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Translation of cellular RNA to protein is an energy-intensive process through which

synthesized proteins dictate cellular processes and function. Translation is regulated in

response to extracellular effectors and availability of amino acids intracellularly. Most

eukaryotic mRNA rely on the methyl 7-guanosine (m7G) nucleotide cap to recruit

the translation machinery, and the uncoupling of translational control that occurs

in tumorigenesis plays a significant role in cancer treatment response. This article

provides an overview of the mammalian translation initiation process and the primary

mechanisms by which it is regulated. An outline of how deregulation of initiation

supports tumorigenesis and how initiation at a downstream open reading frame (ORF) of

Tousled-like kinase 1 (TLK1) leads to treatment resistance is discussed.

Keywords: eIF4E, 4EBP, eIF4A, eIF2A, eIF2, cap-dependent, translation, TLK1

INTRODUCTION

The process of translation initiation begins with the formation of two protein complexes that occur
in parallel and converge at the 5′ end of the mRNA. The ternary complex—which comprises of
eukaryotic translation initiation factor 2 (eIF2), GTP, and initiatormethionyl-tRNA (Met-tRNAi)—
is the preliminary step in the assembly of the 43S pre-initiation complex (PIC). Together with the
40S ribosomal subunit and eukaryotic translation initiation factors, eIF1, 1A, 3, and 5, the ternary
complex binds to form the PIC. Independently, assembly of a protein complex occurs at the 5′

end of the mRNA through recognition of the m7G cap by the cap-binding protein, eIF4E. The
RNA helicase eIF4A and the scaffolding subunit eIF4G recruitment results in the formation of the
eIF4F complex. The binding of eIF4B to eIF4A stimulates the unwinding of themRNA immediately
downstream of eIF4F, which facilitates the loading of the PIC [1]. Through interaction with eIF4E
and the poly A binding protein (PABP), eIF4G bridges the 3′ and 5′ ends of the mRNA forming a
closed-loop conformation that aids in spatially localizing the translation machinery for subsequent
rounds of protein synthesis on the same translated mRNA [1] (Figure 1).

Recruitment of the PIC is facilitated by eIF4A-mediated unfolding of mRNA and the
affinity of eIF3 for RNA and for eIF4G. The PIC is loaded on the mRNA in an open
conformation, which is permissive to scanning, to locate the start AUG trinucleotide
that can base-pair with the complementary sequence in Met-tRNAi [2]. The search
process occurs linearly in a 5′-3′ direction and is presumed to be due to eIF4A-
facilitated unwinding of RNA structures at the leading edge of PIC and the presence
of eIF4B at the trailing end to restrict movement of PIC in reverse. The identification
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FIGURE 1 | Diagrammatic overview of conventional cap-dependent translation initiation in eukaryotic cells. Translation initiation begins with the assembly of the

ternary complex and PIC and binding of 5′ mRNA cap by the eIF4F complex. Unwinding of mRNA near the cap by eIF4F facilitates loading of the open state PIC that

is conducive to scanning. A conformational change to a closed state occurs on recognition of the start AUG, and with the entry of 60S ribosomal subunit and the

formation of the 80S translation initiation complex, protein synthesis begins.

of the first AUG in an optimal sequence context initiates stable
pairing with the anti-codon in the Met-tRNAi and it leads to the
eviction of eIF1 and the hydrolysis of eIF2-GTP to eIF2-GDP
by eIF5. The full-engagement of the Met-tRNAi at the P site in
the 40S ribosomal subunit results in a change in PIC to a close
state which halts further scanning of the mRNA [2]. Subsequent
release of eIF2-GDP and eIF5 makes way for the joining of
the 60S ribosomal subunit, catalyzed by GTPase eIF5B, and for
the formation of the 80S translation initiation complex. The
dissociation of eIF5B-GDP and the departure of eIF1A signals
entry of the translation initiation complex in the protein synthesis
phase (Figure 1) [1–3].

Translation initiation is a highly regulated cellular activity
that occurs in response to the availability of molecular factors,
nutrients, and hormone and stress signaling. It is tightly
controlled at multiple steps in the process and described here
are the major regulatory nodes and our understanding by which
deregulation of initiation shifts the cellular proteome to being
conducive to tumorigenesis.

REGULATION OF TERNARY COMPLEX
FORMATION

The control of translation at the ternary complex assembly is
at one of the earliest of stages of translation initiation. eIF2 is
essential to the loading of Met-tRNAi onto the 40S ribosomal

subunit for the assembly of the 43S PIC. Since Met-tRNAi has a
higher affinity for GTP-bound eIF2 than GDP-bound, the GDP-
GTP exchange factor, eIF2B, is an important player in regulating
ternary complex formation. eIF2 is a heterotrimeric protein
composed of α, β, and γ subunits. Cellular kinases activated
by stress such as protein kinase R-like endoplasmic reticulum
kinase (PERK) in unfolded protein response, GCN2 in amino
acid deprivation, RNA-activated protein kinase (PKR) in viral
infection, andHRI inmetabolic stress can phosphorylate eIF2α at
serine 51. The GDP-bound phospho-eIF2-Ser 51 avidly interacts
with and sequesters eIF2B, reducing levels of unbound eIF2B for
eIF2-GDP to eIF2-GTP recycling [4]. As a result, phosphorylated
eIF2 tamps down global translation initiation in stress. Through
interaction with eIF2 and protein phosphatase 1 (PP1), GADD34
facilitates the dephosphorylation of eIF2 by PP1 [5], which
restarts protein synthesis in cell recovery.

Despite repression in global translation initiation in stress,

protein synthesis from stress-response transcripts remains largely

unaffected. There are two prevailing mechanisms by which

translation of these transcripts occur. First, the incorporation of
phosphorylated eIF2 in the PIC reduces scanning fidelity of the
complex, leading to the bypass of the upstream start sites. ATF4
is a transcription factor critical to the expression of genes that
drive a prosurvival cellular program in response to stress [6].
With 2 inhibitory upstream ORFs, translation of ATF4 is limited
in non-stressed cells. However, phospho-eIF2 can contribute to
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leaky scanning, and initiation at downstream ORFs leads to
protein synthesis such as of ATF4 that would otherwise not
occur in homeostasis [7]. Additionally, sequestration of eIF2B by
phospho-eIF2 leads to limited Met-tRNA-engaged PIC and the
overriding of initiation at upstream ORFs. Through association
of the scanning ribosomal 40S subunit with the ternary complex
downstream initiates translation at the next ORF.

Second, the alternate initiation factor eIF2A competes with
eIF2 for loading of initiator tRNA (tRNAi) on the 40S complex.
eIF2 is the predominant player in translation initiation, but
following its phosphorylation and sequestration, contribution of
eIF2A to ternary complex formation increases significantly as it
is refractory to eIF2 inhibitory kinases [8, 9]. Although a direct
demonstration of interaction is lacking, eIF2A can recruit an
alternative initiator tRNA, Leu-tRNAi, and initiate translation at
non-AUG triplets such as CUG and UUG that would otherwise
be discriminated against. As alternative ORFs do not contribute
significantly to the translational landscape in non-stressed cells,
an incremental increase in eIF2A can lead to a relatively large
increase in alternate ORF expression.

Certain stress response transcripts evade translational
repression through initiation at IRES or at sequence-specific
elements in the 5′ UTR. Notably, a switch from cap-dependent
to cap-independent translation of prosurvival factors, HIF-1α,
VEGF, and BCL2, is induced by hypoxia [10]. Translation
initiation occurs independent of canonical ternary complex and
relies on eIF5B to deliver tRNAi.

LENGTH AND COMPLEXITY OF 5′UTR

When present in a favorable sequence context, translation begins
at the first AUG near the 5′ end of the mRNA. However, length
and structural complexity of the 5′UTR can influence the rate
of translation initiation. An inverse relationship exists between
translation initiation and length of the 5′UTR and its ability to
self-anneal and form complex structures [3]. Self-assembly of
single stranded RNA into stable secondary structures impedes
movement of the PIC and limits initiation at the projected start
site. Helicase activity of eIF4A is vital to deconvoluting short
double-stranded mRNA at 5′ end for loading of the 43S PIC,
and structured mRNA 5′ ends are reliant on eIF4A for efficient
initiation. However, eIF4A is insufficient to unwind structures
of high complexity during scanning and participation of cellular
helicases such as DHX29 and DDX3 is vital to resolving the
structures [11].

ROLE OF SEQUENCE IN START CODON
SELECTION

Traveling downstream from the 5′ end of the mRNA, the
PIC scans the sequence base-by-base to locate the start site.
Translation often starts at the first AUG that is encountered;
however, its selection as a start site is dictated by the context in
which the trinucleotides reside [12]. When present within the
Kozak consensus sequence, G/ACCAUGG, the trinucleotides are
considered to be in an optimal context for translation initiation

[13]. In particular, the nucleotide at −3 position in relation
to the AUG determines the efficiency of start codon selection
and there is a preferential occupancy of an A in yeast and
mammals [14]. Often AUG in a poor context escapes detection
by the scanning machinery for another downstream that is
in a better contextual reference frame. Non-optimal sequence
context or near-similar start triplets such as CUG or UUG in
a favored consensus can lead to inconsistencies in the use of
the start codon and misguided translation initiation accounts
for the diversity of protein isoforms. By computational analysis
nearly half of the transcripts in mammalian cells have an
upstream ORF, and ribosomal profiling suggests that many are
translated in homeostasis [15]. In instances where downstream
AUG(s) is in-frame without an intervening stop codon, leaky
scanning at upstream AUG can result in protein isoforms that
differ in the N-terminus region but are otherwise identical.
N-terminal differing isoforms when sorted in separate cellular
compartments can have distinct cellular targets and function. On
the other hand, an upstream AUG residing in a near-optimal
sequence context significantly limits initiation of the main ORF
from the downstream site. Control of initiation through uORFs
regulates the translation of tumorigenic proteins such ATF4 in
homeostasis. In the event of a stop codon between the upstream
and downstream AUGs or an intervening RNA sequence with
a propensity to self-anneal into stable structures stalls PIC that
skipped the upstream AUG, or ribosomes, attenuating the re-
initiation at the downstream ORF and a paucity of the main
protein isoform. Often, this is not the case in normal cells as
ternary complexes are abundant and they reassociate to form a
translation competent complex for initiation at the downstream
start codon.

INFLUENCE OF INITIATION FACTORS IN
START SITE SELECTION

Translation initiation factors that form the PIC also play
important roles in the selection of the start codon [12].
Structural studies indicate that eIF1 interaction with Met-tRNAi
allosterically prevents its precise engagement at the P site in
the 40S ribosomal subunit and thus keeps the PIC in an open
conformation that is conducive to scanning [16]. Imperfect fit
of the Met-tRNAi is suggested to also discriminate against sub-
optimal anti-codon pairing. With accurate base-pairing at AUG
in preferred consensus, the release of eIF1 occurs and the PIC
adopts a closed conformation which signals the termination of
the scanning and the beginning of protein translation. Mutants
of eIF1 in yeast that interact poorly with the PIC initiate
protein synthesis at near-cognate codons and at codons in
unfavorable consensus sequences [17]. eIF1 mutants increase
the complexity of protein isoforms that arise from the same
mRNA, emphasizing the importance of eIF1-PIC interaction
to distinguishing alternative translation starts. eIF3 plays a
pervasive role in initiation events. It recruits PIC to the 5′ end
of the mRNA because of its affinity for eIF4G and the complex,
and increased expression of eIF3 increases global translation
including transcripts that are not abundantly translated in
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homeostasis. In yeast, mutations in eIF3 disrupt initiation as
PIC fails to adopt a closed conformation on recognition of the
start codon.

eIF4E AND PHOSPHORYLATION BY MNK
KINASES

The 5′ end cap structure is directly recognized by eIF4E, the
rate-limiting component in formation of the eIF4F complex.
Unexpectedly, an increase in eIF4E does not increase the
global translation rate, but it alters the cellular proteome
by preferentially upregulating translation of transcripts with
long and structured 5′ UTR—many of which encode growth-
promoting or malignancy-associated proteins [18, 19]. eIF4E
is considered a central player in carcinogenesis as high
levels of the protein induce oncogenic transformation in
mouse fibroblasts [20], while antisense-mediated decrease in
eIF4E reverses the aggressive proliferative phenotype of Ras-
transformed fibrosarcomas [21]. The function of eIF4E is
primarily regulated by its interaction with 4E binding protein 1
(4EBP1) as sequestration by 4EBP1 limits eIF4E availability for
cap recognition and formation of the eIF4F complex. The activity
of eIF4E is also in part regulated through phosphorylation
at serine 209 by activated mitogen-activated protein kinase-
interacting kinases (MAPK-interacting kinases), MNK1 and
MNK2. The MNK enzymes are activated by RAS signaling
through the downstream effector, extracellular regulated kinase
(ERK) and p38 MAP kinase. MNK1/2 knockout mice, however,
develop normally [22], and a lack of a phenotype in eIF4E
phospho-mutant (S209A) transgenic animals suggests that the
modification does not play a significant role in growth and
development [23]. Unlike wild-type 4E, the expression of
the phospho-mutant (S209A) in MEF increases resistance to
cellular transformation, and non-phosphorylatable eIF4Emutant
mice (eIF4ES209A) and MNK1/2-deficient mice are resistant to
tumor progression despite a genetic background that would
otherwise promote invasive cancers [23, 24]. Phosphorylated
eIF4E preferentially upregulates translation of a specific set of
transcripts involved in epithelial-mesenchymal transition (EMT)
and metastasis, which supports the observation of increased
tumor invasiveness and distant metastasis in mutant mice [25].
Mechanistic studies in a reticulocyte lysate cell-free system
indicate that MNK augments eIF4E-eIF4G interaction and
the assembly of eIF4F, and that phosphorylation of eIF4E
preferentially facilitates the translation of mRNAs with cap and
stem-loop structure at the 5′ end [26]. The mechanism by
which the modification promotes translation of select mRNA is
debated, but phosphorylation-dependent eIF4E sumoylation and
the increase in eIF4F stability [27] is suggested to contribute
to the relative increase in translation of mRNAs with structural
complexity in the 5′UTR.

TRANSLATION REGULATION BY
mTOR-4EBP1 SIGNALING

The other major signaling pathway that regulates initiation is
the mammalian target of rapamycin (mTOR)-4EBP1 pathway.

Nutrients, insulin, and growth factors activate the pathway
and signals relayed through the mTOR complex 1 (mTORC1)
phosphorylate the downstream effectors ribosomal protein
S6 kinase and 4EBP1. Phosphorylation of 4EBP1 reduces
its binding affinity to eIF4E and increases eIF4E availability
for eIF4F formation. Though activation of the MNK-eIF4E
pathway and the mTOR-4EBP1 pathway promotes formation of
eIF4F complex, the differential effects of MNK inhibition and
mTOR inhibition suggest that eIF4F complexes assembled in
each pathway target different transcript types [28]. It is also
conceivable that phospho-eIF4E engages specific eIF4G and/or
eIF4A isoforms on structurally-defined 5′ UTR and thus exhibits
a predilection for certain transcripts. It is not surprising, then,
that cell death initiated through inhibition of either pathway is
less effective than inhibition of both.

DEREGULATION OF TRANSLATION
INITIATION IN CANCER

Initiation is a rate-limiting step in translation of capped
mRNA as eIF4E is the least abundant of translation initiation
factors. The altered levels of molecular factors and/or signaling
pathways in cancer cells increase synthesis of non-conventional
protein isoforms, resultant from aberrant translation initiation
(Figure 2). Through altered abundance, cellular location, or
activity of regulators of cell-cycle, apoptosis, DNA damage
response and repair, and lineage fidelity, the proteome
disproportionately favors reprogramming and survival of
cancer cell despite a non-conducive environment [29, 30].

A majority of head and neck squamous cell carcinoma
(HNSCC) are driven by an overactive AKT-mTOR signaling
pathway due to increased prevalence of PI3K mutations and
PTEN loss [31, 32]. The increase in phosphorylated 4EBP1
downstream of the PIK3-AKT-mTOR signaling is an important
modification that supports eIF4F formation, and inhibitors
of mTOR such as rapamycin and its synthetic analogs that
increase dephosphorylated levels of 4EBP1 showed promise in
the treatment of HNSCC as short-term monotherapy prior to
definitive treatment [33]. In a meta-analysis of 11 clinical trials,
mTOR inhibitors, as single-agent therapy, failed to show a
significant tumor response, and a better partial tumor response
in combination with chemotherapy and/or radiotherapy needs
additional evaluation to validate the sensitizing effect [34]. Rather
than biallelic mutations, haploinsufficiency accounts for reduced
4EBP1 in a number of head and neck tumors [35], and TCGA
database analysis demonstrates a correlation between reduced
4EBP1 expression and adverse survival outcome. Supporting
this finding is the demonstration that 4EBP1/2 knockout mice
are conducive to tumor growth, whereas the mutant mice
with 4EBP1 that is non-phosphorylatable by mTOR limits
tumor progression [35]. The central initiation factor in cap-
dependent translation, eIF4E, is oncogenic when overexpressed,
andmultiple lines of evidence support its role in tumor formation
in vivo. Correspondingly, high eIF4E in HNSCC tumors and
adjacent margins carry poor prognostic implications [36, 37].
However, instead of a singular increase in eIF4E or a decrease
in 4EBP1, there is increasing consensus that ratio eIF4E to

Frontiers in Oral Health | www.frontiersin.org 4 December 2021 | Volume 2 | Article 765931

https://www.frontiersin.org/journals/oral-health
https://www.frontiersin.org
https://www.frontiersin.org/journals/oral-health#articles


Sunavala-Dossabhoy Altered Translation in Cancer

FIGURE 2 | Mechanisms by which conventional translation initiation is disrupted in cancer cells. (1) Increase in unbound eIF4E. Upregulation in eIF4E transcription,

reduced 4EBP or hyperphosphorylated 4EBP supports the formation of the eIF4F complex at 5′ mRNA. (2) MNK- dependent phosphorylation of eIF4E.

Phospho-eIF4E promotes eIF4G interaction. (3) Increase in alternate Leu-tRNAi carrier, eIF2A. Refractory to kinases that inactivate eIF2, eIF2A engages to form PIC

and initiates translation at alternative ORFs.

4EBP1 is an improved indicator of patient survival [38, 39].
mRNA expression analyses (TCGA database) support the higher
predictive value of the dual mRNA signature in HNSCC (high
eIF4E and low 4EBP1) relative to each independently (Figure 3).
An increase in phosphorylated 4EBP1 and/or eIF4E is linked
to poor prognosis in a variety of cancers including head and
neck cancer [40]. MNK1/2 antagonists investigated before were
potent suppressors of metastasis, but adverse effects limited their
clinical transition. MNK1/2 inhibitor Tomivosertib exhibits an
acceptable safety profile and, in phase II investigation, it extended
progression-free survival in checkpoint inhibitor-refractory non-
small cell lung cancer [41]. The inhibitor is currently in
clinical evaluation for a number of advanced solid malignancies,
including HNSCC (NCT03616834).

Global translation initiation is suppressed when eIF2α is
impaired by phosphorylation. Increased phosphorylation of
eIF2α Ser 51 inhibits the release of GDP-GTP exchange factor
eIF2B and, in turn, the formation of the translation complex.
However, increased phospho-eIF2 and limited ternary complex
availability promotes leaky scanning and skipping of upstream
AUG. Reassembly with the 40S complex downstream when the
ternary complex is available promotes initiation instead at the
downstream ORF. Although eIF2A is a poor eIF2 competitor,
the alternate carrier of initiator tRNA adopts a more prominent
role in cancer cells as it is refractory to eIF2α inactivating
kinases [9]. eIF2A interaction with Leu-tRNAi alters the cellular
proteome as initiation occurs at unconventional ORFs. The use
of non-canonical start sites in transcripts that promote growth

and dedifferentiation is accepted to underlie tumorigenesis [42].
FGF2 mRNA have multiple upstream ORFs and initiation at
AUG and non-AUG codons generate a variety of protein isoforms
that are pro-angiogenic and pro-tumorigenic [43, 44]. Non-
canonical initiation codons are also responsible for different
isoforms of oncogenic MYC in stress and in eIF4E transformed
cells [45, 46]. It is of interest, then, that increased expression
of PKR (eIF2AK2), a kinase that phosphorylates eIF2α, and of
eIF2A, the recruiter of alternate tRNAi, occur in a majority of
head and neck cancers (TCGA dataset) and that they significantly
correlate with poor survival of HNSCC patients (Figure 4).

Stress response to viral infection inhibits protein synthesis
through interferon-induced eIF2 inactivating kinase PKR.
Viruses override translation inhibition to establish a conducive
environment for viral replication and pathogenesis. Translational
recovery in HPV infection occurs through E6 oncoprotein that
facilitates dephosphorylation of eIF2α by GADD34-PP1 [47].
Reversal of eIF2 phosphorylation and of cellular rewiring of
translation is suggested as a reason for improved treatment
outcomes observed in HPV+HNSCC patients.

The helicase activity of eIF4A is instrumental to the
unwinding of the mRNA 5′ end for docking of PIC. By
stabilizing eIF4A interaction at complex mRNA structures
and suppressing unwinding, inhibitors of eIF4A effectively
target a subset of oncogenic mRNAs to limit tumor growth.
Although eIF4A1 or eIF4A2 expression in HNSCC tumors
(TCGA dataset) did not correlate with overall survival (data not
shown), a significant correlation with progression-free survival
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FIGURE 3 | Kaplan-Meier assessment of overall survival of head and neck cancer patients from TCGA dataset. Patients were divided into cohorts based on mRNA

expression z-scores relative to all samples (log RNA Seq V2 RSEM) of (A,C). eIF4E (top tercile; n = 109; green) and (B,C). 4EBP1 (bottom tercile; n = 131; blue) were

assessed and compared to patients that satisfied both criteria (increased eIF4E and decreased 4EBP1; n = 53; red). P-values are shown.

FIGURE 4 | Kaplan-Meier overall survival analysis in TCGA dataset of head and neck cancer patients grouped based on mRNA expression z scores relative to all

samples (log RNA Seq V2 RSEM). (A) eIF2A expression in top tercile (144 samples; red) and bottom tercile (153 samples; blue). (B) eIF2AK2 (PKR) expression in top

tercile (177 samples; red) and bottom tercile (140 samples; blue). P-values are shown.

was observed (Figure 5). Despite potent anti-tumor activity of
eIF4A inhibitor silvestrol, pharmaceutical logistics limited its
clinical evaluation. Inhibitor eFT226 (Zotatifin), suggested to
have a similar mechanism of action to silvestrol, is the first eIF4A
inhibitor to enter the clinical trials (NCT04092673) for advanced
solid malignancies.

The dead box helicase DDX3 supports translation through
recruitment of eIF3 at the 5′ end of the mRNA and it plays a
critical role in unwinding complex RNA structures that impede
scanning and ribosome transit. Increased expression of DDX3
promotes an aggressive phenotype in head and neck tumor
cells by bypassing upstream inhibitory ORFs and initiating
translation of ATF4, a transcription factor that also regulates
the expression of genes associated with epithelial-mesenchymal
transition [11]. In a helicase-independent manner, DDX3 drives
expression of amphiregulin (AREG) and the secretory phenotype
that stimulates growth of oral squamous cell carcinoma cells in
an auto- paracrine mechanism [48]. Correspondingly, increased

DDX3 expression, wild-type or mutant, correlates with adverse
prognosis in HNSCC [11, 48]. Inhibitors of DDX3 activity are
anti-tumoral in multiple cancer types; however, considering
the prevalence of mutant DDX3 and helicase-independent
function of DDX3, pharmacological agents that suppress DDX3
expression could have a wider clinical applicability.

Of recent, epigenetic and transcriptomic changes have
gained prominence in disease prognostication, and disorder
in translation control underpinning treatment challenge has
garnered less attention. We briefly elaborate on a non-canonical
TLK1 isoform selectively expressed in eIF4E-rich cellular milieu
and its role in limiting cancer treatment efficacy.

TOUSLED-LIKE KINASE 1

TLK is evolutionarily conserved in metazoans and there are two
homologs in humans: TLK1 and TLK2. TLKs are constitutively
expressed in cells but their activities peak in interphase.
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FIGURE 5 | Kaplan-Meier plots of progression-free survival of head and neck cancer patients (TCGA dataset) grouped based on mRNA expression z-scores relative

to all samples (log RNA Seq V2 RSEM). (A) eIF4A1 expression z scores >1 (samples 73; red) and z score <-1 (samples 82; blue). (B) eIF4A2 expression z scores >1

(samples 81; red) and z score <-1 (samples 78; blue). P-values are shown.

The first identified targets of TLKs were histone chaperones
ASF1A and ASF1B and expectedly, the kinases participate
actively in chromatin assembly [49]. During replication halts
in response to genotoxic stressors, TLK activity is transiently
inhibited through phosphorylation by CHK1, and it fits the
concept that kinase activity and DNA replication are intricately
interconnected [50]. Not surprisingly, then, is the loss of TLK1/2
or inhibition of their activity results in unstable chromatin due to
replication fork collapse and an increase in flawed transcription
from heterochromatic regions of the genome [51, 52]. The
presence of in-frame AUGs decoded by Met-tRNAi appear to
contribute to TLK1 isoform diversity in cells. There are 3
in-frame AUGs upstream of the coiled-coiled motifs. AUG1
resides in a less-favored sequence context (TTGAUGA), and
translation initiation at the following AUG, AUG2, in a near-
Kozak consensus (GCAAUGG) may contribute to the full-length
isoform present in most cell types (Figure 6A). Relative to the
long isoform, initiation at AUG3, also in a favored context with A
at−3 position (ACAAUGC), further downstream encodes a third
variant that lacks a significant portion of the N-terminus region
but shares identity from the two coiled-coiled dimerization
motifs through to the C-terminal catalytic region. The short
isoform lacks the putative nuclear localization sequence (NLS;
RGRKRK) in the N-terminal region but retains a potential NLS
(LAKRK) between the coiled-coiled motifs. The translation of
the short isoform correlates clearly with increased levels of
available eIF4E [53]. Active mTOR signaling during recovery
from doxorubicin-induced DNA breaks leads to an increase in
phospho-4EBP1 in murine mammary epithelial cells and the
preferential translation of the shorter ORF. Abundant availability
of eIF4E to drive eIF4F-driven repeat initiation, promiscuous
PIC scanning due to stress-activated phosphorylation of eIF2,
and limited assembly of ternary complex are factors suggested

to drive TLK1 initiation at the downstream AUG3. Multiple
studies in various cell types show that overexpression of the
short variant augments cellular repair defenses leading to rapid
recovery from genomic damage [54, 55] and, in accordance, the
abundance of the isoform in breast tumors is shown to correlate
with poorer patient prognosis [56, 57]. Tumor cells are reliant
on the DNA repair machinery to adapt to a higher burden of
genomic breaks due in part to elevated oxidative stress, a high
metabolic rate, and a hypoxic environment.Mechanistically, TLK
activity is critical to homology-directed repair of double-strand
breaks [58] and to the stabilization of replication forks [51].
Despite the absence of the established NLS, overexpression of
the shorter variant improves DNA repair kinetics, and it suggests
that nuclear localization directed either by the downstream NLS
or by dimerization with the full-length form contributes to
the reparative phenotype. Alternatively, the variant orchestrates
cellular recovery through target proteins in the cytoplasm or
regulates transit of factors that promote DNA repair between
the cellular compartments. Although the short TLK1 isoform
phosphorylates many of the same target proteins as the full-
length in vitro [59], the altered ratio of isoforms in cancer
cells warrants investigation into the preferred substrates of
isoform 3 in vivo that contribute to resistance to genotoxic
chemotherapeutics and radiation.

Crosstalk between mesenchymal and epithelial cells during
development influences cell fate and the exchange is vital to
homeostasis in adulthood. Genes specifically upregulated in
mammary epithelium-adjacent fibroblasts include TLKs, and
conditional loss of TLK1 or TLK2 in transgenic animals
induces hyperproliferation of the ductal epithelium [60]. The
mechanism by which TLK1/2 regulates crosstalk, however, is
a subject of ongoing investigation. Deregulated signaling from
the tumor microenvironment is acknowledged to affect tumor
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FIGURE 6 | (A) Schematic of TLK1. In-frame translational start codons decoded by tMet-tRNAi generate isoforms that differ in the N-terminal region. Unlike AUG1,

trinucleotides AUG2 and AUG3 are in near-optimal sequence context. Isoform 3 derived from translation initiation at AUG3 is devoid of putative NLS. (B)

Lentivirus-RFP transduced SCC40 cells were puromycin-selected and RFP+ cells were sorted by FACS. Primary human foreskin fibroblasts (HFF) were transduced

with control adenovirus or adenovirus-TLK1 (MOI 1000) and 24 h after transduction cells were trypsinized and resuspended with SCC40 RFP+ cells at a 1:3 ratio. Cells

were co-cultured and time-lapse images acquired in the Incucyte (Sartorius) incubator. Quantification of RFP surface area from a representative experiment is shown.

growth, and TLK-depleted fibroblasts when co-cultured with
human breast cancer cells increased cancer cell proliferation.
In corollary, human fibroblasts overexpressing TLK1 limit
growth of oral squamous cell carcinoma cells in co-cultures
(Figure 6B). Reciprocal signaling between cancer-associated
fibroblasts and cancer cells also control tumor behavior, and
selectivity in smart therapeutics that suppress TLK1 in cancer
cells while augmenting its expression in normal cells can
improve cancer treatment response as well as limit normal tissue
toxicity [54, 61].

A plethora of factors participate in translation initiation
and multiple regulatory nodes in the nexus tightly control the
process. Deregulation of initiation is a hallmark of cancer and
translation of otherwise repressed ORFs promotes oncogenesis

and contributes to aggressive, treatment-recalcitrant tumor
phenotypes. An overactive AKT-mTOR pathway, reduced
expression of 4EBP1, upregulated eIF2 inhibitory kinases, and
increased expression of eIF2A in HNSCC patients correlate
with poor patient prognosis and it suggests that redirection
to non-canonical initiation renders tumors refractory to
treatment. mTOR inhibitors have been extensively evaluated
in HNSCC and despite an improved early outcome, the
development of drug-recalcitrant tumor cells leads to
recurrence [34, 62]. Tumor heterogeneity within the same
tumor mass contributes to treatment refractoriness and
tumor recurrence. Other than genetic and epigenetic changes,
the tumor microenvironment plays an important role in
cancer recurrence.
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Tumor niches exposed to hypoxia, nutrient deficiency,
oxidative stress, and/or shifts in pH reprogram cellular processes
to improve cell fitness. Stress-induced deregulation of initiation
promotes oncogenic progression. Hypoxic stress induces
breast cancer aggressiveness through alternative initiation of
pluripotency factors, SNAIL1, NANOG, NODAL, and like
hypoxia, mTOR inhibition-induces phosphorylation of eIF2α
to drive the synthesis of de-differentiation factors [63]. It is
therefore appealing to speculate that an increase in cellular
plasticity could underlie limited response to mTOR inhibitors
in HNSCC, and it underscores the need to therapeutically
target multiple deregulated translation hubs that include
phospho-eIF2 to curtail the development of intrinsically resistant
tumor cells.
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