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Abstract: It is widely believed that cooperation between clinicians and machines may address
many of the decisional fragilities intrinsic to current medical practice. However, the realization of
this potential will require more precise definitions of disease states as well as their dynamics and
interactions. A careful probabilistic examination of symptoms and signs, including the molecular
profiles of the relevant biochemical networks, will often be required for building an unbiased and
efficient diagnostic approach. Analogous problems have been studied for years by physicists
extracting macroscopic states of various physical systems by examining microscopic elements
and their interactions. These valuable experiences are now being extended to the medical field.
From this perspective, we discuss how recent developments in statistical physics, machine learning
and inference algorithms are coming together to improve current medical diagnostic approaches.
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1. Introduction

The use of machine intelligence may transform how physicians diagnose and treat their patients.
Artificial intelligence (AI) has been successfully applied to extract “signs” or “biomarkers” from
complex measured data. This approach has provided significant assistance to the diagnosis/
classification of various diseases using phenotypic and genotypic information or medical images.
Remarkably, deep learning models have achieved physician-level accuracy in a broad variety of
diagnostic tasks, including distinguishing moles from melanomas, identifying diabetic retinopathy,
detecting breast lesions in mammograms, and performing spinal analysis based on magnetic resonance
imaging [1–5]. However, a key limitation across studies that have compared human and algorithmic
performance has been a lack of clinical context (e.g., medical history and laboratory findings), which is
critically important for solving many diagnostic challenges. Rapid progress in omics technology
has led to the availability of large sets of medical data, providing detailed biochemical context.
Omics measurements can provide the concentrations of thousands of proteins, metabolites and RNA
molecules based on the analysis of small volumes of body fluid. Moreover, electronic health records are
rapidly becoming ubiquitous, thereby making the medical transactions of millions of patients available.
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Finally, large amounts of data from healthy individuals are becoming available through prospective,
population-based cohort studies. The application of computational approaches to such complex data
sources makes it possible to generate insights that would be impractical to extract through manual
human review alone. This opens up major opportunities for the application of AI technology in
medical diagnostics; however, new conceptual advancements are needed before these possibilities can
be explored.

Decision making lies at the heart of medicine and is often a tedious task. There are many practical
challenges in clinical practice and decision making—diagnosis and prognosis are among those that
may most naturally benefit from data-driven approaches. A recent report by the National Academy
of Medicine revealed many diagnostic errors that could be mitigated by appropriate measurement
and support. Diagnostic strategies are typically available in the form of clinical algorithms and flow
charts that define the sequence of actions to be taken to reach a diagnosis. A diagnosis itself is
typically made based on consensus diagnostic criteria [6–9]. For example, various algorithms exist for
approaching a patient with abdominal pain, which can be a manifestation of autoimmune diseases such
as systemic lupus erythematosus (SLE), among others. Despite differences in diagnostic approaches to
this symptom, consensus diagnostic criteria for SLE are available. Overall, however, we lack a solid
conceptual framework for medical diagnostics, particularly in the early stages of disease development
and in the presence of multiple interacting diseases. As a consequence, there is no consensus on the
diagnostic flow charts available today, and clinicians differ widely in their approaches to patients.

Diagnostic problems are sometimes difficult to solve, partly due to a lack of critical
information about disease mechanisms and manifestations, uncertainties in some observations, and
often-overlooked disease–disease interactions. In essence, however, a diagnostic problem asks simply
for the most probable disease hypothesis given an initial set of observed signs (symptoms as well as
clinical and laboratory findings) along with some prior knowledge about the patient. To be specific,
let us consider the biochemical reaction network of an organism as the system under study [10–12].
Here, the activities or concentrations of the molecular species can be taken as the system signs, and
deviations from the healthy network structure and the associated reaction rates can be interpreted
as the system defects. The problem here is to uncover the set of involved defects from the observed
molecular concentrations for a given number of species. This is a computationally hard problem, with a
computation time that grows exponentially with the number of signs and diseases [13,14]. Already, the
numerical simulation of such a system is computationally expensive for practically interesting reaction
networks due to the presence of many dynamical time scales (reaction rates) in the system [15,16].
It is known that stochastic reaction networks can perform reliable Turing-universal computations,
and simulating such systems in general cannot be an easy task (see no-free-lunch theorems) [17–19].
Basically, the latter problem is equivalent to the problem of inference from a probabilistic model of
many interacting sign and disease variables. In practice, for the study of these probabilistic models,
we resort to simplifying assumptions, such as the causal independence of diseases and the conditional
independence of signs (given a disease hypothesis) [20–23]. Another common assumption is that a
“single disease” underlies a patient’s symptoms/signs; however, this “simplifying” assumption may
sometimes complicate the diagnostic problem (some observed signs will be deemed as uninterpretable).
For example, a patient with a fever, cough, and diarrhea may clinically present as a single diagnosis
of viral infection, but these symptoms could instead be due to a combination of multiple factors,
such as cancer with infectious complications. Age-related diseases are another class of co-emerging
health problems.

The diagnostic problem is more important to address in the early stages of a disease, when the
amount and quality of medical evidence are insufficient to reach a definite diagnosis by conventional
methods. This early diagnosis should of course be efficient and accurate to have the most sensitivity
and specificity with the minimum possible cost and in an acceptable time. It is also important to know
how the diagnostic accuracy changes with disease development to understand the trade-off between
the timing and accuracy of the diagnosis. Note that an early and precise diagnosis also requires
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an accurate characterization of disease states, and an understanding of the mechanisms of disease
development (dynamics) and the way in which one disease influences others (disease interactions).
This, along with the acquisition of good statistical data, can allow us to construct more accurate
diagnostic models and algorithms for uncovering hidden disease patterns in the early stages of their
progress (Figure 1).

Probabilistic sign-disease model

Disease evolution model

a

b

Diagnosis

Figure 1. Uncovering (learning) macroscopic features (diagnosis) from microscopic sign variables:
(a) using a powerful probabilistic model for a selective observation of additional signs and a careful
anticipation of a few other sign values by simulating the diagnostic process; (b) using a microscopic
model of disease evolution to estimate the likelihood of a disease hypothesis from the history (dynamics)
of the observed signs. Here, empty circles indicate the unobserved signs, the filled circles are the
observed signs with possibly different levels of activity, and the dashed circles show the anticipated
sign values.

The concepts and tools of statistical physics, computer science, and graph theory have proven
very helpful in the study of similar problems. Examples include the reconstruction of biological
models (e.g., neural networks) from observed statistical data [24–28], physically inspired error
correction and compressed sensing algorithms [29,30], and a complex network approach to biology and
medicine [31–34]. Statistical physics has been widely used to extract macroscopic properties of many
interacting elements from their microscopic models. This process is largely analogous to the extraction
of disease states from a patient’s signs and symptoms (see Table 1); however, no similar conceptual
framework has yet been applied to medical diagnostics. On the other hand, the construction of good
probabilistic models and the extraction of accurate information from such models using efficient
inference and optimization algorithms play a critical role in the study of diagnostic problems [35–38].
An interdisciplinary perspective is necessary here to go beyond the conventional diagnostic models and
strategies to deal with the above problems. In what follows, we discuss opportunities and challenges
that lie ahead.
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Table 1. An analogy between the main concepts of medical diagnostics and statistical physics.

Medical Diagnostics Statistical Physics Description

signs microscopic variables binary genotypes as two-state spins in a
magnetic system

causal dependencies Hamiltonian interactions influencing factors as interactions with
external fields and other spins

uncertainty and noise temperature stochastic variability from thermal
fluctuations

healthy and disease states thermodynamic phases emergent phenotypes as macroscopic
features of Gibbs states

observed signs pinned microscopic variables related to random pinning transitions

diagnosis phase detection similar to the phase classification problem

2. Disease Definition and Classification

In the classical picture of a diagnostic problem, we usually assume that we have a given set
of defined signs/symptoms S and a given set of diseases D. Note that a symptom could refer
to an objective indicator, e.g., blood pressure, whereas a sign could refer to something that only
the patient is able to assess, such as pain intensity. The sign and disease values are denoted by
S = {Si : i = 1, · · · , N} and D = {Da : a = 1, · · · , M}, respectively. For simplicity, in the following
it is assumed that Si = ±1 and Da = 0, 1. This is obviously very useful for a supervised learning
algorithm using (deep) neural networks for disease classification [39–41]. The signs are usually the
input variables for a multilayer feed forward network and the diseases are coded in the states of
the output variables. On the other hand, one may consider a recurrent neural network to learn the
related sign–disease patterns from the observations, for example, by using the Hebb’s rule. The well
developed statistical physics methods have been used in both the cases to provide useful insights
about the quality of solutions and the performance of the learning algorithms [42–47].

In practice, however, the boundary between signs and diseases is not always clear. For instance,
addiction to alcohol can be considered as a disease or sign of other diseases; similarly, hypertension can
be a disease (essential hypertension) or a sign of another disease (secondary hypertension). The same
problem arises when we attempt to quantify a symptom as a medical sign; e.g., it is easy to assess the
blood pressure of a patient with no ambiguity, whereas assigning an objective value to a symptom such
as “feeling dizzy” is very difficult, considering that what one person means by saying that he or she
feels dizzy does not necessarily match what another person means. In the following, however, we shall
assume that symptoms can be somehow mapped to sign values and discuss only the signs, which in
general could be multivalued or continuous variables. We note that very subjective symptoms can also
be regarded simply as features or manifestations of a disease state. From a statistical physics point of
view, it is natural to define all microscopic variables of a system as the signs and define the healthy
and disease states of the system as the emergent or macroscopic behaviors of the system [48]. In the
example of a biochemical reaction network, the number of molecules can be regarded as the microscopic
variables (signs), whose stochastic dynamics are governed by the biochemical reactions [15,49]. Here,
the system defects are defined as specific deviations from the healthy network, e.g., variations in
the reaction rates. A subset of such defects could then result in a new macroscopic state (a disease),
which manifests in the collective behavior of the molecular species. More precisely, the stochastic
sign variables S are described by a probability distribution Pt(S), which, in general, depends on
the time t. This measure represents the uncertainties of the sign variables in a large ensemble of
subjects. In practice, such a probability distribution (probabilistic model) can be reconstructed from
the empirical data within a time period that is much shorter than the time scale of the system, and by
relying on the maximum entropy principle [50]. Then, we may define a healthy or disease state as a
(pure or mixed) Gibbs state of the sign probability distribution [51]. A pure Gibbs state is a macroscopic
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state of the probability distribution where linear correlations between the variables decay exponentially
fast by the distance of the variables. A healthy system may display many healthy macroscopic states
as a mixture of pure Gibbs states. In the same way, we may need mixed Gibbs states to describe the
statistical behavior of a diseased system as for a glassy state [52].

Several scenarios are possible in the process of disease development as Pt(S) changes with
time [53]. A disease state may appear through: (i) A smooth change in the average sign values with no
phase transition, e.g., as in aging. Here the system performance is degraded and the macroscopic state
of the system is changing without any singularity in the system behavior. (ii) Discontinuous (sharp)
phase transition—e.g., when the stress exceeds a critical value [54]. This happens when a metastable
state gradually appears away from the main state and later dominates the system’s macroscopic
behavior. On the other hand, we may consider a metastable state as the healthy state which disappears
through a sharp transition to the stable macroscopic state (disease state). (iii) A continuous phase
transition—e.g., when the strength of internal interactions between the sign variables increases [54].
These latter transitions can be further classified by the critical behavior of the system around the phase
transition [55]. In the above picture, a disease state is characterized by the macroscopic behavior of the
associated Gibbs state(s), e.g., by the structure and values of the order parameters that are needed to
represent the (quasi)long-range order of the system. In addition, this picture provides a framework for
classifying diseases in accordance with the nature of the phase transitions and the critical behaviors
that are displayed during the process of disease development over time.

Artificial neural networks and machine learning techniques have been successfully employed
to represent and distinguish the macroscopic states of various physical systems displaying various
complex (including topological) phases [56–58]. This is very similar in spirit to the problem of
identifying healthy and disease states, as described above. To summarize, taking the microscopic
variables of the system as the signs, the problem of defining the diseases reduces to the problem
of identifying and characterizing the Gibbs states of the signs probability distribution Pt(S). Here,
unsupervised (or partly supervised) learning approaches are needed for an accurate characterizations
of disease phenotypes. Note that, in reality, we might only have access to a finite number of sign
configurations which are sampled from a heterogeneous population of subjects possibly at different
stages of disease development [59,60].

3. The Need for Deeper Probabilistic Models

It is known that an effect could have multiple causes and a cause may contribute to multiple
effects. Moreover, there are no certain relations connecting a small subset of observed signs to a
single (or multiple) disease(s). The early models of signs and diseases were based on specific rules
connecting a piece of evidence to a hypothesis. Each rule was assigned a certainty factor to represent
the experts’ belief on that rule, along with simple combination functions to compute the certainty
factors for the composite rules [61]. However, the errors in these models arise if multiple causes are at
work, especially when these causes are correlated [22].

The sign–disease dependencies can also be represented by a weighted graph of signs and diseases,
to have a global view of the connectivity pattern of these variables. A complex network approach to
the problem utilizes the structural and dynamical information extracted from the multiplex network
of diseases, signs, proteins, etc., to reach a diagnosis [62–66]. The structural and functional modules of
these networks provide a useful tool for classification of complex diseases, and from this information
we can say something about the involving diseases given the observed signs [34]. The main focus in
this approach is on the accurate construction of the above networks from the available clinical and
biomedical data to reach a reliable diagnosis.

A complete description of the stochastic sign/disease variables, however, is provided by a joint
probability distribution of these variables assuming that we have well-defined signs and diseases
(see Section 2). Here, insights from the statistical physics of disordered systems could be useful in model
construction and in the approximate inference of the local (microscopic) and global (macroscopic)
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statistical properties of such a model. Probabilistic models, e.g., Bayesian belief networks (Figure 2),
allow us to model and account for the uncertainties in sign–disease relations more explicitly and
accurately [67–72]. A belief network of the signs and diseases is an acyclic directed graph of the
variables (without any hidden variable). The joint probability distribution of the variables P(S, D) in
such a simple belief network is completely determined by the conditional probabilities of the child
variables given the parents’ configuration.

       Prior     Disease      Interaction     Sign      Leak         

Disease

Sign

P(S|D)

i

j

b

a

α

P (D)0 P(S|0)

a            b
a

b
i        j

Figure 2. Probabilistic models of sign and disease variables: (a) A Bayesian belief network in the
form of an acyclic directed graph showing the connections between the disease (Da, Db, ...) and sign
(Si, Sj, ...) variables. The model is completed by the conditional probability distribution P(S|D). (b) An
interaction graph of disease variables (leftmost circles) and sign variables (rightmost circles) related by
Ma one-disease and Mab two-disease interaction factors (middle squares) in addition to interactions
induced by the leak probability (right square) and the prior probability of disease (left square). (Adapted
from reference [73]).

To make the computations tractable in the above networks, it is commonly assumed that (i)
given a disease hypothesis, the signs are independent stochastic variables. That is, the two sets of
variables make a directed bipartite graph and we need to know only the conditional probabilities
of the sign variables P(Si|{Da : a ∈ π(i)}) given the diseases in the parent set π(i). Moreover,
it is assumed that (ii) the diseases are independent of each other after marginalization over the
sign variables, i.e., P(D) = ∏a P(Da). More importantly, it is also assumed that (iii) each disease
affects the signs independently of any other diseases (causal independence) [21]. However, the
signs could be strongly correlated even for a given disease hypothesis, and diseases are expected to
interact with each other with potentially significant correlations. These correlations could be very
helpful for facilitating early and more accurate diagnosis, especially in the presence of multiple
interacting diseases. This encourages one to study deeper probabilistic models that also include
disease–disease and sign–sign interactions (see Figure 2). For instance, given the one- and two-sign
correlations for disease patterns D, the maximum-entropy probability distribution is P(S|D) =

exp(∑i hi(D)Si + ∑(ij) Jij(D)SiSj)/Z[D]. Now, the model parameters hi(D), Jij(D) can be expanded
in terms of the disease variables Da to write the conditional probability in terms of a few disease
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interaction factors. This expansion should work when the number of diseases involved is expected to
be small [73]. Considering at most the two-disease interaction factors, one gets

P(S|D) =
1

Z[D]
φ0(S)∏

a
φa(S|Da) ∏

(ab)
φab(S|Da, Db). (1)

This model, along with the prior probability of diseases P0(D), then identifies the joint probability
distribution of the sign and disease variables. Deep belief networks provide another way of accounting
for these interactions implicitly but a probabilistic model with explicit interaction factors would also
allow for meaningful clinical interpretations [74–76].

It is not difficult to see that such interacting models can be used to estimate disease probabilities
that closely follow the expected probabilities in the presence of strong sign–sign and disease–disease
correlations [73]. In particular, such information could be very helpful for reaching a correct diagnosis,
especially in the early stages of a disease. The clinical data that are needed here to construct the models
are the joint probability distribution of two signs, P(Si, Sj|Da, Db), conditioned on the presence of
at most two diseases, Da and Db. The apparent overparametrization may complicate the learning
process and increase the risk of overfitting, but at the same time, it allows us to capture the essential
features that are relevant to the problem [77–79]. Moreover, careful design of the model structure
and algorithms could mitigate these difficulties, for example, by exploiting the power of generalized
mean-field approximations and message-passing algorithms developed in the study of probabilistic
graphical models [26,35,36,46]. Here, biomedical and computational insights are very helpful to start
with as prior information to avoid the unnecessary model complexities. The computational cost of
constructing and inferring from such models, and the lack of sufficient data, should of course be
addressed if we are to benefit from these statistical correlations. This situation motivates us to develop
more efficient and accurate learning and inference algorithms and justifies the collection of the relevant
statistical data.

4. Search for an Optimal Diagnostic Strategy

In a clinical setting, a diagnostic problem is typically a multistage problem, where we start from
a small set of initial findings and proceed by a sequence of hypothesis selection and testing [80–83].
For simplicity, we may assume that the duration of this diagnostic process is much less than the
dynamical time scale of disease progress; i.e., the parameters of the probabilistic sign–disease model
are fixed during the diagnostic process. Given an initial number of observed signs NO, a key question
is how to choose an optimal sequence O(T) of T other signs for observation (e.g., by maximizing an
appropriate objective function). A classical choice here is the sequence that maximizes the likelihood of
the most likely disease hypothesis after observation of the signs in the sequence [50]. A computationally
simpler objective function E [O(T)] looks for a sequence which results in the largest polarization of the
disease probabilities [84], considering also the diseases importance values:

E [O(T)] = ∑
a

wa|P(Da)−
1
2
|. (2)

Obviously, disease probabilities that are closer to zero or one allow us to reach a more definitive
diagnosis. Other measures, e.g., the cost of observations or availability of the tests, may be added to
this objective function. Figure 3 shows how this strategy increases the probability gap between the
underlying diseases and the other diseases in a small synthetic example. Note that here, we are indeed
simulating the diagnostic process using a probabilistic model of the signs and diseases. It should
be mentioned that the usefulness of such a simulation critically depends on the structure of the
probabilistic model and the initial number of observed signs. For reference, Figure 4 shows the
differences in the probabilities of correct and incorrect diagnoses calculated by anticipating the values
of a sequence of randomly selected signs, starting from NO(0) observed signs. Improvements in
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the model predictions are observed when the sequence of signs is suggested by the probabilistic
model [84].

 0

 0.2

 0.4

 0.6

 0.8

 1

0 1 2 3 4

P
ro

b
a
b

ili
ty

Disease

T=0
T=No/2

Figure 3. The impact of observing the most polarizing signs on the disease probabilities. The numbers of
signs and diseases in this example are NS = 20 and ND = 5, respectively. The probabilistic sign–disease
model is constructed by using synthetic conditional probabilities P(Si|Da) and P(Si|Da, Db) that are
concentrated around the sign values randomly assigned to the diseases. The disease probabilities are
computed exactly by an exhaustive algorithm (more details can be found in reference [84]). Given the
NO = 4 initially observed signs, the algorithm anticipates the values of T other signs that would make
the disease probabilities more decisive (closer to zero or one).
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Figure 4. How the initial number of observed signs determines the range of useful predictions with
a probabilistic model. (a) The difference δP(t) = P(TR ≤ t)− P(TW ≤ t) between the cumulative
probabilities of the first correct and incorrect diagnosis times (TR and TW , respectively) is plotted
against the number of observations t for different numbers of initial observations, NO(0). (b) δP(50)
is plotted against NO(0) for a sufficiently large value of t. The numbers of signs and diseases in this
example are NS = 500 and ND = 50. (Adapted from reference [84]).

The main finding here is the advantage of a two-stage diagnostic strategy [85], which starts with
suggesting one medical test in each step and observing the outcome of that medical test (Figure 5).
Then, at a critical number of observations, the probabilistic model undergoes a phase transition to an
ordered phase in which it is safe to suggest a sequence of several medical tests at once based on the
model predictions. A similar phenomenon is observed in the “ordered” phase of a physical system
where the boundary or pinned variables can strongly affect the state of other distant variables [86,87].
The above studies show that it is possible to obtain useful information by simulating a diagnostic
process using sign and disease probabilities inferred from a reasonable probabilistic model. Note that
the above problem is indeed a stochastic optimization problem. This is because, at each point in
sequence O(T), we have only the sign probabilities estimated from the model without any real medical
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test having been performed. More precisely, the objective function E [O(T)] depends on the observed
sign values SO in the sequence. Therefore, in order to find the optimal sequence, the right objective
function is 〈E [O(T)]〉, where the average is taken over the observed sign values. The established
techniques of stochastic optimization are needed here to accurately investigate the problem [88–90].

disordered phase ordered phase

〈S〉

f (〈S〉)

So
i1
, So

i2
, . . . , So

in
Sj1, Sj2 . . . , SjmSo(t = 0)

Figure 5. A diagnostic process that starts with the step-by-step approach and then switches to the
batch approach after a phase transition to an ordered phase. In the disordered phase, the probability
distribution of the signs is described by a single pure Gibbs state in which the observed signs on
average give no information about the values of the unobserved signs. More observations can lead to a
phase transition to an ordered phase in which there are multiple pure Gibbs states that provide useful
information about the unobserved signs.

5. Future Perspectives

The future technological advancements are going to revolutionize the way diagnosis is going
to be done [91,92]. There are already some AI systems in use, such as IBM’s Watson or Babylon’s
AI chatbot. These approaches are still at their infancy and do not consider the complexity of human
biology and the real-world diagnostic problems. Handling additional complexity requires innovative
algorithms. In this perspective article we gave a glimpse into what statistical physics can contribute
in this regard. A major challenge that prevents implementation of these physics-based algorithms
(and more generally, all currently existing AI algorithms) is a lack of rigorous clinical validation.
Due to these limitations, current use of AI in medicine is mostly limited to interpretation of medical
images and the like. This problem will eventually be solved in the years to come. Temporal data from
healthy and diseased individuals will be available. Wearable and portable devices such as watches
or smartphones, are now able to monitor our health round the clock (e.g., pulse rate, blood pressure,
ECG). Probes will be developed that allow for continual sensing of biological contents in our sweat,
saliva, urine, and stool. Longitudinal cohorts on large populations will provide clinical and laboratory
data needed to build and validate the models discussed above.

Many opportunities for medical diagnostics lie at the interface of physics and AI. In this article,
we have briefly discussed the state of the art in this direction of study, but there are many more
possibilities to be explored in the future, for example, by including disease dynamics or by benefiting
from developments in quantum-physics-based approaches.

5.1. Diagnosis through Simulation of Disease Evolution

Obviously, availability of tractable microscopic models for the temporal evolution of diseases
would be significantly helpful in addressing the diagnostic problems. Currently, we lack such models
for most of the common diseases, mainly because of the lack of relevant clinical and experimental data,
or maybe because diseases are usually considered as static objects. Some small steps have been taken
though and efforts have been made to represent disease progression at different spatial and temporal
scales [93–96]. For instance, models exist that incorporate molecular processes involved in diseases [97].
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In contrast, the methods of ecological and resource-consumer theory are used to study tumor growth
dynamics and the host-pathogen interactions at the level of cell populations [98,99]. At a larger
scale, complex system approaches are applied to model the dynamics of neurological disorders [100].
Currently, our understanding of dynamics of diseases is often minimal and insufficient. Acquisition
of temporal clinical data and monitoring of diseases dynamics are critical here for understanding of
disease development [101,102]. The methods of complex dynamic systems and machine learning can
then be employed to analyze the data and construct reasonable dynamical models.

A stochastic model for disease evolution could be very useful for generating a diagnosis that is
based on the history (dynamics) of the sign variables. Consider again a biochemical reaction network
and assume that the system starts from a healthy state that maximizes an objective function of the
system, e.g., the mutual information between a subset of signal species and a subset of response
species. A model for disease evolution should describe the emergence of other macroscopic states
in terms of the changing number and strengths of the possible defects in the system. A minimal
effective model here is described by two kind of parameters, say αr(t) and 1/β(t), which control
the rate of introducing local defects or mutations that affect reaction r in the network and the rate
of accepting these variations by the global system (e.g., defense mechanisms such as the immune
system or intracellular quality control systems), respectively [53]. Disease progress then is modeled
by a reverse annealing process, where both the above rates may increase with time starting from the
healthy state. This model is inspired by the thermal annealing of physical systems as in the simulated
annealing algorithm, where the temperature is slightly reduced to bring the system to an ordered
low-temperature state, starting from a disordered high-temperature phase [103]. Here, in contrast, we
are using a reverse annealing algorithm to model disease evolution by increasing the temperature-like
parameter 1/β(t), to go from an optimal healthy state (say lower energies) to a disease state with
smaller objective functions (or larger energies).

Now suppose that we have observed a subset of the molecular concentrations over a sufficiently
long interval of time. A relevant problem then is to reconstruct the time evolution of the model
parameters αr(t), β(t) to identify the underlying defects and the disease(s) to which they can be
attributed. Clearly, a diagnosis that relies on the likelihoods of diseases over a given time history
would be more accurate than a diagnosis that is based solely on the current sign values. We observed
in the previous section that simulating the diagnostic process is helpful for suggesting an optimal
sequence of medical tests given an initial number of observed signs. For this purpose, we needed a
good probabilistic model in order to infer the sign and disease probabilities in each step of simulation.
For diagnosis based on dynamics, we need a good microscopic model for simulating the evolution
of diseases over time and considering the possible disease–disease interactions [53]. Such a model
would also allow us to see how the accuracy of diagnosis with a diagnostic algorithm depends on
the elapsed time of disease progression. On one hand, we know that disease morbidity and mortality
often increase with time and the chance of successful therapy decreases; thus, clinicians often strive for
an early diagnosis. A diagnostic algorithm should then come with low probabilities of false positive
and false negative results to avoid the negative consequences of a wrong early diagnosis. On the
other hand, the diagnosis accuracy is expected to increase with time as the observed signs would
convey more information about the underlying disease(s). The above information are necessary for an
accurate quantification of the tradeoff between the accuracy and timing of diagnosis, thus enabling the
identification of an optimal intervention time.

A microscopic model of disease evolution is also useful for comparing the evidence supporting
different hypotheses through simulation when the likelihood function is difficult to compute, that is,
for a likelihood-free estimation of evidence such as the approximate Bayesian computation (ABC)
method [104–107]. Simulation-based methods of this kind are now well established in the physical
sciences, e.g., in experimental particle physics and cosmology [56]. Moreover, such a microscopic model
can play the role of a discriminative model as the counterpart to the generative probabilistic model
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in an adversarial process [108–111]. Finally, all of the above models and studies can be personalized
within the framework of precision medicine.

5.2. Quantum Algorithms

Quantum systems, in contrast to classical systems, are described by a superposition of microscopic
states and display nonlocal quantum correlations (entanglement). These nonclassical behaviors can
be exploited by quantum computers and algorithms to reduce the time and memory complexity of
computationally hard problems [112]. Advances in classical and quantum machine learning techniques
and algorithms are very promising in finding approximate solutions to such problems. In particular,
steady progress in quantum computation technology encourages us to apply and extend the above
quantum algorithms to the computationally difficult and important problem of medical diagnostics.
Quantum representations can be useful even within a classical computation [113–117]. For instance,
an exponentially large number of classical states can be coded in the quantum state or wave function
of a linear number of quantum binary systems (qbits). Quantum wave functions also provide a rich
class of variational probability distributions that can be used to approximate the macroscopic states
of classical stochastic variables. There are examples of variational wave functions from physics, for
example constructed by neural networks, which can provide good probabilistic models for the sign
and disease variables. A quantum learning algorithm here is needed to find the optimal parameters of
the wave function. Building on this, it would be interesting to see whether quantum representations
of the probabilistic models of the sign and disease variables would be helpful in solving a diagnostic
problem. On the other hand, the log-likelihood of a disease hypothesis in a Bayesian belief network
(with the three simplifying assumptions of Section 3) can be considered as the energy function of
a classical system with local interactions between the disease variables. This problem can then be
studied by using quantum optimization techniques (e.g., quantum annealing algorithms or quantum
machine learning methods) to exploit the computational power of quantum representations and
systems [118–121].

6. Conclusions and Challenges

In summary, it seems that more accurate definitions of the signs/symptoms and diseases involved
in a diagnostic problem are needed for the precise characterization of the statistical relationships
and possible interactions between these variables. The problem here is to choose the relevant
signs/symptoms as the microscopic variables of the system and find informative order parameters
to characterize the macroscopic or emergent features of this interacting system as the disease states.
The above definitions, in turn, would allow us to construct better (deep) probabilistic models of the
signs and diseases, which would play a critical role in enabling early diagnosis, for example, through
the simulation of the diagnostic process, as described above. The main challenge is to make a balance
between the model efficiency and its predictability (generalization), and interpretability. Obviously,
to gain from such models, we need to invest in collecting the necessary clinical data and in developing
more efficient and accurate inference and learning algorithms. The point is that collecting good higher
order statistical data is very difficult in practice, even for two-sign probability distributions conditioned
on the presence of one or two diseases P(Si, Sj|Da, Db).

As another approach, we may incorporate the time dimension into diagnostic problems to benefit
from the dynamical information provided by the history of the observed signs. For instance, it may
happen that the observed signs give the same probabilities for two diseases when we work with a
static sign–disease model. A way out of this could of course be to enlarge the space of sign variables
to discriminate the two cases. On the other hand, one may look at the history or time dependence
of the observed signs to reach a diagnosis that is based on the dynamics of diseases. A microscopic
model of the temporal evolution of diseases is needed here to infer the underlying diseases through
the simulation of the stochastic disease dynamics considering also the relevant host factors in the prior
information. In addition, it can be used for explicit modeling of disease–disease interactions. Here, the
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main problem is construction of biologically plausible models which help us to quantify the changes
in the potential risk of diseases with time. This information, along with the knowledge of diagnosis
accuracy as a function of time, helps one to decide on intervention options, and to avoid over screening.
Finally, we may consider the possibility of mitigating the computational complexity of diagnostic
problems by utilizing the computational power of quantum optimization and learning algorithms.
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