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As the life expectancy continues to increase, the cognitive decline associated with Alzheimer’s disease (AD) becomes a big major
issue in the world. After cellular activation upon systemic inflammation, microglia, the resident immune cells in the brain, start to
release proinflammatory mediators to trigger neuroinflammation. We have found that chronic systemic inflammatory challenges
induce differential age-dependent microglial responses, which are in line with the impairment of learning and memory, even in
middle-aged animals. We thus raise the concept of “microglia aging.” This concept is based on the fact that microglia are the
key contributor to the acceleration of cognitive decline, which is the major sign of brain aging. On the other hand, inflammation
induces oxidative stress and DNA damage, which leads to the overproduction of reactive oxygen species by the numerous types of
cells, including macrophages and microglia. Oxidative stress-damaged cells successively produce larger amounts of inflammatory
mediators to promote microglia aging. Nutrients are necessary for maintaining general health, including the health of brain. The
intake of antioxidant nutrients reduces both systemic inflammation and neuroinflammation and thus reduces cognitive decline
during aging. We herein review our microglia aging concept and discuss systemic inflammation and microglia aging. We propose
that a nutritional approach to controlling microglia aging will open a new window for healthy brain aging.

1. Introduction

The cognitive decline associated with aging and Alzheimer’s
disease (AD) will be a major issue in aging societies around
the world as the life expectancy continues to increase.
A better understanding of the factors that accelerate this
cognitive decline will help in the development of strategies
for preventing or delaying this cognitive decline. Microglia,
the resident mononuclear phagocytes in the brain, are chron-
ically or pathologically activated to influence the neuronal
environment. There is increasing evidence that activated
microglia produce excessive reactive oxygen species (ROS)
during aging [1] and hypoxia [2–6], resulting in the nuclear
factor-𝜅B- (NF-𝜅B-) dependent excessive production of
proinflammatory mediators, including interleukin-1𝛽 (IL-
1𝛽), tumor necrosis factor-𝛼 (TNF-𝛼), and interleukin-6 (IL-
6) [7–11]. Furthermore, activated microglia-mediated neu-
roinflammation is closely associated with the pathogenesis
of AD pathogenesis [12], because activated microglia trigger

neuroinflammation to promote neuronal damage and the
deposition of amyloid 𝛽 (A𝛽) [13, 14]. Moreover, anti-
inflammatory agents improve the cognitive functions of AD
patients [15, 16].

It is well accepted that chronic systemic inflammation can
alter the neuroinflammation in the brain [17, 18]. In addition
to being associated with systemic diseases such as atheroscle-
rosis and diabetes, rheumatoid arthritis (RA), periodontitis,
and inflammatory bowel disease (IBD) also directly initiate
or hasten the progression of AD [19]. A clinical study has
demonstrated the impact of RA and periodontitis on AD
[20], and recent experimental studies have clarified the routes
of inflammatory signal transduction from chronic systemic
inflammation to the brain [17, 18, 20].

We have recently found that natural products, such as
propolis, inhibit the hypoxia-induced production of proin-
flammatory mediators by microglia through the inhibition
ofmitochondria-derived ROS generation and the subsequent
activation of the NF-𝜅B signaling pathway. Furthermore, we
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have found that RNSP, a traditional Tibetan medicine which
is composed of 70 herbal components, improves the cognitive
function in middle-to-moderate AD patients living at high
altitude by reducing the levels of proinflammatory mediators
and the deposition of A𝛽 [21]. In the present review, we will
highlight our proposed concept of microglia aging, which
refers to the fact that microglia are the potent accelerators
of brain aging due to their induction of cognitive decline.
We will also discuss the benefits of nutrients in preventing
microglia aging and cognitive decline.

2. The Risk of Systemic Inflammatory
Diseases for AD

RA is a chronic inflammatory bone disorder, which causes
joint damage. A postmortem survey found that the preva-
lence of AD was reduced in RA patients who were long-
term users of nonsteroidal anti-inflammatory agents [22–25].
More recently, patients with midlife RA were confirmed to
have an increased risk of cognitive impairment, over a 21-
year follow-up study, in several case-control andhospital- and
register-based studies that were performed to examine the
association between RA/arthritis and dementia/AD [26].

Periodontitis is a chronic inflammatory disorder in the
periodontal tissues.There is growing clinical evidence to sup-
port a close link between periodontitis and the development
and progression of AD [27, 28]. More recently, the three
major periodontal bacteria, “Red complex,” including Tre-
ponema denticola, Tannerella forsythia, and Porphyromonas
gingivalis, and their components have been detected in the
brain of AD patients [29, 30]. More details have been
reviewed by us recently [20].

IBD is a chronic inflammatory disorder in the gut.The gut
bacteria are important for inducing systemic inflammation,
and LPS is a potentially associated mediator which migrates
into the intestinal capillaries [31]. Indeed, elevated LPS
concentrations can be found in the plasma of AD patients
[32–34], which supports a possible role of LPS in the pro-
motion of neuroinflammation, and the triggering cognitive
decline [35–37]. Furthermore, the chronically inflamed gut
generates systemic proinflammatory cytokines to promote
neuroinflammation, which causes cognitive decline [38, 39].

3. Oxidative Damage in Systemic
Inflammatory Diseases and AD

3.1. Oxidative Damage in the Chronic Inflammatory Disorders.
ROS contribute to the progression of chronic inflammatory
bone disorders, including RA and periodontitis. The inflam-
matory cell-mediated overproduction of TNF-𝛼 is thought to
be the main contributor to the increased release of ROS in
RA patients [40], because TNF-𝛼 not only causes cell damage
but also inhibits antioxidants, such as superoxide dismutase 1
(SOD1) and SOD3 [41, 42]. Numerous studies have indicated
excess ROS levels and the depletion of antioxidant levels
in the gingival crevicular fluid [43, 44]. There is further
evidence of higher levels of lipid peroxidation, hydrogen
peroxides, and oxidative DNA damage in animal models of

periodontitis [45]. Indeed, periodontitis is associated with
systemic oxidative stress and a reduced global antioxidant
capacity, which suggests that oxidative stress in patients
with periodontitis could be closely linked to the biomarker
of inflammation, including C-reactive protein [46]. It is
considered that ROS are involved in the chronic inflam-
matory bone disorders by regulating osteoblasts and osteo-
clasts [47], because the increasedmitochondria-derived ROS,
especially H

2
O
2
, reduces the differentiation and maturation

of osteoblasts by inhibiting type 1 collagen and alkaline
phosphatase, colony-forming unit-osteoprogenitor forma-
tion, and Runt-related transcription factor 2 activation [48,
49]. On the other hand, the increased ROS enhance the
osteoclast numbers and resorption by stimulating receptor
activator of NF-𝜅B ligand and TNF-𝛼 expression through
extracellular-signal-regulated kinase and NF-𝜅B activation
[50].

ROS are increased in the colonic mucosa of patients
with the alterations in the mucosal antioxidant defenses in
IBD patients [51, 52], because the body’s major antioxidant,
glutathione, is depleted but its oxidized form, glutathione
disulfide, is increased in individuals with active IBD [53, 54].
The imbalance caused by the increase of ROS production
and the decrease of antioxidant capacity-induced oxidative
stress is considered to be themajor pathogenic mechanism of
IBD [55, 56]. Excessive levels of ROS result in damage to the
cytoskeleton protein, including the temporal disruption of
the barrier integrity and increasing gut permeability [57, 58].
Therefore, ROS promote oxidative damage, modulate the
intra- and extracellular redox status, and interfere with the
activation of proteolytic enzymes in the systemic inflamma-
tory environment.

3.2. Oxidative Damage in AD. Oxidative stress is considered
to be the main cause of AD. In microglia, mitochondrial
dysfunction leads to the excess production of ROS, which
promotes the redox imbalance and stimulates proinflamma-
tory gene transcription and the release of cytokines, such
as IL-1, IL-6, and TNF-𝛼, thereby inducing neuroinflam-
mation. The neuroinflammation-prolonged oxidative stress
leads to the accumulation of A𝛽 and tau phosphorylation
and then induces neurotoxicity in AD patients [59, 60].
Thus, microglia-mediated neuroinflammation is perceived as
a cause and a consequence of chronic oxidative stress.

Extensive oxidative stress is observed in all of the cellular
macromolecules of AD patients. First, lipid peroxidation
is greatly enhanced in AD. The 4-hydroxynonal levels are
significantly elevated in the hippocampus, entorhinal cor-
tex, temporal cortex, amygdala, parahippocampal gyrus and
ventricular fluid [61–64], and plasma [65] of AD patients.
Second, the oxidative modification of proteins, which results
from either a direct ROS attack or from the reactions that
occur through the binding of glycation, glycoxidation, and
lipid peroxidation products, has been extensively shown in
AD.Themost widely studiedmarkers of protein oxidation are
protein carbonyls and 3-nitrotyrosine. Significant increases of
protein carbonyl are observed in the hippocampus, parietal
lobe, and superior middle temporal gyrus of AD patients
[66, 67]. Third, oxidative damage occurs in the DNA/RNA
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of AD patients. High levels of DNA breaks are found in the
hippocampus and cerebral cortex of AD patients [68]. 8-
Hydroxydeoxyguanosine (8-OHdG) is the most widely used
DNA oxidative marker, which is increased in ventricular
cerebrospinal fluid [69] and the peripheral tissues, such as
sporadic fibroblasts [70], and in the lymphocytes of AD
patients [71].

It has been demonstrated that the onset of AD is com-
monly preceded by an interim phase known asmild cognitive
impairment (MCI), when there is no significant increase
in senile plaques [72–74]. MCI patients exhibit significant
oxidative imbalance in comparison to age-matched controls,
since the elevation of overall protein peroxidation and the
oxidative modification of specific proteins are detected in the
brain, including hippocampus [75, 76], and reduction of the
activity of antioxidant enzymes such as superoxide dismutase,
glutathione peroxidase, and glutathione is observed in MCI
patients [77, 78]. These facts strongly suggest that the oxida-
tive imbalance appears at the very early stage of AD.

Chronic systemic inflammation links to neuroinflamma-
tion by the releasing of proinflammatorymediators including
IL-1𝛽 to activate microglia [17, 18]. Repeated LPS-induced
chronic systemic inflammation in mice induces microglial
activation and prolonged IL-1𝛽 production by activated
microglia [79]. Furthermore, systemic inflammatory chal-
lenge in the late gestation of mice increases the deposition
of A𝛽 and tau phosphorylation, which resulted in the impair-
ment of working memory during adult [36].

The four routes by which systemic immune signals can
be transmitted to the brain have been intensively studied
[17, 18]. In addition to these four classical routes, we have
recently found that the leptomeningeal cells, which cover the
surface of the brain parenchyma, release the proinflammatory
cytokines to activatemicroglia during systemic inflammatory
challenge [80, 81]. Therefore, leptomeningeal cells can trans-
mit signals from systemic immune cells to microglia.

4. Microglia Aging Concept:
Microglia and Brain Aging

As the phagocytic cells in the brain, microglia are primed
during aging, even in middle age. The primed microglia
can produce an exaggerated inflammatory response in
the brain, because age-dependent dysfunctions of lysoso-
mal/mitochondria system allow for the hypergeneration of
ROS. The increased intracellular ROS then activates the
redox-sensitive transcription factors, including NF-𝜅B, to
provoke exaggerated inflammatory responses [1]. The sen-
sitivity to oxidative stress and activation of redox-sensitive
transcription factors during aging may drive the emergence
of senescent-type microglia (microglia aging). This may
explain why A𝛽, which cannot sufficiently activate NF-𝜅B, is
able to induce IL-1𝛽 secretion by activated microglia isolated
from the aged mouse brain but not from the young adult
mouse brain [82].

It is noted that chronic systemic inflammation induces
age-dependent differential responses in microglia. The acti-
vated microglia produce anti-inflammatory mediators in

young adult adjuvant arthritis (AA) rats, an animal model of
RA [18, 80, 81]. However, the activated microglia produced
proinflammatory mediators in the middle-aged AA rats [83].
Therefore, chronic systemic inflammation induces microglia
aging from middle age. Furthermore, the microglia aging
induces the functional outcomes during systemic inflamma-
tion. The long-term potentiation (LTP), a cellular substrate
involved in learning and memory, in the hippocampus is
significantly decreased in middle-aged AA rats but not in
young adult rats. The systemic administration of minocy-
cline, a known inhibitor of microglial activation, significantly
restores the formation of LTP in middle-aged AA rats. These
observations suggest that chronic systemic inflammation
induces deficits of learning and memory through microglia
aging [84].

Microglia is highly sensitive to excessive ROS activated
NF-𝜅B due to the increased oxidative mitochondrial DNA
(mtDNA) damage [1]. The hypoxia activates the NF-𝜅B sig-
naling pathway to induce microglia aging [6–8, 11]. Further-
more, microglia are recognized as the major cells for NF-𝜅B-
dependent proinflammatory mediators production during
stroke, the most common form of hypoxia-ischemic brain
injury [85, 86]. The microglia aging mediated neuroinflam-
matory responses are closely associatedwith the pathogenesis
of AD [12], because the proinflammatory mediators promote
neuronal cell damage and excessive A𝛽 deposition [12, 87].
These observations suggest that the microglia aging is an
important causative factor for AD.

5. Nutrients in Microglia Aging and
Cognitive Function

5.1. Propolis. There is increasing evidence that natural nutri-
ents can provide significant benefits in dementia patients
[88]. Propolis is a resinous substance which is produced by
honey as defense against intruders. It has been used thera-
peutically since ancient times. The chemical composition of
propolis depends on the local floral at the site of collection
[89–91]. In addition to the fact that propolis has antioxidative
and anti-inflammatory effects [92–94], we recently found that
propolis significantly inhibits the secretion of IL-1𝛽, TNF-
𝛼, and IL-6 by microglia by inhibition of the activation
of NF-𝜅B signaling pathway [11]. Moreover, propolis was
observed to significantly inhibit the increased generation
of mitochondria-derived ROS, which is responsible for the
activation of NF-𝜅B signaling pathway. Moreover, propolis
significantly inhibits the increased expression of 8-OHdG,
a biomarker for oxidative DNA damage [95], mainly in the
mitochondria of microglia after hypoxia. Since oxidative
mtDNA damage impairs the respiratory chain to form a
vicious cycle which promotes ROS generation [1], propolis
may prevent and reverse microglia aging through its antiox-
idant property, both systemically and in the brain [92–96]
(Figure 1).

5.2. RNSP. RNSP is one of the Tibetan medicines composed
of 70 natural components. It is used clinically for treating
cerebrovascular diseases, cerebral infarction and epilepsy,
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Figure 1: A schematic representation of the preventing and reversal of microglia aging by the antioxidant nutrients. Increased microglial
mitochondria-derived ROS induce neuroinflammation which initiates cognitive decline during aging. Chronic systemic inflammation
promotes microglia aging even in middle age through excessive neuroinflammation. The oral intake of antioxidant nutrients, including
propolis, RNSP, vitamins, and omega-3 fatty acids, will prevent and reversemicroglia aging, thereby improving cognitive function and slowing
brain aging.

and brain concussion. Our previous studies showed that
RNSP improves learning and memory in a mouse model of
AD (Tg2576) [21, 97] and improves the cognitive functions
in mild-to-moderate AD patients living at high altitude
[98]. Furthermore, RNSP reduces proinflammatory medi-
ators, including IL-1𝛽, TNF-𝛼, and IL-6, in the activated
macrophages and serum in humans, indicating that it also
ameliorates the systemic inflammation [98, 99].

5.3. Other Nutrients. As a concept which was first introduced
in 1985, oxidative stress is used to describe a condition of
imbalance between oxidants and antioxidants in favor of
oxidants, which potentially leads to cellular damage [100, 101].
Oxidative stress induces the oxidation of DNA, proteins,
and lipids. Through detection of 8-OHdG, a marker of
oxidative damage to DNA, increased mtDNA damage in
the parietal cortex of AD patients was shown, indicating
that mtDNA is particularly sensitive to oxidative damage
[102]. Furthermore, the intake of antioxidants in patients with
MCI was considered to be helpful in lowering the risk of
conversion to cognitive impairment because MCI represents
a prodromal stage of AD, and oxidative damage appears to
occur as one of the earliest pathophysiological events in AD
[103, 104].

Studies have shown the roles of the antioxidant nutrients
in microglial activation. It was reported that 1,25(OH)

2
D
3

inhibited the production of TNF-𝛼, IL-6, and NO by the
stimulated microglia in a concentration-dependent manner,
because vitamin D3 receptors are expressed in microglia
[105]. Another report showed that vitamin E might provide
neuroprotection in vivo by attenuating microglial TNF-𝛼
and NO production by suppressing the microglial activation
of p38 mitogen-activated protein kinase and NF-𝜅B [106].
Furthermore, vitamin E reduces the LPS-induced increase in
ROS and IL-6 in the primary microglia and the intraperi-
toneal injection of LPS has been shown to induce lipid
peroxidation and IL-6 in the brain [107]. On the other
hand, another study showed dramatic microglial activation,

particularly in the CA1 region of the hippocampus [108].
More recent research showed that vitamin D deficiency
decreases the release of TNF-𝛼 and IL-6 in culturedmicroglia
upon stimulation with Toll-like receptor agonists [109]. The
roles of n-3 fatty acids such as docosahexaenoic acid (DHA)
and eicosapentaenoic acid (EPA) in microglial activation
have also been reported. It was noted that DHA and EPA
decreased the inflammatory responses and increased the anti-
inflammatory responses ofmicroglia after the phagocytosis of
A𝛽42 and thatDHAdecreasedTNF-𝛼 production, while EPA
increased production of brain derived neurotrophic factor
in cultured human CHME3 microglial cells [110]. A more
recent study showed that DHA and EPA inhibited the release
of TNF-𝛼 and NO from primary microglia which occurs in
response to interferon-𝛾 and myelin stimulation [111].

A great deal of evidence exists to support the roles
of antioxidant nutrients in cognitive function. Vitamin E
has been reported to improve cognitive function in elderly
individuals [112]. It is known that the soluble A𝛽 oligomers
cause cognitive loss and synaptic dysfunction in AD patients.
The treatment with vitamin C for 6 months attenuated
A𝛽 oligomer formation, restored the reduced synaptophysin
level, and mitigated the memory behavioral decline in an
AD mouse model [113]. More recent research showed that
vitamins C and E supplementation mitigated the melamine-
induced impairment of hippocampal synaptic plasticity [114].
However, other studies did not find evidence to support the
efficacy of vitamin E, B-6, or B-12 as a preventive therapy
or treatment in individuals with AD or MCI [115, 116], and
12 months of vitamins E and C supplementation did not
improve the mini-mental state examination score of elderly
individuals in Iran [117]. The potential role of DHA and
EPA in the prevention of cognitive decline, including the
decline associated with AD, has attracted major interest over
the past 20 years. Recent research showed that n-3 fatty
acids supplementation ameliorated memory deficits, which
increased the serum total antioxidant capacity [118]. On the
other hand, EPA and DHA supplementation for 2 years was
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not found to affect the cognitive decline in healthy elderly
individuals [119]. Further intervention studies with larger
study populations should be undertaken to identify the role
of antioxidants in the management of cognitive function.

Approaches with multiple antioxidant nutrients to block
the oxidative stress related to the systemic and brain inflam-
mation pathwaysmay therefore prevent or delay the cognitive
impairment associated with AD by preventing microglia
aging.

6. Conclusion

We herein provided the concept of microglia aging as a brain
aging accelerator, which is associated with cognitive decline
during aging and in AD. Chronic systemic inflammation
promotes microglia aging even at middle age. Certain nutri-
ents may therefore be beneficial for delaying brain aging by
preventing or reversing microglia aging (Figure 1).
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