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Abstract
Background: We previously identified the glucose transporter Glut-1, a member of the
multimembrane-spanning facilitative nutrient transporter family, as a receptor for both HTLV-1 and
HTLV-2. However, a recent report concluded that Glut-1 cannot serve as a receptor for HTLV-1
on CD4 T cells: This was based mainly on their inability to detect Glut-1 on this lymphocyte subset
using the commercial antibody mAb1418. It was therefore of significant interest to thoroughly
assess Glut-1 expression on CD4 and CD8 T cells, and its association with HTLV-1 and -2 envelope
binding.

Results: As previously reported, ectopic expression of Glut-1 but not Glut-3 resulted in
significantly augmented binding of tagged proteins harboring the receptor binding domains of either
HTLV-1 or HTLV-2 envelope glycoproteins (H1RBD or H2RBD). Using antibodies raised against the
carboxy-terminal peptide of Glut-1, we found that Glut-1 expression was significantly increased in
both CD4 and CD8 cells following TCR stimulation. Corresponding increases in the binding of
H1RBD as well as H2RBD, not detected on quiescent T cells, were observed following TCR
engagement. Furthermore, increased Glut-1 expression was accompanied by a massive
augmentation in glucose uptake in TCR-stimulated CD4 and CD8 lymphocytes. Finally, we
determined that the apparent contradictory results obtained by Takenouchi et al were due to their
monitoring of Glut-1 with a mAb that does not bind cells expressing endogenous Glut-1, including
human erythrocytes that harbor 300,000 copies per cell.

Conclusion: Transfection of Glut-1 directly correlates with the capacities of HTLV-1 and HTLV-
2 envelope-derived ligands to bind cells. Moreover, Glut-1 is induced by TCR engagement, resulting
in massive increases in glucose uptake and binding of HTLV-1 and -2 envelopes to both CD4 and
CD8 T lymphocytes. Therefore, Glut-1 is a primary binding receptor for HTLV-1 and HTLV-2
envelopes on activated CD4 as well as CD8 lymphocytes.
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Background
We identified the ubiquitous glucose transporter Glut-1 as
a receptor for deltaretrovirus HTLV-1 and HTLV-2 enve-
lopes (Env), mediating viral binding and entry [1]. We
further identified Glut-1 extracellular loop 6 (ECL6) as the
primary binding site for both HTLV-1 and 2 receptor bind-
ing domains (RBD) [2]. The identity of the HTLV Env
receptor remained elusive for approximately two decades
and the search was hindered by the fact that HTLV entry
can take place in all established vertebrate cell lines and
generally produces a rampant syncytial effect. This long
search has been the source of numerous speculations as to
the nature of the receptor, including the possibility that a
dedicated cellular receptor may not be required for HTLV
infection or that many different receptors can be used by
HTLV [3]. The elucidation of the modular organization of
the HTLV Env is based on that of a gammaretrovirus Env
[4]: The identification and generation of tagged fusion
proteins that comprise the RBD of the HTLV-1 and -2 Env,
in the absence of the carboxy terminal domain [4,5], were
essential to our finding that Glut-1 is a receptor for HTLV
Env.

Biochemical studies assessing cell surface Glut-1 have
been hampered by the lack of antibodies recognizing
extracellular determinants of this transporter. This diffi-
culty was in large part due to the high degree of homology
between the Glut-1 extracellular domains of diverse mam-
malian species and indeed, studies aimed at generating
antibodies to all domains of Glut-1 concluded that the
extracellular loops are non-antigenic [6,7]. Notably, this
high conservation of Glut-1 is likely responsible for the
ability of HTLV-1 to infect all tested vertebrate cell lines.
Recently though, a monoclonal antibody promoted as
recognizing an extracellular domain of Glut-1, thereby
allowing detection of surface Glut-1, has been made com-
mercially available (RnD systems, mAb1418). Using this
antibody, Takenouchi et al. did not detect binding on qui-
escent or activated CD4 T lymphocytes, a major reservoir
of HTLV in vivo, leading these authors to question the role
of Glut-1 as primary binding receptor for HTLV [8].

Numerous biochemical and cell biology experiments
from our laboratory and others strongly support the role
of Glut-1 as a receptor for both HTLV-1 and HTLV-2
[1,2,5,9-12]. It was therefore of significant interest to reas-
sess Glut-1 expression on quiescent and activated CD4 as
well as CD8 T cells as well as to analyze the relevance of
the mAb1418 with regards to detection of Glut-1 expres-
sion.

Results and discussion
Binding of Glut-1 antibodies and HRBD-derived ligands to 
293T cells transfected with Glut-1 and Glut-3 glucose 
transporters
Takenouchi and colleagues used the commercially availa-
ble antibody mAb1418 to conclude that Glut-1 was not
expressed at the cell surface of CD4 T cells [8]. In order to
assess the specificity of this antibody, we first determined
its binding to cells transfected with either Glut-1 or Glut-
3. Glut-3 is the closest isoform of Glut-1 and has similar
glucose transport kinetics [13,14]. Flow cytometry analy-
ses of Glut-1-transfected 293T cells stained with mAb1418
revealed a high level binding that was not detected follow-
ing transfection with Glut-3 (Fig. 1A). However, no stain-
ing of endogenous Glut-1 was observed on these cells.
This was concerning as the vast majority of transformed
cell lines have been reported to express Glut-1. We there-
fore next assessed intracellular binding of mAb1418 fol-
lowing permeabilization but did not detect any significant
changes as compared to the extracellular binding profile.
This was also concerning as two populations of positive-
binding cells were detected after Glut-1 transfection while
no binding was detected on the initial population.

As mentioned above, even though antibodies directed
against Glut-1 extracellular epitopes are problematic to
obtain, polyclonal and monoclonal antibodies directed
against the intracellular carboxy terminus tail (C-term)
have been reported by several teams [6,15-18]. Indeed,
using this type of intracellular polyclonal antibody
directed against the C-term domain of Glut-1, we detected
the expected baseline expression of endogenous Glut-1 in
293T cells. Moreover, an increase in Glut-1 staining was
revealed following Glut-1 transfection (Fig. 1A). As 293T
cells are known to express Glut-1 (see below), these data
indicate that either the level of endogenous Glut-1 was
below the level of detection necessary for mAb1418 stain-
ing or alternatively, mAb1418 does not recognize endog-
enous Glut-1 on these cells.

Notably, the ability of HTLV-1 and HTLV-2 derived RBDs
to bind to parental and transfected 293T cells correlated
with the data obtained using the C-term Glut-1 antibody.
As we expected from previous studies, extracellular bind-
ing of rFc-fusion proteins encoding either H1RBD or H2RBD
was significantly augmented in cells transfected with Glut-
1 but not Glut-3 (Fig. 1B). Additionally, an H2RBD-EGFP
fusion protein, that was concentrated to promote maxi-
mal binding, showed a similar profile (Fig. 1B).

These results contrast with those reported by Takenouchi
et al., who did not detect increased binding to Glut-1-
transfected COS-7 cells when the entire HTLV-1 SU was
used as a ligand [8]. Significantly though, these latter
binding studies were performed on ice, and in our hands,
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neither H1RBD nor H2RBD bind to Glut-1-expressing cells
under those conditions (data not shown). Rather, in
absence of fixation, binding of the HTLV RBDs requires
incubation at physiological conditions, namely 37°C.

To determine whether the absence of detectable intracel-
lular or extracellular binding of mAb1418 to 293T cells
was related to potentially low Glut-1 levels, we compared
binding to a cell line expressing similar levels of this trans-
porter, the Jurkat leukemic T cell line, and a cell type
expressing significantly higher Glut-1 levels, human
erythrocytes. The latter cells express the highest known
levels of Glut-1 with 300,000 copies per cell; accounting
for 10% of the total protein membrane mass [15,19]. In
this context, it was therefore most remarkable that no
detectable extracellular or intracellular staining was
observed with mAb1418 on either Jurkat leukemia cells or
human erythrocytes (Fig. 2A). In contrast, intracellular
Glut-1 expression was detected in both 293T and Jurkat
cells using the C-term Glut-1 antibody (erythrocytes can-
not be analyzed by flow cytometry following permeabili-
zation but were further assessed by immunoblotting as
described below).

In contrast to a lack of extracellular or intracellular stain-
ing by mAb1418, both H1RBD and H2RBD interacted with
extracellular Glut-1 resulting in significantly higher mean
fluorescence intensity bindings to human erythrocytes as
compared to either the 293T or Jurkat cell lines (Fig. 2A).
Moreover, the level of H1RBD and H2RBD binding, but not
that of mAb1418 staining, correlated directly with the
total cellular levels of Glut-1 as detected by immunoblot
(Fig. 2B). It should be noted that changes in the mobility
of Glut-1 and the appearance of a smear in erythrocytes
are well known and have been shown to be due in part to
post-translational N-glycosylation modifications [15].
Indeed, treatment of cells with tunicamycin, a drug that
inhibits N-linked glycosylation, or trimming of N-linked
glycans with N-glycosidase F increases the electrophoretic
mobility of Glut-1 [18].

These data lead to the question as to how the mAb1418
antibody was selected as being "specific" to Glut-1.
According to the manufacturer's indications, this anti-
body was generated by immunization of mice with a
murine cell line transfected with human Glut-1. The crite-
rion for hybridoma selection was based on the ability to
bind the transfected cell line and not the parental cell line.
Thus, the capacity of this antibody to recognize endog-
enous Glut-1 was not specifically the basis for selection.
The ensemble of the data presented here strongly indi-
cates that mAb1418 does not detect endogenous Glut-1
but rather interacts with a cell surface protein that is asso-
ciated with Glut-1 overexpression in transformed cell
lines.

Antibody and HRBD binding following transfection of the Glut-1 and Glut-3 glucose transportersFigure 1
Antibody and HRBD binding following transfection of 
the Glut-1 and Glut-3 glucose transporters. (A) 293T 
cells were transfected with Glut-1 or Glut-3 expression vec-
tors and assayed for binding to the mAb1418 and C-term 
anti-Glut-1 polyclonal Ab. The former stainings were per-
formed on whole cells as well as permeabilized cells to deter-
mine cell surface and total binding, respectively. All stainings 
using the anti-Glut-1 pAb were performed on permeabilized 
cells as the recognized epitope is intracellular. Staining was 
performed at 4°C. Specific binding and background fluores-
cence due to the secondary conjugated Ab are indicated in 
solid line and filled histograms, respectively. (B) Control and 
transfected 293T cells were incubated with rFc-tagged H1RBD 
and H2RBD fusion proteins for 30 min at 37°C followed by 
incubation with a FITC-conjugated αrabbit-Fc antibody at 
4°C. Direct binding to H2RBD was demonstrated by incuba-
tion of cells with an EGFP-tagged envelope (H2RBD-EGFP). 
Binding is shown in solid line histograms whereas control 
immunofluorescence is shown in filled histograms.
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TCR-induced expression of Glut-1 on both CD4+ and 
CD8+ T cells results in H1RBD/H2RBD binding and glucose 
uptake
The premise of Takenouchi et al. that Glut-1 cannot serve
as a primary binding receptor for HTLV on CD4 T lym-
phocytes was based largely on their supposition that the
Glut-1 transporter is not expressed on this lymphocyte
subset [8]. Indeed, using mAb1418, the antibody which
served as the basis for their conclusions, we also did not
detect any staining of either quiescent or TCR-activated
CD4 T cells. We also observed significant mAb1418 stain-
ing of quiescent CD8 T cells (Fig. 3A). In the experiments
reported here, staining of CD8 lymphocytes decreased sig-
nificantly following TCR engagement (Fig. 3A) whereas
Takenouchi et al. observed stable mAb1418 staining after
their ex vivo stimulation protocol. In the previous studies,
activations were performed using phytohemagglutinin
(PHA) alone, and it is likely that at 48 h post-stimulation,
the time point at which analyses were performed, the vast
majority of lymphocytes were not in a fully active state. In
a representative experiment where we compared PHA acti-
vation with the anti-CD3/CD28 antibody stimulation
used here, the percentages of cells that had entered into
cycle (G1b/S/G2/M) were 16% and 81%, respectively
(data not shown). Thus, mAb1418 staining is significantly
decreased following optimal TCR stimulation of CD8 T
lymphocytes.

These data are in complete contradiction with the long-
standing notions that; 1) quiescent T cells demonstrate
very low glucose transport and 2) the energy demands of
an activated T cell are met by an increase in glucose trans-
port as well as metabolism [20-23]. The main functional
glucose transporter isoform on CD4 as well as CD8 T lym-
phocytes has been reported to be Glut-1. In fact, a large
body of work by several laboratories has established that
Glut-1 is expressed at low levels on quiescent T cells but is
induced upon T cell receptor activation as well as cytokine
stimulation [9,16,24-29]. Moreover, in the absence of
stimulation or transformation, surface Glut-1 is not
detected on T cells of naïve, memory or effector pheno-
types [9,16].

To further assess Glut-1 expression on quiescent and acti-
vated T cell subsets, we used the intracellular C-term anti-
Glut-1 polyclonal antibody raised against a peptide
encoding the 13 C-terminal amino acids. As expected
from the literature cited above, Glut-1 expression was sig-
nificantly increased in both CD4 and CD8 T cells follow-
ing TCR stimulation (Fig. 3A), a time at which these cells
had become blast-like and expressed activation markers
such as CD25 and CD69 (data not shown). In parallel,
binding of H1RBD as well as H2RBD, not detected on quies-
cent T cells, was clearly augmented following TCR stimu-
lation. These data are in contradiction with that of Jones

Endogenous Glut-1 expression in diverse cell types is not reflected by mAb1418 reactivity but correlates with binding of the HTLV-1 and HTLV-2 Env RBDsFigure 2
Endogenous Glut-1 expression in diverse cell types is 
not reflected by mAb1418 reactivity but correlates 
with binding of the HTLV-1 and HTLV-2 Env RBDs. 
(A) 293T, Jurkat and primary human erythrocytes were 
stained with mAb1418 and control binding with the second-
ary FITC-conjugated antibody is shown in all histograms 
(filled). Intracellular Glut-1 levels in permeabilized 293T and 
Jurkat cells were monitored with mAb1418 as well as the C-
term polyclonal Glut-1 antibody. Expression of the HTLV-1 
and HTLV-2 receptor was monitored by incubation of cells 
for 30 min at 37°C with the rFc-tagged H1RBD and H2RBD 
fusion proteins as well as the H2RBD-EGFP fusion protein. 
Binding is shown in solid line histograms whereas control 
immunofluorescence is shown in filled histograms. (B) Total 
Glut-1 protein levels in cell extracts from 293T, Jurkat and 
human erythrocytes were monitored by immunoblotting 
with an anti-C-term Glut-1 antibody.
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TCR stimulation results in Glut-1 expression and concomitant glucose uptake in CD4 and CD8 lymphocytes: Induction of H1RBD and H2RBD bindingFigure 3
TCR stimulation results in Glut-1 expression and concomitant glucose uptake in CD4 and CD8 lymphocytes: 
Induction of H1RBD and H2RBD binding. CD4+ and CD8+ T lymphocytes were isolated by negative selection and stimu-
lated via the TCR using αCD3/αCD28 mAbs. (A) Non-activated and TCR-activated T cells were used for binding assays with 
mAb1418 followed by incubation with a FITC-conjugated αmouse IgG. Intracellular Glut-1 levels were monitored in permeabi-
lized cells using the C-term Glut-1 polyclonal antibody followed by incubation with a FITC-conjugated sheep αrabbit IgG anti-
body. Filled histograms depict binding in the presence of the secondary FITC-conjugated antibody alone. Expression of the 
HTLV-1 Env receptor was detected by a 30 min incubation of the non-activated and TCR-activated cells with rabbit rFc-tagged 
H1RBD fusion protein at 37°C and binding was revealed by a 20 min incubation at 4°C with a FITC-conjugated sheep αrabbit 
IgG antibody. Binding to the H2RBD domain fused directly to EGFP (H2RBD-EGFP) was detected following a 30 min incubation at 
37°C. (B) Glucose uptake was assayed by incubating non-activated and TCR-activated CD4 and CD8 T cells (1 × 106) with 2-
deoxy-D [1-3H]glucose (2 µCi) for 45 min at 37°C. Uptake for each cell population is expressed as mean counts per minute 
(CPM) for triplicate samples, error bars indicate SD.
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and colleagues who do not detect binding of the HTLV-2
SU to activated CD4 T cells [30], but several technical dif-
ferences in the receptor binding assays are likely to explain
this discrepancy. Indeed, we use isolated RBDs, in the
absence of the adjacent Env SU domains that may alter
primary receptor binding. Also, our RBDs are produced as
soluble secreted proteins, whereas Jones et al. use entire
SU immunoadhesins prepared from sonicated whole cell
extracts which are likely to contain heterogeneous post-
translationally modified proteins. Furthermore, we per-
formed RBD binding assays at 37°C as neither binding of
H1RBD nor H2RBD is detected at 4°C (data not shown).
Notably, this is also the case for many RBDs from gamma-
retroviruses, including amphotropic, xenotropic, and
FeLV-C (our unpublished observations). Using the SU
immunoadhesins, Jones et al. perform their HTLV enve-
lope binding assays at 4°C on fixed cells.

Staining with the anti-Glut-1 polyclonal antibody
revealed low binding to permeabilized quiescent CD4
and CD8 T cells while no detectable surface staining was
observed on either quiescent cell types when using HRBD
ligands. This difference may be due to cell permeabiliza-
tion prior to antibody staining, resulting in the recogni-
tion of a small intracellular pool of Glut-1 that is not
present at the cell surface. In support of the latter hypoth-
esis, Baldwin and colleagues have elegantly shown that
cytokines and other growth signals induce the transloca-
tion of cytoplasmic Glut-1 to the cell surface in several dif-
ferent cell models [31-33]. In this context, it is interesting
to note that stable expression of GFP-tagged Glut-1 results
in its accumulation in intravesicular pools, whereas Glut-
3 appears almost exclusively expressed at the cell surface
(data not shown).

The expected primary physiological consequence of cell
surface Glut-1 expression is glucose transport. It was
therefore of interest to assess glucose uptake on quiescent
and activated CD4+ and CD8+ lymphocyte subsets. Glu-
cose uptake, as measured by the ability of cells to uptake
nonhydrolyzable 2-deoxy-D [1-3H]glucose, was at the
limits of detection in both quiescent CD4 and CD8 T cells
and increased by >20-fold in both subsets following stim-
ulation (Fig. 3B). Notably, the increase in glucose uptake
was equivalent in the CD4 and CD8 populations, demon-
strating yet again that only activated lymphocytes express
high surface levels of a glucose transporter. These results
are in total agreement with other studies assessing glucose
transporter expression in T lymphocytes [10,16,24,25].
Although it is not clear what cell surface protein is recog-
nized by mAb1418 on quiescent CD8 T cells, these results
indicate that the cognate antigen of mAb1418 is not a
member of the glucose transporter family.

To further assess whether surface Glut-1 on activated CD4
T cells and a transformed CD4+ T cell line, Jurkat, was
responsible for glucose uptake in these cells, lymphocytes
were first treated with cytochalasin B (CytB). This mole-
cule inhibits Glut-1 function by directly binding to its
sugar export site [34,35]. In the presence of CytB, H2RBD-
EGFP binding was significantly decreased, strongly sug-
gesting that CytB binding to Glut-1 directly inhibits bind-
ing of the HTLV envelope. This effect was specifically due
to the action of CytB on Glut-1 and not to an indirect cyto-
chalasin effect on microfilaments: Treatment of Jurkat
cells with the related cytochalasin D (CytD) molecule,
which is not a Glut-1 ligand, did not alter H2RBD-EGFP
binding (Fig. 4A). Moreover, CytB, but not CytD, inhib-
ited glucose uptake by CD4+ Jurkat cells as well as primary
activated CD4 T cells by greater than 90% (Figs. 4B and
4C). Altogether, the data reported here show that surface
Glut-1 as well as subsequent transporter function is upreg-
ulated on both CD4 and CD8 T cells that have been stim-
ulated via the TCR.

Conclusion
Induction of surface Glut-1, both upon exogenous trans-
fection and stimulation of the endogenous protein,
directly correlates with the capacities of HTLV-1 and
HTLV-2 envelope-derived ligands to bind cells. We have
previously reported a physical interaction between HTLV-
1 and HTLV-2 RBDs and Glut-1 and mapped the primary
binding site to ECL6 [2]. Moreover, down-modulation of
endogenous Glut-1 by siRNAs resulted in a significant
reduction in HTLV-1 and HTLV-2 Env binding as well as
Env-mediated infection [1]. In theses systems, as well as in
recently published studies by others, Glut-1 was found to
serve as cell surface receptor for both HTLV-1 and -2 infec-
tion [1,2,10-12].

Retroviral entry has been extensively shown to depend on
several steps. These include initial receptor binding
ensured by RBD-harboring amino terminal domains of
the SU, followed by subsequent conformational changes
and Env-receptor complex remodeling that leads to the
unmasking of the TM fusion peptide and membrane
fusion, either at the cell surface or after endocytosis and
acidification of endocytic vesicles. Using Glut-1 and Glut-
3 chimeric molecules, we have previously shown that
while the Glut-1 ECL6 was sufficient to confer HTLV Env
binding to Glut-3, ECL1 and 5 were required for HTLV-
Env-mediated infection [2]. Therefore, successful post-
binding events involving HTLV Env regions located out-
side of HRBD in conjunction with Glut-1 ECL1 and 5 are
likely to depend on other co-factors. In this regard, it is
interesting to note that neuropilin-1 and HSC70 have
been shown to interact with the SU region located imme-
diately downstream of HRBD [12,36]. Heparan sulfates,
which modulate the attachment of numerous viruses
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[3,37], are also likely to influence the surface environment
conditioning HTLV entry following Env-Glut-1 interac-
tions [38].

Therefore, it will be essential to more precisely define the
cell surface environment in which Glut-1 is expressed in
distinct cell types in order to determine the parameters
that condition HTLV envelope binding and subsequent
infection. Identification of cellular factors that modulate
the localization of Glut-1 as well as its cell surface mem-
brane microenvironment are likely to shed new insights
into our global understanding of HTLV in vivo tropism
and associated physiopathologies.

Methods
Cell transfections
293T cells were transfected with the Glut-1 and Glut-3
expression vectors using the calcium phosphate method.
Human Glut-1 and Glut-3 cDNAs were amplified by PCR
from the pLib HeLa cDNA library (Clontech), and
inserted into pCHIX, a modified version of the pCSI vec-
tor that includes a C-terminal factor Xa cleavage site, and
the hemagglutinin (HA) and histidine tags [1]. After an
overnight transfection, cells were washed in phosphate-
buffered saline (PBS), fresh medium was added and cells
were cultured for an additional 24 h.

T cell isolation and culture
To avoid artifactual stimulation, CD4+ and CD8+ T cells
were each purified by negative selection using tetrameric
complexes in which one antibody recognizes a surface
antigen on B cells, monocytes, NK cells or CD8+ vs CD4+
cells, respectively, and the other recognizes glycophorin A
on the surface of red blood cells (RosetteSep, StemSep
Technologies, Vancouver, Canada). The non-purified cells
were then pelleted upon ficoll-hypaque separation. The
purity of the selected cells was monitored after each isola-
tion on a FACSCalibur (BD Pharmingen, San Jose, CA,
USA) following staining with FITC-conjugated αCD3 and
phycoerythrin-conjugated αCD4 mAbs or -αCD8 mAbs
(Beckman Coulter, Marseille, France). The purity of the
selected cells was > 90%.

Lymphocytes were cultured in RPMI 1640 medium sup-
plemented with 10% fetal calf serum (FCS, BioWest,
France), penicillin and streptomycin. Cells were stimu-
lated with immobilized αCD3 (UCHT-1) and
αCD28mAbs (1 µg/ml) for two to four days.

Generation of HTLV-1 and HTLV-2 RBD fusion proteins
The H1215SU and H2178SU subdomains, corresponding to
the HTLV-1 and -2 SU amino terminus were generated by
PCR and subcloned into the pCSI expression vector as
fusion proteins harboring a carboxy terminal rFc tag [5],
and are herein referred to as H1RBD and H2RBD, respec-

Glucose uptake in CD4+ T cells is abrogated by the cytocha-lasin B Glut-1 inhibitorFigure 4
Glucose uptake in CD4+ T cells is abrogated by the 
cytochalasin B Glut-1 inhibitor. (A) H2RBD-EGFP binding 
to Jurkat T cells was assessed following incubation in the 
absence or presence of the Glut-1 inhibitor cytochalasin B 
(CytB,100 µM) or the related cytochalasin D (CytD, 100 µM) 
molecule for 30 min. Filled and solid line histograms depict 
control and H2RBD-EGFP binding, respectively. (B) Glucose 
uptake was assayed by incubation of control, cytochalasin B-, 
and cytochalasin D-treated Jurkat cells in the presence of 2-
deoxy-D [1-3H]glucose (5 µM) for 10 min at room tempera-
ture. (C) Glucose uptake in quiescent CD4 T cells, CD3/
CD28-activated CD4 T cells and cytochalasin B-treated 
CD3/CD28-activated CD4 T cells was assessed as described 
in the legend of figure 3. Uptake for each condition is 
expressed as mean counts per minute (CPM) for triplicate 
samples, error bars indicate SD.
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tively. Additionally, the amino terminal 178 amino acids
of the HTLV-2 RBD was fused to the EGFP coding
sequence (from pEGFP-N3, Clontech) lacking the ATG
initiation codon by PCR amplification in the pCSI expres-
sion vector and is herein referred to as H2RBD-EGFP. 293T
cells were transfected with the indicated vector using a cal-
cium-phosphate-Hepes buffered saline (HBS) transfec-
tion protocol. Transfection medium was replaced with
fresh culture medium twenty hours post-transfection.
Forty-eight hours post-transfection cell culture medium
(supernatant) was recovered and filtered through a 0.45
µm pore-size membrane to remove cell debris. H2RBD-
EGFP supernatants were concentrated 50–100-fold by fil-
tration at 4°C on an iCON Concentrator 20 K (Pierce,
Rockford, IL, USA). Supernatants were stored at -20°C
until further use.

Flow cytometry
Staining with the mAb1418 (RnD Systems) was per-
formed by incubating 1 × 105 cells for 20 min on ice at
1:25 to 1:100 antibody dilutions followed by staining
with a FITC-conjugated goat anti mouse IgG (Sigma) at a
1:100 dilution. Background fluorescence was measured
following staining with the secondary antibody alone.
Staining with the anti-carboxy terminal Glut-1 polyclonal
antibody (generously provided by A. Carruthers) was per-
formed following intracellular staining by fixation
(Cytofix Cytoperm solution, BD Pharmingen) and perme-
abilization (PhosFlow Perm III, BD Pharmingen). The sec-
ondary antibody was a FITC-conjugated goat anti-rabbit
IgG (Sigma). For HRBD stainings, 1–5 × 105 cells were incu-
bated at 37°C for 30 min with 100–500 µls of either undi-
luted HRBD-rFc supernatants or a 1:25–1:50 dilution of the
concentrated H2RBD-EGFP ligand. Cells were then washed
with PBA (2% FCS and 0.01% sodium azide), and for
H1RBD and H2RBD stainings, cells were incubated with a
FITC-conjugated sheep anti-rabbit Fc antibody (1:500
dilution; Sigma) for 20 min on ice. Cells were analysed on
a FACSCalibur flow cytometer (Becton Dickinson). Data
analyses were performed using CellQuest Pro (Becton
Dickinson) or FlowJo (TreeStar) software.

Immunoblotting
Non-boiled lysates from 293T, Jurkat, and human eryth-
rocytes were electrophoresed in SDS-10% acrylamide gels,
transferred and probed with the anticarboxy terminal
Glut-1 antibody (1:10,000) followed by a peroxidase-con-
jugated anti-rabbit immunoglobulin antiserum. Proteins
were visualized using the ECLplus kit (Amersham).

Glucose uptake
5 × 105 CD4+ or CD8+ T cells were incubated at 37°C in
serum-free RPMI for 30 min, then washed and incubated
for an additional 30 min in serum/glucose-free RPMI.
Uptake was initiated by adding labeled 2-deoxy-D [1-

3H]glucose (Amersham Biosciences; 2 µCi/ml) to an unla-
belled deoxy-glucose concentration of 0.1 mM and incu-
bating cells for 45 min at 37°C. Alternatively, glucose
uptake was performed in a 50 µl volume in the presence
of 5 µM 2-deoxy-D [1-3H]glucose (2 µCi) for 10 min at
RT. Cells were then washed in cold serum/glucose-free
RPMI, and solubilized in 0.1% SDS. Radioactivity was
measured by liquid scintillation and statistical analyses
were performed using Student's t test.
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