response to infection

in the colon by comparing the histopathology and transcriptional profiles of the colonic

mucosa from animals infected with WT EHEC or an isogenic mutant lacking Stx genes

(ΔΔstx). We found that Stx, a potent toxin, increases apoptosis and hemorrhage in colonic tis-

sue and dramatically remodels the colonic epithelium’s transcriptional response to EHEC

infection. Although the transcriptional responses elicited by WT and ΔΔstx EHEC infection

exhibited some overlap, particularly in pathways commonly associated with gram-negative

Fig 6. Expression of CXCL11 in is greater in animals infected with ΔΔstx vs WT EHEC. (A) Micrographs of colon sections from

rabbits inoculated with WT EHEC, ΔΔstx EHEC, or PBS (mock) stained with a probe to rabbit CXCL11 mRNA (red) and DAPI

(blue). Scale bar is 500 μM. (B) Percentage of tissue section with CXCL11 signal from individual colons. Distributions compared

using Mann-Whitney U test, p<0.01 (��), n.s. indicates not significant. (C) Mean fluorescent intensity (MFI) from individual colons

plotted with mean. Distributions compared using Mann-Whitney U test, p<0.01 (��), n.s. indicates not significant. (D) Percent

CXCL11 signal within E-cadherin positive cells. Distributions compared using the Mann-Whitney U test, p<0.05 (�). (E) Sections

stained with a probe to rabbit CXCL11 mRNA (red), DAPI (blue), and anti-E-cadherin antibody (white). Scale bar is 500 μM.

Example immune cell (IC) and epithelial cell (EC) is indicated.

https://doi.org/10.1371/journal.ppat.1009290.g006
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infection, these isogenic strains provoked very distinct transcriptional profiles in the colonic

epithelium. Nearly twice as many genes were differentially regulated in animals infected with

WT/mock vs ΔΔstx/mock. Moreover, differences in the epithelial response attributable to Stx

were particularly prominent in immune signaling and coagulation pathways, suggesting that

this toxin fundamentally modifies the intestinal innate immune response to EHEC.

The host response to EHEC infection and Stx has been difficult to study directly in humans.

Examination of patient sera and urine have revealed that severe illness is associated with an

increase in cytokine production, including CCL2, CCL4, CXCL1, CXCL5, CXCL8, CSF3, IL6,

TNFα [60–65]. The cellular response to Stx has been characterized more extensively in tissue-

cultured cells. The ‘ribotoxic stress response’ to Stx-mediated cellular damage leads to the

upregulation of a variety of genes and production of proteins which modulate the immune

response [19,20,66]. Purified Stx promotes the production of transcription factors (including

JUN and FOS) and inflammatory cytokines (CCL2, CCL3, CCL4, CCL5, CSF2, CSF3, CXCL1,

CXCL2, CXCL3, CXCL5, CXCL8, IL10, IL1αβ, IL6, TNFα) in cultured epithelial and immune

cells [35,34,36,17,33,22,37–40,20]. We found that several of these genes, including JUN, FOS,

CCL4, CXCL8, and IL1A were differentially expressed in WT vs ΔΔstx infected colons; thus, Stx

by itself, in the absence of additional EHEC-derived factors may account for a subset of the tran-

scriptional changes we identified in the colonic epithelium of animals infected with the WT

strain. However, recent transcriptomic studies of the response of human intestinal organoids

did not detect differential expression of many of the coagulation-associated or immune signal-

ing genes (including F3, CXCL8, and IL23A) that we found in infected infant rabbits [40,44].

These differences are potentially explained by organoid culture conditions, which can limit

cytokine expression [67]. We detected expression of IL23A and F3 in response to WT EHEC

and pure Stx2 in cultured human epithelial cells, so it is unlikely the discrepancies in the infant

rabbit and organoid transcriptomic studies solely reflect species-specific differences in gene

expression. Overall, these discrepancies highlight the important differences in gene expression

patterns observed in cultured cells and the highly complex milieu of the host intestine, and that

use of purified toxin is not sufficient to capture the intricacies of the host response to a pathogen

with a variety of immunomodulating signals such as LPS and T3SS effectors.

Comparisons of the epithelial transcriptional profiles induced by WT and ΔΔstx EHEC in

rabbit colons suggest that Stx alters the expression of important cytokines in unanticipated

ways. The expression of IL23A, the p19 subunit of the cytokine IL23, was markedly higher in

WT than ΔΔstx infected colons. IL23 is thought to stimulate type 3 immune responses to extra-

cellular pathogens, but several of our findings argue against classifying the responses we

observed as type 3 immune signaling. First, IL23 is generally thought to be produced by den-

dritic cells [49]. Unexpectedly, nearly all the IL23A signal was detected in colonic epithelial

cells in rabbit colons. Second, we did not detect epithelial transcripts for IL12B, which encodes

for p40, the other subunit of the IL23 protein. Typically, the two subunits are expressed

together and form the IL23 heterodimer [68], but the gene expression of these two subunits is

not always temporally synchronized [69]. Third, we did not detect transcripts for IL17A, a

cytokine induced by IL23, in the lamina propria cell fraction. Thus, at least at the time point of

our transcriptional profiling, we cannot classify the Stx-driven response to EHEC as canonical

type 3 immune signaling. Deciphering the functions of IL23A in the absence of IL12B may

reveal an unrecognized aspect of epithelial mucosal immunity. One possibility is that p19 has

an independent function apart from that of the IL23 p19-p40 heterodimer; instead, there may

be alternative binding partner(s) for p19 in intestinal epithelial cells, as has been suggested

recently [70].

Stx also appears to inhibit expression of IFNG and many ISGs such as CXCL11, since these

cytokines and downstream factors were downregulated in WT compared to ΔΔstx infected
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colons. Previous in vitro studies have also shown that Stx can suppress IFNγ-mediated signal-

ing by blocking phosphorylation of STAT-1 [59] and circulating IFNγ is low in human

patients infected with EHEC [61]. In contrast, A/E pathogens that lack Stx, like Citrobacter
rodentium and EPEC, activate expression of IFNγ during infection [71–74]. IFNγ is typically

expressed as part of the type 1 immune response [49], and analysis of specific immune cell

populations during Citrobacter rodentium infection of the murine colon has revealed that this

pathogen induces a robust type 1 response that is important for clearing the infection [71–

73,75]. The lack of IFNG signaling in EHEC infected colons implies that this type of immune

activation is likely not happening in the presence of Stx. Other bacterial toxins with different

mechanisms of action, such as the Clostridioides difficile toxin and the heat-labile enterotoxin

of E. coli, have also been shown to modulate the abundance and activity of various immune

cell subtypes [76,77]. Our findings suggest that Stx has a similar effect on the colonic mucosa.

Future work should quantify the abundance of immune cell subtypes, such as Th17, Th1, and

ILCs during EHEC infection with and without Stx. However, reagents are currently not avail-

able for immune profiling in rabbits. Availability of improved reagents for cell identification

will also enable refinement of cell enrichment protocols for future transcriptomic studies on

purified cell populations.

Stx-mediated damage to endothelial cells, particularly in the renal microvasculature, is a

well-studied hallmark of HUS. Toxin damage to endothelial cells triggers the coagulation cas-

cade, which leads to thrombosis with fibrin deposition and hemolysis of RBCs [65]. In the

colon, patient biopsies have revealed that EHEC infection can also induce microvascular

thrombi and fibrin deposition [6], but few studies have investigated the patterns of gene

expression which may contribute to thrombosis in the intestine. Although we were unable to

detect fibrin deposition in tissue sections, we saw evidence of vascular damage in the form of

hemorrhage. Hemorrhage and edema were more prominent in the WT infected vs the ΔΔstx
infected tissue, but the ΔΔstx samples had detectable pathology. Thus, there may be both

toxin-dependent and independent mechanisms that lead to increased edema and vascular

damage. It may be possible to dissect the roles of other EHEC virulence factors, such as T3SS

effectors, on the ability of the pathogen to cause hemorrhage using the infant rabbit model.

We also found that F3, the gene encoding the initiator of the coagulation cascade, is dra-

matically induced in colonic epithelial cells in WT but not ΔΔstx infection. Similarly, F3 tran-

scripts were induced in tissue cultured HT29 by WT but not ΔΔstx EHEC. Stx2 itself appears

to be sufficient to stimulate F3 expression in epithelial cells because we found that addition of

exogenous Stx2 to tissue cultured HT29 cells, a human colon cancer cell line, induced expres-

sion of F3 transcripts to similar levels observed with WT EHEC infection. Tissue Factor is typi-

cally expressed on cells which are not in contact with blood, such as epithelial cells, and can be

induced in response to inflammatory stimuli [78]. In endothelial cells, Shiga toxin can pro-

mote Tissue Factor activity through a mechanism associated with a decrease in expression of

Tissue Factor Protein Inhibitor (TFPI) [54–56,58]. However, in rabbit colonic epithelial cells

and in HT29 cells, TFPI gene expression was not altered despite a marked increase in Tissue

Factor expression, suggesting an alternate mechanism of Tissue Factor induction in colonic

epithelial cells. Our tissue culture experiments provide evidence that induction of F3 in colon

cells is a direct effect of Stx, but we cannot rule out the possibility that damage to endothelial

cells by Stx influences the expression of this gene in vivo.

Collectively, our findings reveal that Stx powerfully shapes the host response to EHEC.

Though the degree of epithelial transcriptional remodeling by Stx is striking, it is not immedi-

ately apparent whether or how this re-programing benefits the pathogen. Stx does not contrib-

ute to the ability of EHEC to colonize the infant rabbit intestine, but it does in other animal

models [79–81], and it is possible Stx modulation of host gene expression enhances the
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pathogen’s capacity to colonize the human intestine. It is also possible that Stx-driven inflam-

mation augments diarrhea and thereby enhances pathogen dissemination. Similarly, Stx shap-

ing of the early innate immune response to infection likely has implications for the

development of adaptive immune responses and the host’s capacity to clear the infection.

Additionally, altered gene expression patterns during EHEC infection related to coagulation

and inflammation are suggestive of ‘thromboinflammation,’ a mechanism in which thrombo-

sis and inflammation synergize to contribute to disease pathology [82].

Finally, our findings illustrate the potency of combining isogenic pathogen mutants with

cellular compartment-specific characterization of host transcriptional responses to infection

for unravelling how individual virulence factors contribute to the cell type-specific pathogen-

host dialogue in disease. For EHEC infection, understanding this dialogue and the innate

immune processes contributing to the early colonic phase of disease prior to HUS could offer

valuable clues for developing new therapies. Immune cell activation in the colon by Stx is

hypothesized to be critical to initiate pathology in the kidneys [83]. Anti-cytokine and anti-

inflammatory therapeutics have been suggested as a way to minimize immune cell activation

that can lead to renal damage [84]. Future studies of the immune activation triggered by Stx

damage in the colon could unlock novel targets for such therapies.

Materials and methods

Ethics statement

Animal experiments were conducted using protocols approved by Brigham and Women’s

Hospital Committee on Animals (Institutional Animal Care and Use Committee protocol

number 2016N000334 and Animal Welfare Assurance of Compliance number A4752-01) and

in accordance with recommendations in the National Institute of Health’s Guide for the Care

and Use of Laboratory Animals and the Animal Welfare Act of the United States Department

of Agriculture.

Bacterial strains and growth conditions

Bacterial strains were cultured in LB medium or on LB agar plates at 37˚C. A gentamicin-resis-

tant mutant of E. coli O157:H7 strain EDL933 (ΔlacI::aacC1) [85] was used in all experiments

in this study and gentamicin (Gm) was used at 10 μg/mL. The ΔΔstx mutant was constructed

using lambda red recombineering [86] as described [87].

Infant rabbit infection and tissue processing

Two-day old litters of mixed gender New Zealand White rabbits were co-housed with a lactat-

ing dam (Charles River). Infection inocula were prepared by diluting 100 μl of overnight cul-

ture into 100 mL of LB Gm; then, following 3 hours of growth at 37˚C with shaking, 30 units

of culture at OD600 = 1 (about 8 mL) were pelleted and resuspended in 10 mL PBS. Dilutions

of the inoculum were plated to enumerate CFU. Each infant rabbit was orogastrically inocu-

lated with 500 μl of the inoculum (~1x109 CFU), using a size 4 French catheter. Following

inoculation, the infant rabbits were monitored at least 2x/day for signs of illness and eutha-

nized 2 days (36–40 hours) post infection, when the entire intestinal tract was removed.

One cm sections of the medial and distal colon were removed post necropsy and the tissue

pieces were homogenized in 1 mL of sterile PBS using a minibeadbeater-16 (BioSpec Products,

Inc.). Dilution series of the homogenates were plated on LB Gm plates, which were incubated

overnight at 37˚C, to determine CFU/g bacterial burdens in tissue sections.
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Tissue preservation and histopathology

Two cm sections of medial and distal colon were fixed in 2 mL 10% neutral-buffered formalin

overnight (~16 hours) at room temperature. The next day, tissue sections were transferred to 2

mL 70% ethanol. Formalin-fixed, paraffin embedded 5 μm sections were stained with hema-

toxylin and eosin (H&E) by the Rodent Histopathology Core at Dana Farber Cancer Institute.

Slides were blindly evaluated by a histopathologist and scored semi-quantitatively. Sections

were evaluated for inflammation using the following criteria: 0, none; 1, mild infiltration of

immune cells into lamina propria; 2, moderate infiltration; 3, extensive infiltration; 4, severe

and extensive infiltration. Apoptosis was evaluated using the following criteria: 0, none; 1, few

cells observed with fragmented nuclei; 2, many cells with fragmented nuclei; 3, significant apo-

ptotic nuclei and penetration to crypts; 4, transmural apoptosis. Edema, congestion and hem-

orrhage were evaluated using the following criteria: 0, none; 1, mild vascular congestion and/

or mild edema; 2, moderate congestion and/or edema; 3, congestion with hemorrhage +/

edema; 4, congestion with severe multifocal hemorrhage +/- edema. Heterophil infiltration

was evaluated using the following criteria: 0, none; 1, scattered individual heterophils or small

clusters in the lamina propria; 2, multifocal aggregates in mucosa with few cells in lumen; 3,

multifocal aggregates in mucosa with abundant cell extrusion into lumen; 4, multifocal aggre-

gates in mucosa with large heterophilic intraluminal rafts. Sloughing was evaluated using the

following criteria: 0, none; 1, few epithelial cells sloughed from luminal surface; 2, moderate

number of epithelial cells sloughed from luminal surface; 3, epithelial surface is severely dis-

rupted; 4, extensive and severe sloughing (epithelial layer is absent). Scores were compared

between infection types using a two-tailed Mann-Whitney U statistical test. The Bejmamini-

Hochberg Procedure was used to control for the false discovery rate with multiple compari-

sons at 20%. P-values were considered significant at less than 0.05 (�), 0.01 (��), and 0.001

(���).

Tissue preparation for RNA-sequencing

Five cm sections from between the medial and distal colon were harvested and processed imme-

diately post necropsy for RNA sequencing from 3 rabbits inoculated with PBS (mock), WT or

ΔΔstx EHEC. Epithelial cell and lamina propria cell fractions were isolated from tissue using a

method similar to that described previously [88]. First, fat was trimmed from the tissue, and

luminal contents were gently pressed out. The tissue was then cut longitudinally and rinsed in 1

mL of wash solution (RPMI 1640, 2% Fetal Bovine Serum (FBS), 10mM HEPES, and 100 μg/

mL penicillin-streptomycin). Next, the tissue was rinsed in 40 mL ice-cold Ca/Mg-free HBSS

before being transferred to 10 mL of epithelial dissociation solution (HBSS, 100 μg/mL penicil-

lin-streptomycin, 10 mM HEPES, 2% FBS, 10mM EDTA) freshly supplemented with an addi-

tional 100 μL of 0.5M EDTA. To remove dying and dead epithelial cells, the tissue was

incubated in epithelial dissociation solution 37˚C at 125 rpm for 5 minutes, then incubated on

ice for 5 minutes, then shaken vigorously 10 times and vortexed for 2 seconds. Supernatants

were discarded and the tissue piece was transferred into a new tube of 10 mL of epithelial disso-

ciation solution freshly supplemented with an additional 100 μL of 0.5M EDTA. The solution

was brought to room temperature quickly by briefly warming in a 37˚C bath, then incubated

for 20 minutes at 37˚C at 125 rpm centrifugal rotation, then incubated on ice for 5 minutes,

shaken vigorously 15 times, and vortexed vigorously for 10 seconds. The supernatant was trans-

ferred to a fresh tube and centrifuged at 300xg for five minutes. The cell pellet was resuspended

in 2 mL Trizol and the solution was stored at -80˚C until RNA extraction.

After epithelial cell dissociation, the remaining tissue piece was transferred to a tube con-

taining 5 mL of enzymatic digestion solution (RPMI 1640, 2% Fetal Bovine Serum (FBS),
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10mM HEPES, and 100 μg/mL penicillin-streptomycin, fresh 100 μg/mL Liberase TM, fresh

100 μg/mL DNaseI) and incubated at 37˚C with centrifugal rotation at 125 rpm for 30 minutes.

The digestion was quenched by adding 80 μL of 0.5M EDTA. The solution was filtered through

a 40 μm cell strainer and rinsed with HBSS to a final volume of 30 mL. This tube was spun

down at 400xg for 10 minutes, and the cell pellet was resuspended in 2 mL Trizol. Samples

were stored at -80˚C until RNA extraction.

RNA extraction and mRNA seq library preparation and sequencing

RNA was extracted from Trizol using the Direct-Zol RNA MiniPrep Plus kit from Zymo with

some modifications. First, Trizol samples were incubated at 65˚C until just thawed (5–10 min-

utes). One mL samples were added to RNase-free microcentrifuge tubes and 200 μL of chloro-

form was added to each tube. The tubes were inverted 10x for mixing, and incubated at room

temperature for 3 minutes. The samples were spun at 12,000xg for 15 minutes at 4˚C, to sepa-

rate the aqueous and organic layers. The clear aqueous phase was removed, an equal volume of

100% ethanol was added, and the sample was mixed by inversion ten times before incubating

at room temperature for 5 minutes. The entire volume was transferred to a Direct-Zol spin col-

umn and spun for one minute. The samples were washed with pre-wash buffer twice, with

wash buffer once, spun empty to remove residual buffer twice, and eluted with 50 μL RNase-

free water. Total RNA was assessed for quality and integrity (RINe) using a High Sensitivity

RNA ScreenTape (Agilent) at the HMS Biopolymers Facility.

RNA of high quality (RINe>8) was prepared for mRNA-sequencing using the KAPA

mRNA HyperPrep kit (Roche). Libraries were quantified using a High Sensitivity D1000

ScreenTape (Agilent) and High Sensitivity Qubit. Libraries were sequenced on a NextSeq 550.

Differential expression analysis

First, resources for the rabbit genome were compiled. We concatenated FASTA files for each

rabbit chromosome, mitochondrial DNA, and unplaced scaffolds from OryCun2.0 (Assembly

GCA_000003625.1) to create a reference genome FASTA file. The Ensembl annotation (May

2019) was used. Sequencing reads and genome resources were uploaded to the Galaxy web

platform [89], and the public server usegalaxy.org was used to process and map reads. First,

reads were trimmed using Trim Galore! (Galaxy Tool version 0.4.3.1) with automatic adapter

sequence detection. Then, trimmed reads were mapped to the rabbit reference genome and

annotation using RNA STAR (Galaxy Tool version 2.6.0b-1). featureCounts (Galaxy Tool ver-

sion 1.6.4+galaxy1) was used to build a count matrix from mapped reads using the Ensembl

annotation as a guide. Count matrices were exported from Galaxy and imported into R (ver-

sion 3.5.3) [90]. The read counts for each gene were normalized to Transcripts Per Kilobase

Million (TPM) to compare expression of marker genes across samples. TPM was calculated by

first dividing the number of read counts by the length of the gene in kilobases to yield reads

per kilobase (RPK). Gene RPKs were summed for each sample and this number was divided

by 1,000,000 to yield a sample-specific scaling factor. The RPK value for each gene was divided

by the scaling factor to yield TPM. Marker gene transcript abundance was compared using a

two-tailed Mann-Whitney U non-parametric test. The Bejmamini-Hochberg Procedure was

used to control for the false discovery rate with multiple comparisons at 5%. The non-normal-

ized count matrix was also analyzed using DESeq2 (version 1.22.2) [91] to compare the abun-

dance of transcripts between different inoculum types to identify differentially expressed

genes. Parametric dispersion was used and shrinkage of effect size was performed using the

package apeglm [92]. Genes with an adjusted p-value of less than 0.05 were considered to be

differentially expressed. Normalized read counts were generated using a regularized log (rlog)
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transformation and used to perform principal component analysis (PCA) of each sample. Raw

reads and count matrices have been deposited into the Gene Expression Omnibus (GEO)

repository (GSE156056).

Hierarchical clustering

For each gene, the parameter ‘rank’ was calculated by multiplying the sign of the fold-change

by the log10 transformed adjusted p-value from DESeq2. Genes were ordered by rank, and

hierarchical clustering of samples was performed using Euclidian sample distances using the

gplot (version 3.0.1) function Heatmap.2 using r-log transformed read counts, constructing a

dendrogram by column (samples). Heatmaps were scaled by row and colors assigned using

ColorBrewer palette RdYlBu (version 1.1.2) [93]. Similar clustering analysis was performed for

the top 50 genes by rank, and genes in the leading-edge subset from GSEA.

Gene set enrichment

Gene set enrichment was performed using fast GSEA (fGSEA) in R (version 1.8.0) [94]. Only

genes with annotation were considered. Genes were ranked with the parameter ‘rank’. The

hallmark gene sets [95] and immunological signatures gene sets [51] from MSigDB [96] were

used. 1000 permutations were completed, and categories with less than 10 genes and greater

than 500 genes were excluded. Pathways were considered to be significantly enriched if the

adjusted p-value was less than the false-discovery rate of 5%. Enrichment scores were plotted

using the plotEnrichment function in R.

Comparing differentially expressed genes in infected vs uninfected tissue

Genes with an adjusted p-value of<0.05 and log2 fold-change of>2 or <-2 from DESeq2

(WT vs mock, ΔΔstx vs mock) were considered differentially expressed. These lists were com-

pared using the online tool BioVenn [97]. The list of commonly differentially expressed genes

from these comparisons was analyzed using the webtool g:Profiler to perform functional

enrichment analysis (g:GOst) [98].

Fluorescent in situ RNA hybridization

Fluorescent in-situ hybridization (FISH) was performed using RNAscope (ACDBio) Multiplex

Fluorescent V2 Assay in 5 different rabbit colon tissue sections per inoculum type (WT, ΔΔstx
and mock). Manufacturer’s protocols were followed and the RNAscope HybEZ oven was used

for all incubations. Freshly sectioned formalin-fixed, parrafin embedded (FFPE) tissue sections

(5 μm) were processed following manufacturer’s protocol. Briefly, sections were treated with

boiling target retrieval buffer for 15 minutes and digested with Protease Plus for 28 minutes.

Custom RNAscope C1 probes for rabbit mRNA IL23A, CXCL8, CXCL11, F3, or dapB (nega-

tive control) were hybridized to the tissue. The C1 probe was detected with Opal 570 dye

(Akoya Biosciences) diluted 1:1000 in Multiplex TSA buffer (ACDBio). Following completion

of the RNAscope assay, sections were processed further for immunofluorescence. Sections

were permeabilized with 0.1% TritonX100 for 10 minutes at room temperature, washed, and

treated with 5% BSA for 1 hour to block non-specific signal. Sections were washed and stained

with primary antibody to E-cadherin (1:100 anti E-cadherin mouse monoclonal antibody, BD

Biosciences 610181) and/or primary antibody to O157-antigen (1:2000 anti E. coli O157:H7

goat polyclonal antibody, Abcam ab30521) overnight at 4˚C. The next day, sections were

washed and stained with an anti-mouse secondary antibody conjugated to Alexa 647 and/or

anti-goat secondary antibody conjugated to Alexa 488 diluted 1:500 in PBS (Invitrogen A-

PLOS PATHOGENS Host innate immune response to EHEC infection

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1009290 February 2, 2021 17 / 27

https://doi.org/10.1371/journal.ppat.1009290


21235). Sections were then stained with DAPI (2 μg/mL) for 5 minutes before mounting with

ProLong Diamond antifade mountant (Thermo Fisher).

Quantitative image analysis

Samples were imaged with a Nikon Ti Eclipse microscope equipped with a widefield Andor

NeoZyla camera and a 20x objective. For H&E stained sections, Kohler alignment and white-

balance was performed, and then RGB images were captured. For sections stained with fluo-

rescent antibodies and FISH probes, 4x6 stitched images (10% overlap) were captured for each

tissue section using multi-channel acquisition (blue, red, far-red) using 16-bit imaging. In

ImageJ/FIJI [99], threshold values for each channel were determined using the sections stained

with the negative control probe (dapB), which should have no signal in the red channel above

background. To analyze mean fluorescence intensity (MFI), the threshold value for the blue

channel (DAPI) was set using FIJI to create a binary mask. This mask was applied to the red

channel (RNAscope probe), and a histogram of intensity values for pixels within this mask was

recorded. The average value above background was recorded for each sample. To analyze the

percentage of tissue expressing a transcript of interest, thresholds were applied to both the blue

(DAPI) and red (RNAscope) channels to create binary masks (S11A and S11B Fig). The area

of the DAPI mask was recorded. FIJI “create selection” tool was used to draw a selection

around the DAPI area (S11C Fig). This selection was transferred to the RNAscope channel,

and the area of RNAscope signal within this area was recorded (S11D Fig). We calculated area

of tissue expressing signal by dividing area of RNAscope signal (RNAscope area within DAPI

selection) by total tissue area (area of DAPI mask). To calculate the percent of the RNAscope

signal derived from epithelial cells, we first applied a threshold to the far-red (E-cadherin) and

red (RNAscope) channel to create a binary mask (S11A and S11B Fig). The area of the RNA-

scope mask was recorded. Then, the “create selection” tool in FIJI was used to draw a selection

around the binary mask of the E-cadherin area (S11C Fig). The section was enlarged by 2μm

to accommodate signal at the edge of the cells. This section was transferred to the binary

masked RNAscope channel (S11D Fig). The area of RNAscope binary signal within the E-cad-

herin selection was recorded. We divided the area of RNAscope signal within E-cadherin selec-

tion by the total RNAscope signal to determine percentage of signal within epithelial cells.

These three quantifications (mean fluorescent intensity, percent of tissue expressing signal,

and percent of signal within epithelial cells) were compared for WT infected vs mock and

ΔΔstx infected vs mock for each probe using a two-tailed Mann-Whitney U statistical test. The

Bejmamini-Hochberg Procedure was used to control for the false discovery rate with multiple

comparisons at 20%. P-values were considered significant at less than 0.05 (�), 0.01 (��), and

0.001 (���).

Tissue culture infection and RT-qPCR

Human colon colorectal adenocarcinoma cells (HT29, ATCC HTB-38) were purchased from

ATCC and cultured in McCoy’s 5A Medium supplemented with 10% fetal bovine serum. Cells

were grown at 37˚C with 5% CO2. Two days before infection, 500,000 cells were seeded in

6-well plates so that infections occurred at approximately 75% confluency. One hour before

infection, the media was changed to Dulbecco’s modified Eagle’s medium (DMEM) (4.5 g/L

glucose). The bacterial inoculum was prepared by first growing EHEC strains statically in LB

overnight at 37˚C to OD600 of 0.6. Bacteria were resuspended in high-glucose DMEM to OD

0.5 and 45 μL of each inoculum was added to 5 wells of HT29 (MOI 10:1). To complement the

ΔΔstx mutant, 100 ng of pure Stx2 was added to 5 wells with the ΔΔstx bacteria and 5 wells

alone. 45 μL of DMEM was added to 5 wells as a mock infection (uninfected). The infections
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were carried out for a total of 6 hours, and the cells were washed once with DPBS and the

media was replaced after 3 hours.

After the 6-hour infection, each well was washed twice with DPBS to remove serum-con-

taining media. RNA was extracted using the RNeasy Plus Mini Kit (Qiagen) and cDNA was

generated from 2 μg RNA using a High-Capacity cDNA Reverse Transcription kit (Thermo

Fisher). Quantitative real-time PCR was performed using a Step One Plus Real-Time PCR

machine using Taqman 2x master mix and Taqman probes for GAPDH (Hs02758991_g1),

IL23A (Hs00372324_m1), F3 (Hs00175225_m1) and CXCL8 (Hs00174103_m1). Undiluted

cDNA was used in the qPCR reactions. Expression levels were calculated using the delta-delta

CT method normalized to GAPDH. Expression was normalized to the average expression of

the 5 uninfected wells. Expression levels were compared using a two-tailed Student’s t-test. P-

values were considered significant at less than 0.05 (�), 0.01 (��), 0.001 (���), and 0.0001 (����).

Supporting information

S1 Fig. Intestinal colonization of WT and ΔΔstx EHEC are similar. CFU recovered from

mid or distal rabbit colon 36 hours post inoculation with either WT or ΔΔstx EHEC. Lines

indicate geometric mean. n.s. (not significant) by a two-tailed Mann-Whitney U statistical test.

(TIF)

S2 Fig. Immune cell infiltration is similar in animals infected with WT or ΔΔstx EHEC.

(A) Heterophil infiltration in colon sections from infant rabbits inoculated with PBS (mock),

WT or ΔΔstx EHEC 36 hours post inoculation. Scores for individual tissue sections are plotted

along with the median (red line). Comparisons between groups was made using a two-tailed

Mann-Whitney U test. P-values were considered significant at less than 0.05 (�) or 0.01 (��). n.

s. indicates a non-significant difference. (B-D): Representative images from mock (score = 0),

WT (score = 4), and ΔΔstx (score = 2) infected colons. Scale bars indicate 50 μm. Orange

box denotes inset displayed to the right. White arrows indicate heterophils. (E): Severity of

hemorrhage/edema. (F-H): Example images from mock (score = 0), WT (score = 3), and

ΔΔstx (score = 3) EHEC-infected colons. Scale bars indicate 50 μm. Orange box denotes inset

displayed to the right. White arrows indicate heterophils. Green arrows indicate lymphocytes.

(TIF)

S3 Fig. Epithelial sloughing is similar in animals infected with WT or ΔΔstx EHEC. Slough-

ing in colon sections from infant rabbits inoculated with PBS (mock), WT or ΔΔstx EHEC 36

hours post inoculation. Scores for individual tissue sections are plotted along with the median

(red line). Comparisons between groups was made using a Mann-Whitney U test. The Bejma-

mini-Hochberg Procedure was used to control for the false discovery rate with multiple com-

parisons at 20%. P-values were considered significant at less than 0.05 (�). n.s. indicates a non-

significant difference.

(TIF)

S4 Fig. Comparison of marker gene expression in epithelial and lamina propria cell frac-

tions. Relative gene expression in transcripts per million for epithelial cell markers (A), stro-

mal cell markers (B), immune cell markers (C) and enzymes in Gb3 synthesis (D). Values for

individual rabbits are plotted with mean. Distributions are compared with a Mann-Whitney U

test, p<0.05(�), 0.01 (��), 0.001 (���), 0.0001 (����).

(TIF)

S5 Fig. Comparison of transcriptional profiles from colonic samples of infant rabbits inoc-

ulated with PBS (mock), WT or ΔΔstx EHEC. (A, D, G, J) Average expression level (base
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mean) and log2 fold change of transcript abundance in colonic epithelial cells (A, D) or lamina

propria (G, J) from rabbits inoculated with WT EHEC (A, G) or ΔΔstx EHEC (D, J) compared

to PBS (mock). Genes with significantly different (adjusted p-value< 0.05) transcript abun-

dance are highlighted in red. (B, E, H, K) Heat map of rlog-transformed read counts from epi-

thelial cells for 3 animal replicates (WT or ΔΔstx EHEC infected) for all genes by rank.

Hierarchical clustering performed using Euclidian sample distances. Rows are normalized by

Z-score. The 4 panels correspond to the comparisons shown in the panels immediately above

(A,D,G,J); W, WT EHEC, M, mock, ΔΔ, ΔΔstx EHEC. (C, F, I, L)) Heat map of rlog-trans-

formed read counts from epithelial cells for 3 animal replicates (WT or ΔΔstx EHEC infected)

top 25 and bottom 25 genes by rank. The 4 panels correspond to the comparisons shown in

the panels immediately above (B, E, H, K); W, WT EHEC, M, mock, ΔΔ, ΔΔstx EHEC.

(TIF)

S6 Fig. WT and ΔΔstx EHEC colonic colonization both stimulate host transcriptional

responses commonly associated with infection. A,C) Venn diagrams of differentially

expressed genes in wt vs mock infection and ΔΔstx vs. mock infection from colonic epithelial

cells (A) or lamina propria cells (C). B,D) Transcriptional changes elicited by both strains map

to many pathways associated with infection by GO Molecular Function analysis in colonic epi-

thelial cells (B) or lamina propria cells (D).

(TIF)

S7 Fig. Infection with WT and ΔΔstx led to distinct transcriptomic signatures. (A) Heat

map of rlog-transformed read counts from epithelial cells for 3 animal replicates (WT or ΔΔstx
EHEC infected) for all genes by rank. Hierarchical clustering performed using Euclidian sam-

ple distances. Rows are normalized by Z-score. (B) Heat map of rlog-transformed read counts

from lamina propria cells for 3 animal replicates (WT or ΔΔstx EHEC infected) for all genes by

rank. Hierarchical clustering performed using Euclidian sample distances. Rows are normal-

ized by Z-score.

(TIF)

S8 Fig. RNAscope signal is not limited to regions of bacterial attachment. Immunofluores-

cence micrographs of colon sections from rabbits inoculated with WT EHEC (A-C) or ΔΔstx
EHEC (D) stained with an RNAscope probe (red) for rabbit F3 (A), IL23A (B), CXCL8 (C), or

CXCL11 (D), DAPI (blue), an anti-O157 antibody (green), and an anti-E-cadherin antibody

(white). Scale bar is 50 μM.

(TIF)

S9 Fig. Pure Stx2 can induce F3 and IL23A gene expression in HT29 cells in vitro. Normal-

ized expression of F3 (A) and IL23A (B) in HT29 cells infected with WT EHEC, ΔΔstx EHEC,

ΔΔstx EHEC plus 100 ng of pure Stx2, 100 ng of pure Stx2 alone. Expression levels compared

with a Students two-tailed t-test, p<0.0001 (����).

(TIF)

S10 Fig. Expression of CXCL8 in epithelial cells is much greater in animals infected with

WT vs ΔΔstx EHEC. (A) Micrographs of colon sections from rabbits inoculated with WT

EHEC, ΔΔstx EHEC, or PBS (mock) stained with a probe to rabbit CXCL8 mRNA (red) and

DAPI (blue). Scale bar is 500 μM. (B) Percentage of tissue section with CXCL8 signal from

individual colons. Distributions compared using Mann-Whitney U test, p<0.01 (��), n.s. indi-

cates not significant. (C) Mean fluorescent intensity (MFI) from individual colons plotted with

mean. Distributions compared using Mann-Whitney U test, p<0.01 (��), n.s. indicates not sig-

nificant. (D) Percent CXCL8 signal within E-cadherin positive cells. Distributions compared
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using the Mann-Whitney U test, p<0.05 (�). (E) Sections stained with a probe to rabbit

CXCL8 mRNA (red), DAPI (blue), and anti-E-cadherin antibody (white). Scale bar is 500 μM.

Example immune cell (IC) and epithelial cell (EC) is indicated. (F) Normalized expression of

CXCL8 in HT29 cells infected with WT EHEC, ΔΔstx EHEC, or PBS. Expression levels com-

pared with a Students two-tailed t-test, p<0.001 (���), n.s. indicates not significant.

(TIF)

S11 Fig. Method to assign RNA FISH signal to cellular compartments. (A) Original images

collected in DAPI, E-cadherin, and RNAscope channels (B). Binary masks created using the

FIJI “threshold” tool. (C) FIJI “create selection” tool was used to draw a region around binary

mask. (D) Selection was transferred to RNAscope channel to determine portion of signal

within region of interest. See methods for more detail.

(TIF)

S1 Table. Results of DESeq2 comparing wt vs mock infected rabbit colonic epithelial cells.

(XLSX)

S2 Table. Results of DESeq2 comparing ΔΔstx vs mock infected rabbit colonic epithelial

cells.

(XLSX)

S3 Table. Results of DESeq2 comparing wt vs mock infected rabbit lamina propria cells.

(XLSX)

S4 Table. Results of DESeq2 comparing ΔΔstx vs mock infected rabbit lamina propria

cells.

(XLSX)

S5 Table. Results of DESeq2 and fGSEA comparing wt vs ΔΔstx infected rabbit colonic epi-

thelial cells.

(XLSX)

S6 Table. Results of DESeq2 and fGSEA comparing wt vs ΔΔstx infected rabbit lamina pro-

pria cells.

(XLSX)
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