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Abstract: The human gut symbiont Lacticaseibacillus (L.) casei (previously Lactobacillus casei) is under
intense research due to its wide range of immunomodulatory effects on the human host. Dendritic
cells (DCs) are crucial players in the direct and indirect communication with lactobacilli in the
gastrointestinal tract. Here, we demonstrate that human monocyte-derived DCs (moDCs) are able
to engulf L. casei BL23, in which the intact bacterial cell wall and morphology have a key role. The
absence of the bacterial cell-wall-degrading enzyme, Lc-p75, in L. casei cells causes remarkable
morphological changes, which have important consequences in the phagocytosis of L. casei by
moDCs. Our results showed that the Lc-p75 mutation induced defective internalization and impaired
proinflammatory and T-cell-polarizing cytokine secretion by bacteria-exposed moDCs. The T helper
(Th) 1 and Th17 cell activating capacity of moDCs induced by the mutant L. casei was consequently
reduced. Moreover, inhibition of the phagocytosis of wild-type bacteria showed similar results.
Taken together, these data suggested that formation of short bacterial chains helps to exert the potent
immunomodulatory properties of L. casei BL23.

Keywords: lactobacillus; dendritic cells; phagocytosis; immunomodulation

1. Introduction

Lactobacilli are Gram-positive lactic acid bacteria (LAB) that are natural inhabitants of
the human gastrointestinal tract. They are also widely used in fermented food production,
and certain strains are commercialized as probiotics with health-promoting properties.
Probiotics are “live microorganisms that, when administered in adequate amounts, confer
a health benefit on the host” [1]. A wide range of beneficial effects is attributed to probi-
otics, including maintaining gut epithelial barrier integrity [2], preventing the adhesion
of pathogenic bacteria [3,4], and secreting vitamins [5] and metabolites [6]. Furthermore,
probiotics contribute to the development of the immune system and modulate immune
responses [7–9].
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Bacteria must directly or indirectly interact with both nonimmune and immune cells
of the host to exert their beneficial effects. Considering the unique and complex functional
activities of dendritic cells (DCs) in modulating both innate and adaptive immunity, they
became first-line candidates for characterizing the strain-specific actions of various probiotic
bacteria, such as lactobacilli. DCs express unique sets of surface-bound and intracellular
pattern recognition receptors (PRRs), which sense various microbe-associated molecular
patterns (MAMPs) [10]. As professional phagocytes, DCs can internalize microbes upon
recognition of MAMPs. This results in the activation of signaling cascades, after which
DCs produce soluble factors that shape the innate and adaptive immune responses; further,
as professional antigen-presenting cells, DCs present peptide antigens to naïve T cells,
mediating their activation and polarization [11].

Bacterial peptidoglycan (PG) molecules play an essential role in bacterial life and
host–microbe interactions. The synthesis and degradation of PG are tightly regulated
by bacterial enzymes, including peptidoglycan hydrolases (PGHs), which can cleave the
PG macromolecule at well-defined sites [12]. It has previously been reported that p40
and p75 enzymes are PGHs with pleiotropic effects on bacterial cells. The two proteins
are localized in the bacterial cell wall and are released to the environment freely [13] or
bound to extracellular vesicles [14]. It has been demonstrated that these enzymes play a
role in L. casei growth and cell division [13,15]. Interestingly, the L. casei p40 (Lc-p40) and
p75 (Lc-p75) mutant strains remarkably differ in their morphology. Lacking Lc-p40 causes
only minor changes; bacteria assume a curved shape, while the absence of Lc-p75 leads
to the formation of a long-chain, auto-aggregation phenotype [13,15]. Moreover, Lc-p75
is endowed with γ-D-glutamyl-L-lysyl-endopeptidase activity, and its inactivation causes
altered composition of PG fragments [15] that serve as MAMPs and modulate the host’s
immune responses. Bacterial PG, a major structural cell wall component that originates
from pathogens [16] or probiotic [17] bacteria, induces DC activation. However, the impacts
of bacterial PG alterations on DC activation and functions are less studied.

In this study, we aimed to explore the DC-modulatory properties of L. casei BL23 and
its ∆Lc-p75 mutant derivative. With the help of the chain-forming ∆Lc-p75 mutant, we
showed that phagocytosis was a critical element in the modulation of DC functions by
the probiotic bacteria. We observed that impaired phagocytosis of the mutant bacteria
by human monocyte-derived DCs (moDCs) altered their T-cell polarizing ability. These
observations may contribute to a deeper understanding of the modulatory mechanisms
exerted by probiotic bacteria. Furthermore, they might help generate probiotic bacterial
strains, which can have remarkable therapeutic potential in different diseases via the
modulation of immune responses.

2. Results
2.1. Lc-p75 Deficiency Does Not Influence the moDC-Activating Potential of L. casei, but Affects
the Inflammatory Cytokine Secretion by Bacteria-Exposed moDCs

First, we investigated the effects of wild-type (WT) L. casei and its mutant counterpart,
which was defective in Lc-p75 cell wall-degrading enzyme, on moDC activation. The
∆Lc-p75 mutant was obtained via deletion of the gene encoding the major PGH in L. casei
BL23 [15]. As expected, the ∆Lc-p75 mutant strain had a modified cell wall structure
and morphology compared to the WT L. casei strain, as shown by confocal microscopy
(Figure 1A).

To assess the impact of Lc-p75 inactivation on the inflammatory-provoking capacity
of moDCs, we studied the CD83 expression and inflammatory cytokine and chemokine
secretion by moDCs treated with WT and ∆Lc-p75 L. casei strains for 24 h at a ratio
of 1:4. Membrane-bound CD83 is strongly expressed by mature, gut-bacteria activated
moDCs [18,19]. In our experimental system, L. casei strains also increased the expression
level of CD83; however, no statistically significant difference was observed between WT
and mutant strains with respect to the degree of CD83 elevation (Figure 1B). In contrast,
WT bacteria induced a significantly higher amount of TNF-α, IL-1β, and IL-6 cytokines
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than their defective counterpart (Figure 1C). Interestingly, we did not detect any significant
differences in IL-8 (Figure 1D) chemokine secretion by moDCs activated with the WT
or PGH mutant bacteria. To exclude that the differences in moDC activating abilities
of the WT and ∆Lc-p75 L. casei strains were the consequence of the different levels of
treatment-induced cell death, we measured the frequency of dead cells in bacteria-exposed
moDC cultures using flow cytometry. Remarkably, we could detect only an insignificant
proportion of dead cells in moDC cultures incubated with either WT or mutant bacterial
strains, similar to that observed in unstimulated moDC cultures (Figure S1).
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co-incubated with WT and PGH mutant bacteria at a ratio of 1:4 for 24 h. The expression of CD83 
(B) was measured by flow cytometry. Fold change of median fluorescent intensities (ΔMFI) com-
pared to the control, nontreated cells (immature DC/IDC/) was calculated from 6–9 independent 
experiments ±SD. Histogram overlays show one representative experiment. Each dot is representa-
tive of one donor. The concentrations of proinflammatory TNF-α, IL-1β, and IL-6 cytokines (C) and 
IL-8 chemokine (D) were measured using ELISA from the supernatant of activated moDCs and 
control, nonactivated cells (IDC). Figures show the mean of 9–11 independent experiments ±SD. 
Statistical analysis was performed using the Student’s paired two-tailed t-test with significance de-
fined as * p < 0.05, ** p < 0.01, and *** p < 0.001 as compared to IDC. The differences between WT and 
ΔLc-p75 were statistically significant and defined as # p < 0.05 and ## p < 0.01. 
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Figure 1. The absence of Lc-p75 PGH affects bacterial morphology and the inflammatory mediators’
production, but not the CD83 expression by bacteria-activated moDCs. (A) Confocal microscopic
pictures of mCherry-expressing wild-type (WT) and ∆Lc-p75 L. casei strains. Five-day moDCs were
co-incubated with WT and PGH mutant bacteria at a ratio of 1:4 for 24 h. The expression of CD83
(B) was measured by flow cytometry. Fold change of median fluorescent intensities (∆MFI) compared
to the control, nontreated cells (immature DC/IDC/) was calculated from 6–9 independent experi-
ments ±SD. Histogram overlays show one representative experiment. Each dot is representative of
one donor. The concentrations of proinflammatory TNF-α, IL-1β, and IL-6 cytokines (C) and IL-8
chemokine (D) were measured using ELISA from the supernatant of activated moDCs and control,
nonactivated cells (IDC). Figures show the mean of 9–11 independent experiments ±SD. Statistical
analysis was performed using the Student’s paired two-tailed t-test with significance defined as
* p < 0.05, ** p < 0.01, and *** p < 0.001 as compared to IDC. The differences between WT and ∆Lc-p75
were statistically significant and defined as # p < 0.05 and ## p < 0.01.

These results collectively indicated that the L. casei mutant with a defective cell wall
structure and altered morphology promoted an attenuated inflammatory response by
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moDCs. In contrast, the appearance of the activation marker CD83 on bacteria-exposed
moDCs was not sensitive to the lack of bacterial Lc-p75 PGH.

2.2. Lc-p75-Deficiency in L. casei Does Not Influence the Antigen Presentation and Costimulation,
but Induces Less T-Cell-Polarizing Cytokine Secretion by Bacteria-Exposed moDCs

After recognizing pathogens, the highly phagocytic, immature DCs transform into
a cell type that has the characteristics required for the activation and polarization of
Th cells in different directions. One of the unique features of dendritic cells is the migration
to the secondary lymphoid organs to activate naïve Th cells and provide costimulation
simultaneously with the antigen presentation via MHCII molecules [20]. Therefore, an
increased level of HLA-DQ, CD80, and CD86 co-stimulatory molecules is considered a
good marker of stimulated DCs that are capable of T cell activation. After a 24 h incubation,
the WT L. casei and ∆Lc-p75 mutant derivative induced the upregulation of HLA-DQ,
CD80, and CD86 expression of moDCs, regardless of the mutation (Figure 2A).
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In addition to inflammatory cytokine and chemokine secretion, DCs also secrete sol-
uble mediators to shape the differentiation of various T cell subsets. Therefore, we meas-
ured the T-cell-polarizing IL-10, IL-12, and IL-23 production by moDCs after a 24 h acti-
vation with L. casei strains. Importantly, WT L. casei induced more robust IL-10, IL-12, and 
IL-23 secretion by moDCs than their PGH defective counterpart (Figure 2B). 

Figure 2. Deletion of Lc-p75 PGH in L. casei BL23 does not affect the antigen-presenting and costimu-
latory capacity of bacteria-exposed moDCs but causes decreased T-cell-polarizing cytokine secretion
by these cells. Five-day moDCs were stimulated with live wild-type (WT) L. casei BL23 and ∆Lc-p75
mutant strain at a ratio of 1:4 for 24 h. The expression of HLA-DQ, as well as costimulatory CD80
and CD86 molecules (A), was measured using flow cytometry. The fold change of the median fluores-
cent intensities (∆MFI) compared to the control cells (IDC) was calculated from 10–13 independent
experiments ±SD. Histogram overlays show one representative experiment. The concentrations
of T-cell-polarizing IL-10, IL-12, and IL-23 cytokines (B) were measured using ELISA from the su-
pernatant of activated moDCs and control, nontreated cells (IDC). Figures show the mean of 10–11
independent experiments ±SD. Each dot represents one donor. Student’s paired two-tailed t-test was
used in the statistical analysis, with significance defined as * p < 0.05, ** p < 0.01, *** p < 0.001 and
**** p < 0.0001 compared to IDC; and # p < 0.05 between WT and ∆Lc-p75.
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In addition to inflammatory cytokine and chemokine secretion, DCs also secrete
soluble mediators to shape the differentiation of various T cell subsets. Therefore, we
measured the T-cell-polarizing IL-10, IL-12, and IL-23 production by moDCs after a 24 h
activation with L. casei strains. Importantly, WT L. casei induced more robust IL-10, IL-12,
and IL-23 secretion by moDCs than their PGH defective counterpart (Figure 2B).

These results indicated that the ∆Lc-p75 mutant L. casei strain caused dampened
T-cell-polarizing cytokine secretion by moDCs, and consequently may have influenced their
T-cell activating capacity. In contrast, expression of antigen-presenting and costimulatory
molecules on bacteria-exposed moDCs did not depend on the presence of the bacterial
Lc-p75 enzyme.

2.3. Activation and Polarization of Autologous T Lymphocytes by Bacteria-Exposed moDCs
Depend on the Presence of Lc-p75 in L. casei BL23

To study whether the decreased T-cell-polarizing cytokine secretion could influ-
ence the outcome of T lymphocyte responses mediated by the moDCs, we cocultured
bacteria-activated moDCs with autologous peripheral blood lymphocytes (PBLs) for 3 days.
T cell responses were monitored using IFNγ-, IL-17-, and IL-4-specific ELISPOT assays.
Unstimulated moDCs and PBLs were used as negative controls. Higher numbers and
a larger area of the spots were observed in cases of IFN-γ- and IL-17-producing T cells
when the moDCs were prestimulated with L. casei strains compared to unstimulated moDC
or PBL controls. Preactivation of moDCs with the L. casei ∆Lc-p75 mutant resulted in
significantly lower numbers and a smaller area of spots in the case of IFN-γ-secreting T
cells compared to pretreatment with WT bacteria (Figure 3A). Similarly, a significantly
lower number of IL-17A-secreting T cells and less intense IL-17A production was induced
by moDCs preactivated with ∆Lc-p75 mutant bacteria compared to pretreatment with WT
bacteria (Figure 3B). In contrast, prestimulation of moDCs with L. casei strains resulted
in a significant reduction in the spot numbers and the area coverage representing IL-4
production compared to control, untreated moDCs, independently of the PG mutation
(Figure S2).

These results indicated that the Lc-p75 defective L. casei induced reduced Th1 and
Th17 responses compared to WT L. casei BL23.
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Figure 3. The T-cell-polarizing potential of moDCs is modulated by Lc-p75 inactivation in L. casei
BL23. Five-day moDCs activated with wild-type (WT) and ∆Lc-p75 mutant L. casei BL23 were
washed and then cocultured with autologous T cells from freshly isolated PBLs at a ratio of 1:20 for
3 days. The frequency of cytokine-producing T lymphocytes was measured using IFN-γ (A) or IL-17A
(B) ELISPOT assays. The spot number was counted, or the area covered by the spots was calculated
using a computer-assisted ELISPOT image analyzer. The mean value of spot numbers and well areas
covered were calculated from 5 independent experiments with 4–6 parallel wells ±SD. One-way
ANOVA followed by Tukey’s multiple-comparison test was used for statistical analysis. Significance
was defined as * p < 0.05, ** p < 0.01 and **** p < 0.0001 compared to control, non-treated cells (IDC).
The differences between WT and ∆Lc-p75 were statistically significant and defined as # p < 0.05,
## p < 0.01, and #### p < 0.0001.

2.4. Peptidoglycan Derived from ∆Lc-p75 Mutant or WT L. casei BL23 Exhibits Similar
moDC-Activating Potential

Based on the results above, we raised the question whether the differences between
the WT and mutant L. casei strains in moDC activation were the direct consequences of the
modified bacterial cell wall structure or linked indirectly to the altered bacterial morphology.
Therefore, we purified PGs derived from the WT and ∆Lc-p75 mutant strains and tested
their moDC-stimulating activity. PG preparations induced elevated proinflammatory
(Figure 4A) and T-cell-polarizing (Figure 4B) cytokine secretion by moDCs independently
of the targeted PGH mutation. Furthermore, PGs from both L. casei strains caused a
significant elevation in CD83, HLA-DQ, CD80, and CD86 expression (Figure S3A), as well
as in IL-8 production (Figure S3B). Importantly, these changes were not dependent on the
targeted PGH mutation, similar to the results obtained with the live bacteria.
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Taken together, these results demonstrated that the purified PGs from WT and
mutant L. casei BL23 strains did not show any significant differences in their DC
activating potentials.

2.5. Altered Bacterial Morphology Leads to Impaired Phagocytosis by moDCs

Since we could not detect any differences in moDC activation between WT and
∆Lc-p75 mutant L. casei-derived purified PGs, we hypothesized that the attenuated DC
stimulation induced by the ∆Lc-p75 mutant L. casei BL23 was the consequence of their
impaired phagocytic uptake by moDCs.

For the phagocytosis assay, in vitro differentiated 5-day moDCs were coincubated
with bacteria of each strain expressing the mCherry fluorescent protein for 3 or 24 h. Within
both incubation periods at 37 ◦C, moDCs were shown to internalize fluorescent bacteria,
consequently becoming mCherry-positive. The percentage of these mCherry-positive
phagocytic cells could be quantified by flow cytometry and was compared to control
samples incubated on ice or in the absence of bacteria.

We found that WT bacteria were internalized with higher frequency by moDCs than
mutant bacteria after 3 (Figure 5A,B) and 24 (Figure 5C,D) hours. The control samples
incubated on ice exhibited a low percentage of mCherry-positive cells. The significantly
higher frequency of mCherry-positive moDCs coincubated with WT L. casei BL23 at 37 ◦C
indicated active, temperature-dependent internalization of bacteria within a 3 h incubation
period (Figure 5A,B) and after 24 h of coincubation (Figure 5C,D). We confirmed the moDC-
mediated uptake of WT and ∆Lc-p75 mutant (Figure 5E) bacteria using confocal microscopy
displaying orthogonal views of the Z-stack images.

It has previously been reported that the CD1a+ and CD1a− subsets of moDCs gen-
erated in vitro differed in their Escherichia coli-internalizing capacity [21]. However, in
another study, Seshadri et al. demonstrated that the absence of the CD1a protein on the
surface of moDCs did not cause any defect in the engulfment of Escherichia coli (E. coli)
cells [22]. Similarly, we did not observe any significant differences between the internalizing
capacity of CD1a− and CD1a+ moDCs activated with WT or ∆Lc-p75 mutant L. casei BL23
(Figure 6A,B).
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the results of one representative experiment. On the flow cytometric figures, the mean values of 3 
independent experiments are presented ±SD. For confocal microscopic pictures (E), moDCs are la-
beled with HLA-DQ (green), CD1a (red), and DAPI (cyan); mCherry is indicated with yellow. Or-
thogonal views are demonstrated for one Z-stack image. On the bottom is Z-projection in the X–Z 
direction, on the right is the Z-projection in the Y–Z direction. The red lines indicate the Z-depth of 

Figure 5. Inactivation of Lc-p75 in L. casei BL23 alters the phagocytic efficiency of moDCs. In vitro
differentiated five-day moDCs were coincubated with mCherry-labeled WT L. casei BL23 and ∆Lc-p75
mutant for 3 and 24 h at a ratio of 1:4 at 37 ◦C and on ice as a control. Phagocytic activity of moDCs
was measured by detecting mCherry fluorescent protein-positive moDCs with flow cytometry after
3 h (A,B) and after 24 h (C,D). IDC means nonactivated moDCs. Histogram overlays show the results
of one representative experiment. On the flow cytometric figures, the mean values of 3 independent
experiments are presented ±SD. For confocal microscopic pictures (E), moDCs are labeled with
HLA-DQ (green), CD1a (red), and DAPI (cyan); mCherry is indicated with yellow. Orthogonal views
are demonstrated for one Z-stack image. On the bottom is Z-projection in the X–Z direction, on
the right is the Z-projection in the Y–Z direction. The red lines indicate the Z-depth of the optical
slice and the orthogonal planes of the X–Z and Y–Z projections, respectively. Two-way ANOVA
followed by Tukey’s multiple-comparison tests were used in the statistical analysis. Significance was
defined as **** p < 0.0001 showing the differences between the samples incubated at 37 ◦C and on
ice. The differences between WT and ∆Lc-p75 were statistically significant and defined as # p < 0.05,
### p < 0.001, and #### p < 0.0001.
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Figure 6. Phagocytic efficiency of moDCs activated with L. casei bacteria is independent of the CD1a
expression. Five-day moDCs were stimulated with mCherry-labeled WT L. casei BL23 and ∆Lc-p75
mutant bacteria for 24 h at 37 ◦C and on ice. The phagocytic capacity of CD1a+ and CD1a− subsets
was measured by detecting mCherry-positive moDCs with flow cytometry (A). IDC represents the
sample without any bacterial treatment. The frequency of phagocytic cells was normalized to ice
control, and the mean values of 3 independent experiments are presented ±SD. (B) Dot plots from
one experiment showing the CD1a and mCherry expression of moDCs. Two-way ANOVA followed
by Tukey’s multiple-comparison tests were used in the statistical analysis. Differences between WT
and ∆Lc-p75 were statistically significant, and defined as #### p < 0.0001.

These observations indicated that the L. casei PGH’s targeted mutation modified the
fate of the bacteria through the inhibition of their efficient uptake by phagocytic moDCs.
This phenomenon may have been the consequence of the chain-forming property of the
mutant bacterial strain. The absence or presence of the cell surface CD1a molecule did not
influence the phagocytosis of L. casei strains by moDCs.
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2.6. Inhibition of Phagocytosis Diminishes the Effects Triggered by WT L. casei BL23 on
moDC Functions

To further investigate whether phagocytosis was the essential step in activating moDCs
by WT L. casei BL23, we inhibited actin polymerization, the early steps of phagocytosis,
using cytochalasin D (CyD). Firstly, we determined the phagocytic activity of moDCs
using flow cytometry and confocal microscopy. The CyD treatment induced a significant
decrease in the WT bacteria’s engulfment by moDCs compared to the nontreated moDCs
(Figure 7A,B). To check that impairment of the phagocytosis in WT bacteria was not the
consequence of increased cell death caused by CyD, we measured the frequency of the dead
DCs using 7AAD staining. Importantly, we could not detect any significant cell death in the
CyD-treated and nontreated samples after coincubation with WT L. casei BL23 (Figure S4A).
Confocal microscopic montage pictures and the orthogonal views revealed that moDCs
phagocytosed the WT bacteria after 24 h (Figure 7C). However, after the CyD preincubation,
mCherry-positive bacteria were attached only to the cell surface of moDCs (Figure 7D).

Next, we tested whether the inhibition of the phagocytosis had a blocking effect
on cytokine secretion by human moDCs. We found that impairment of the bacterial
engulfment caused a highly significant decrease in proinflammatory TNF-α, IL-1β, and
IL-6 cytokine secretion (Figure 8A). Furthermore, CyD treatment attenuated the IL-10, IL-12,
and IL-23 T-cell-polarizing cytokine release by L. casei-activated moDCs (Figure 8B), and
consequently reduced the number of IFNγ- and IL-17A-producing T cells in the DC–T
cell cocultures (Figure S4B). It should be noted that CyD treatment induced significantly
increased IL-8 chemokine production by moDCs even in the absence of bacteria (Figure
S4C), which was in good agreement with previous results obtained with human retinal
pigment epithelial cells [23]. Importantly, CyD pretreatment did not influence the cell
surface expression of CD83, HLA-DQ (Figure 9A,B), and the costimulatory CD80 and CD86
molecules (Figure 9C).
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Figure 7. Inhibition of the cytoskeleton rearrangement causes impaired phagocytosis of wild-type
L. casei BL23 by moDCs. Five-day moDCs were preincubated with 15 µM cytochalasin D (CyD) or
the vehicle control DMSO for 30 min. Then, moDCs were activated with four times more mCherry-
expressing wild-type bacteria for 24 h. Phagocytosis of the WT bacteria by moDCs was detected
by flow cytometry and confocal microscopy. The frequency of the phagocytic moDCs at 37 ◦C
was normalized to ice control and was calculated from 3 independent experiments ±SD (A). IDC
means the nonactivated moDC. Histogram overlays show one representative experiment (B). For the
confocal microscopic pictures (C,D) the moDCs are labeled with HLA-DQ (green) and DAPI (cyan);
mCherry is indicated with yellow. On the left of the figure, montage pictures show the Z-stack images
per 1 µm from the bottom to the top of the cell. On the right of the figure, the orthogonal views of
one Z-stack image are presented. The bottom shows the Z-projection in the X–Z direction; on the
right is the Z-projection in the Y–Z direction. The red lines indicate the Z-depth of the optical slice
and the orthogonal planes of the X–Z and Y–Z projections, respectively. Two-way ANOVA followed
by Tukey’s multiple-comparison tests were used in the statistical analysis. The difference between
the nontreated and CyD-treated moDCs was statistically significant and defined as **** p < 0.0001.
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Figure 8. Blocked phagocytosis leads to reduced cytokine secretion by bacteria-exposed moDCs. Five-day
moDCs were preincubated with 15 µM CyD or the vehicle control DMSO for 30 min. Then, moDCs were
stimulated with WT L. casei at a ratio of 1:4 for 24 h. IDC means cells without bacterial treatment. The
concentrations of proinflammatory TNF-α, IL-1β, and IL-6 cytokines (A) and the T-cell-polarizing IL-10,
IL-12, and IL-23 (B) were determined from the supernatants of the WT-bacteria-activated moDCs and
control IDCs. Figures represent the mean of 3 independent donors±SD. Each dot represents one donor.
The Student’s paired two-tailed t-test was used in the statistical analysis, with significance defined as
* p < 0.05, ** p < 0.01, and **** p < 0.0001 between the CyD- and DMSO-treated moDCs.
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Figure 9. Cytochalasin D pretreatment does not cause alterations in the expression of activation
and costimulatory markers of moDCs. Five-day moDCs were preincubated with 15 µM CyD or its
vehicle control DMSO for 30 min. Then, moDCs were stimulated with WT L. casei BL23 at a ratio of
1:4 for 24 h. Expression of CD83 (A), HLA-DQ (B), and costimulatory CD80 and CD86 (C) molecules
was measured by flow cytometry. IDC represents cells without any bacterial treatment. Median
fluorescent intensities (∆MFI) were calculated from 4 independent experiments ±SD. Histogram
overlays show one representative experiment. Each dot is representative of one donor. Two-way
ANOVA followed by Tukey’s multiple-comparison tests was used in the statistical analysis.

Overall, these results demonstrated that bacteria internalization is an essential step in
L. casei BL23-induced moDC activation, indicating that the reduced phagocytic uptake of
∆Lc-p75 mutant L. casei BL23 may result in its decreased moDC-activating capacity.
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3. Discussion

As a mucosal surface, the gastrointestinal tract is a typical entry of pathogens. How-
ever, on the other hand, the gut harbors a large number of commensal microorganisms, such
as LAB. LAB exerts various beneficial effects on the human host; hence, an essential role of
the gut immune system is to distinguish the pathogen-derived antigens from those derived
from the microbiota. Due to their ability to precisely sense the local microenvironment,
DCs can control both the immunogenic and tolerogenic responses according to the features
of the engulfed antigens [24]. DCs can directly [25] or indirectly [26] sample the luminal
content of the gut, such as bacteria or their derived components and metabolites. Further-
more, the unique, naïve T-cell-activating capacity of DCs is essential in inducing tolerance
or adaptive immune responses against the microbiota members. Therefore, the interaction
between LAB members such as lactobacilli and DCs is under extensive investigation. In
this study, we investigated the effects of PG alterations in the cell wall of L. casei BL23 on
moDCs’ activation and their T-cell-polarizing ability.

Our findings demonstrated that the ∆Lc-p75 mutant L. casei strain induced efficient
maturation of moDCs while also causing dampened cytokine secretion by these cells. This
result was in line a previous observation showing that potentially probiotic bacteria induced
expression of moDC maturation and activation markers as efficiently as pathogenic bacteria,
but their ability to trigger cytokine production varied significantly from one bacterial strain
to another [27]. Among the investigated proinflammatory soluble mediators, IL-8 was an
exception, as we could not detect any significant differences in its secretion by moDCs
activated with the WT or PGH mutant L. casei strains. This observation suggested that
the gene expression of proinflammatory cytokines and IL-8 was differentially regulated in
myeloid cells. Indeed, analysis of recruitment of p65 NF-kB to the corresponding promoters
in U937 macrophages revealed that although the p65 recruitment to TNF-α, IL-1β, and
IL-6 promoters was inhibited by the nuclear IkBα, recruitment to IL-8 promoter was not
repressed. Furthermore, the IL-8 promoter was specifically associated with the S536-
phosphorylated form of p65 NF-kB, whereas only the unphosphorylated p65 was recruited
to promoters of TNF-α, IL-1β, and IL-6 genes [28]. Another study reported that knockdown
of regulator of G-protein signaling 16 (RGS16) by RNAi in the human promonocytic cell
line THP-1 upregulated TNF-α, IL-1β, and IL-6, but not IL-8 [29]. Our finding that the
Lc-p75-defective L. casei induced reduced Th1 and Th17 responses compared to WT bacteria
was not surprising, given our observation that mutant bacteria triggered lower production
of IL-12 and IL-23, which are major cytokines required for polarization and maintenance of
the Th1 and Th17 subsets, respectively [30], by moDCs compared to their WT counterpart.

To determine whether the observed differences between WT and mutant L. casei
strains in DC activation were the direct consequences of the modified bacterial cell wall
constituents, we tested the moDC-stimulating ability of purified PGs from the WT and
∆Lc-p75 mutant strains. We found that the purified PGs from WT and mutant L. casei BL23
strains had a similar immunomodulatory effect on moDCs. It has long been known that
PGs can be recognized by PRRs in the host cells and mediate their activation. In 1999, it
was demonstrated that their recognition was TLR2-mediated [31]. However, soon after,
Travassos et al. found that the intracellular Nod proteins were more potent candidates in
the sensing of Gram-positive bacterial PGs [32]. Therefore, PGs or their derived fragments
had to enter the intracellular space of the host cell. Various mechanisms help the uptake of
PGs, such as phagocytosis, transporter-mediated translocation, and micropinocytosis-like
mechanisms [33], or the action of bacterial PGHs, which can generate PG fragments [34].
Based on our results, no matter how they entered the moDCs, purified PG components
from the ∆Lc-p75 mutant or WT bacteria activated their receptors with the same efficiency.

Several studies demonstrated that DCs could phagocytose different Lactobacillus
strains, which induced distinct DC activation patterns. A recent study showed that human
moDCs were able to uptake L. rhamnosus JB-1 bacteria after 48 h, which caused poor cos-
timulatory molecule expression and weak cytokine production [35]. In another publication,
mucus-adhesin-expressing L. reuteri strains were efficiently phagocytosed by moDCs [19].
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In agreement with these data, our phagocytosis results revealed that human moDCs were
able to uptake L. casei BL23. Moreover, our results showed that the long-chain-forming
mutant bacteria were weakly internalized by moDCs.

The regulation of the phagocytic process is multifaceted, and is determined by the
involved receptors, duration of the binding, and the physical characteristics, such as the
size of the engulfed material [36]. It was previously shown that bacterial aggregates were
weakly phagocytosed by polymorphonuclear leukocytes (PMN), influencing the killing
ability of PMNs [37]. Thus, the properties of phagocytosis may consequently determine
the nature of developing responses. Indeed, it has been illustrated that in addition to
the signaling initiated by TLR2 receptor, bacterial phagocytosis and Nod proteins were
also important for macrophage responsiveness to Gram-positive bacteria [38]. Our results
showed that the long-chain-forming mutant of L. casei BL23 could induce only a weak
pro-inflammatory and T-cell-polarizing cytokine secretion by human moDCs as compared
to WT bacteria. The importance of phagocytosis in cytokine production was further
confirmed by its inhibition with cytochalasin D, which strongly reduced the concentration
of secreted proinflammatory and T-cell-polarizing cytokines. The observed phenomenon
was similar to the case when moDCs were stimulated with the long-chain-forming ∆Lc-p75
mutant bacteria.

It has been demonstrated that there was a Nod2-mediated enhancement of TLR-
induced TNF-α, IL-12, and IL-10 production in DCs [39]. Nod2fs mutation, detected in
patients suffering from Crohn’s disease, results in a loss-of-function phenotype in human
myeloid DCs. Dendritic cells derived from Crohn’s disease patients homozygous for
this mutation respond normally to purified TLR ligands but fail to upregulate cytokine
production in response to treatment with a Nod2 ligand [39]. We assumed that a similar
phenomenon was taking place in moDCs exposed to the long-chain-forming ∆Lc-p75
mutant bacteria. Signals triggered by TLR2 on the cell surface induced the production of
proinflammatory and T-cell-polarizing cytokines, but this remained at a relative low level
due to the lack of Nod2-mediated enhancement resulting from the less efficient uptake of
mutant bacteria. However, this hypothesis needs further investigation.

Taken together, our results indicated that the immunomodulatory properties of L. casei
BL23 bacteria were highly dependent on their phagocytosis by human moDCs. Internal-
ization determined the cytokine secretion of moDCs, which overall could be translated
to inflammation and also to Th1/Th17-mediated adaptive immune responses. The long-
chain-forming ∆Lc-p75 mutant L. casei, which are less likely to be phagocytized, induced
only moderate DC and T cell responses. Our findings may be useful in the generation of
new probiotic agents.

4. Materials and Methods
4.1. Bacterial Strains and Growth Conditions

L. casei BL23 [40] and its ∆Lc-p75 mutant derivative obtained by the deletion of
the lcabl_02770 gene encoding the Lc-p75 PGH [15] were used in this study. They were
inoculated from frozen glycerol stocks on MRS agar plates and cultivated at 37 ◦C for
48 h to obtain isolated colonies. Single colonies were diluted in MRS broth (BD Difco,
Fisher Scientific, Co., L.L.C., Pittsburgh, PA, USA) and propagated for 16 h at 37 ◦C until
the beginning of the stationary phase. Fluorescent mCherry strains were obtained by
transformation with a plasmid-encoding red fluorescent mCherry protein (pTS-mCherry;
kind gift of Jerry M. Wells, Wageningen University, Wageningen, The Netherlands). The red
fluorescent strains were cultured with 5 µg/mL erythromycin (Merck KGaA, Darmstadt,
Germany) included in the MRS medium to select the plasmid. An optical density (OD) of
1 at 600 nm corresponded to 2.5 × 108 cells per ml for the wild-type L. casei BL23 strain, as
calculated from a dilution series of liquid bacterial culture and colony counting.

To verify that the same OD values for cell suspensions of the long-chain-forming
mutant or wild-type strain corresponded to similar numbers of bacterial cells, bacteria
were cultivated for 16 h, then stained in suspension at OD600nm with 4′,6-diamidino-2-
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phenylindole (DAPI), a fluorescent DNA dye, and the bacteria-associated fluorescence was
measured. We observed that for both strains under study, the OD600nm value was perfectly
correlated with the fluorescence intensity level, and thus with the cell number (Figure S5).

4.2. Extraction of Peptidoglycan

PG was extracted from L. casei strains as described previously [15] with some mod-
ifications. Cells from a 500 mL exponentially growing culture (OD600, 0.3) were chilled
on ice and harvested using centrifugation. Cells were suspended in deionized H2O and
boiled for 10 min. They were then resuspended in 5% (w/v) SDS in 50 mM Tris-HCl
pH 7.0 and boiled for 25 min. The pellet obtained by centrifugation at 20,000× g for 10 min
was resuspended in 4% (w/v) SDS in Tris-HCl buffer and boiled again for 15 min. Cell
walls were recovered using centrifugation at 20,000× g for 10 min and washed six times
with deionized H2O to remove SDS. The cell wall pellet was then successively treated with
Pronase (2 mg/mL) for 90 min at 60 ◦C, with α-amylase (50 µg/mL) for 2 h at 37 ◦C, with
DNase (50 µg/mL) and RNase (50 µg/mL) for 4 h at 37 ◦C, and lipase (50 µg/mL) and
finally by trypsin (200 µg/mL) for 16 h at 37 ◦C. The final pellet was then treated with
2% SDS in Tris-HCl (50 mM pH 7.0.) and washed with deionized H2O. The insoluble pellet
was treated with 48% fluorhydric acid overnight at 4 ◦C to remove wall polysaccharides
(WPS) [41]. After centrifugation, the pellet (containing PG) was washed several times
with 0.25 M Tris-HCl, pH 7.0 and deionized H2O. The final pellet was lyophilized and
stored at −20 ◦C.

4.3. Human Monocyte Separation and Differentiation to Dendritic Cells

Peripheral blood mononuclear cells (PBMCs) were isolated from heparinized leukocyte-
enriched buffy coats by applying a Ficoll-Paque Plus (Amersham Biosciences, Uppsala,
Sweden) density gradient centrifugation. Monocytes were separated from PBMCs with
magnetic cell separation using CD14-specific antibody-coated microbeads, according to the
manufacturer’s instructions (MiltenyiBiotec, Bergisch Gladbach, Germany). After separa-
tion on a VarioMACS magnet, the homogeneity of the isolated CD14+ monocyte fraction
was greater in all experiments than 90–95% as checked by flow cytometry. The autologous
monocyte-depleted PBL fraction was used in the ELISPOT assays as a T cell source.

Isolated monocytes were seeded at 1 × 106/mL concentration in serum-free AIM-V
medium (Thermo Fisher Scientific, Waltham, MA, USA) supplemented with 100 ng/mL
IL-4 (PeproTech EC, London, UK) and 80 ng/mL GM-CSF (Gentaur Molecular Products,
Brussels, Belgium), and were differentiated to moDCs for 5 days. On day 2, half of the
medium was changed and complemented with 100 ng/mL IL-4 and 80 ng/mL GM-CSF.
When indicated, moDCs were preincubated with 15 µM cytochalasin D (CyD, Merck
KGaA) dissolved in dimethyl sulfoxide (DMSO, Serva Electrophoresis GMBH, Heidelberg,
Germany) for 30 min to inhibit the phagocytosis. DMSO was used as a vehicle control.

4.4. Stimulation of moDCs with Bacteria or Their PG Fragments

Bacteria were washed twice with cold PBS and added to the moDCs on day 5 of
in vitro differentiation at a ratio of 1 (moDC):4 (bacteria) for 3 or 24 h. Control cells were
left untreated (IDC).

Purified bacterial PG samples were resuspended in deionized water and sonicated
with Branson Sonifier 450 until they became clear. MoDCs were treated with 10 µg/mL PG
fragments for 24 h.

Each experiment was repeated with at least three independent donors.

4.5. Analysis of the Expression of Cell Surface Markers and Cell Viability of Dendritic Cells by
Flow Cytometry

WT and Lc-p75 mutant Lactobacilli were washed with PBS and added to the five-day
moDCs for 24 h at a ratio of 1:4. In parallel, purified lactobacterial PG fragments were
resuspended in deionized water and sonicated. MoDCs were treated with 10 µg/mL PG
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fragments for 24 h. On day 6, cells were stained with fluorescence-conjugated monoclonal
antibodies: CD83-fluorescein isothiocyanate (FITC), CD80-FITC, CD86-phycoerythrin (PE),
and HLA-DQ-FITC (BioLegend, San Diego, CA, USA) or left unlabeled as a control. Non-
specific antibody binding was inhibited using heat-inactivated mouse serum. The moDC
population was gated according to the forward/side scatter parameters. Fluorescence
intensities were measured using a ACEA NovoCyte 2000R cytometer (Agilent, Santa
Clara, CA, USA); data analyses were performed with the FlowJo vX.0.7 software. Viable
and nonviable cells were dissected using flow cytometry after staining the freshly col-
lected, nonfixed cells with 0.5 µg/mL 7-amino-actinomycin D (7-AAD) (Merck KGaA,
Darmstadt, Germany).

4.6. Cytokine Measurements by Enzyme-Linked Immunosorbent Assays (ELISA)

Supernatants of stimulated moDCs were collected after 24 h, and the concentrations
of IL-1β, IL-6, TNF-α, IL-12p70, IL-10, IL-23, and IL-8 were measured by using BD OptEIA
ELISA kits according to the manufacturer’s instructions (Becton Dickinson, BD Biosciences,
Franklin Lakes, NJ, USA). OD was detected at 450 nm using a SynergyTM HT Multi-
Detection Microplate reader (Bio-Tek Instruments, VT, USA) and KC4 software v3.4.

4.7. ELISPOT Assays

Bacteria-stimulated moDCs were counted, washed with PBS, and cocultured with
autologous PBL at a ratio of 1:20 in serum-free AIM-V medium for 3 days at 37 ◦C in a
5% CO2 atmosphere. On day 4, the cells were collected, counted, and subjected to IFNγ,
IL-17A, and IL-4 Ready Set Go ELISPOT assays according to the manufacturer’s instruc-
tions (eBioscience, San Diego, CA, USA). Briefly, 300,000 cells/well were incubated in
CTL-Test medium (Cellular Technology Limited, Cleveland, OH, USA) for 40–48 h at 37 ◦C
in MultiScreen-HTS PVDF plates (Millipore S.A., Molsheim, France) precoated with capture
antibodies specific for IFNγ, IL-4, or IL-17A. Together with the IL-4- and IL-17A-specific
capture antibodies, 0.5 µg/mL purified antihuman CD3 antibody (BD Biosciences) was
added to the coating buffer for the mitogenic stimulation of CD3+ T cells. The detection
of the cytokine release was performed using biotinylated IFNγ-, IL-4-, or IL-17A-specific
antibodies in the presence of HRP conjugated to avidin. Soon after, the colorigenic sub-
strate, 3-amino-9-ethylcarbazole (AEC Substrate Set, BD Biosciences) was added. The
color development was stopped by tap water, and air-dried plates were analyzed with a
computer-assisted ELISPOT image analyzer (Series 1 ImmunoSpot Analyzer, ImmunoSpot
Version 4.0 Software Academic, Cellular Technology Limited, Shaker Heights, OH, USA).

4.8. Phagocytosis Assay by Flow Cytometry

The moDCs and mCherry-expressing bacteria were coincubated at a ratio of 1:4 for
3 or 24 h at 37 ◦C in a 5% CO2 atmosphere or on ice as a control. After the incubation period,
moDCs were stained with allophycocyanin (APC)-labeled anti-CD1a mAb (BioLegend,
San Diego, CA, USA). Cell analysis was performed with an ACEA NovoCyte 3000 RYB
flow cytometer (Agilent). Data analyses were performed with the FlowJo vX.0.7 software
(Tree Star Inc., Ashland, OR, USA). The moDC population was gated according to the
forward/side scatter parameters by excluding the noninternalized, free bacteria. The
phagocytosis ratio was determined as a percentage of mCherry-positive cells or according
to the median values of mCherry fluorescence intensity (MFI). Similarly, the frequency
of phagocytic cells was determined in the CD1a-positive and the CD1a-negative moDC
subpopulations as a percentage of mCherry-positive cells.

4.9. Confocal Microscopy

A Zeiss LSM 880 confocal laser scanning microscope (Carl Zeiss, Oberkochen, Ger-
many) equipped with 40×x water-immersion objective (NA 1.2) was used to image the
phagocytosis of L. casei cells by moDCs after 24 h. For the excitation of DAPI, a 405 nm
diode laser was used; for FITC, the 488 nm line of an Argon ion laser was used; for mCherry,
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a 543 nm He-Ne laser was used; and for APC, a 633 nm He-Ne laser was applied. Fluores-
cence emissions of DAPI and FITC were detected in the wavelength ranges of 410–485 and
490–610 nm, respectively, while the detection of mCherry was performed with a 575–695 nm
bandpass filter. For the detection of APC, a 640–745 nm bandpass filter was used. Z-stack
images were collected at 1 µm intervals from the bottom to the top of the cells.

4.10. Statistical Analysis

Analyses were performed using Microsoft Excel and GraphPad Prism v8.0 (GraphPad
Software Inc., San Diego, CA, USA). Comparison between two groups was performed
using a paired, two-tailed Student’s t-test. One-way ANOVA followed by Tukey’s post
hoc test was used for the comparisons of more than 2 groups. Two-way ANOVA followed
by Tukey’s post hoc test was applied for the comparisons of two independent variables.
The results are shown as mean ± standard deviation (SD). Differences were considered to
be statistically significant at p < 0.05. Significance was indicated as * p < 0.05, ** p < 0.01,
*** p < 0.001, and **** p < 0.0001; or as # p < 0.05, ## p < 0.01, ### p < 0.001, or #### p < 0.0001.
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