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A B S T R A C T   

Our objective was to identify the molecule which can inhibit SARS-CoV-2 main protease and can be easily 
procured. Natural products may provide such molecules and can supplement the current custom chemical 
synthesis-based drug discovery for this objective. A combination of docking approaches, scoring functions, 
classical molecular dynamic simulation, binding pose metadynamics, and free energy perturbation calculations 
have been employed in this study. Theaflavin digallate has been observed in top-scoring compounds after the 
three independent virtual screening simulations of 598435 compounds (unique 27256 chemical entities). The 
main protease-theaflavin digallate complex interacts with critical active site residues of the main protease in 
molecular dynamics simulation independent of the explored computational framework, simulation time, initial 
structure, and force field used. Theaflavin digallate forms approximately three hydrogen bonds with Gluta-
mate166 of main protease, primarily through hydroxyl groups in the benzene ring of benzo(7)annulen-6-one, 
along with other critical residues. Glu166 is the most critical amino acid for main protease dimerization, 
which is necessary for catalytic activity. The estimated binding free energy, calculated by Amber and Schro-
dinger MMGBSA module, reflects a high binding free energy between theaflavin digallate and main protease. 
Binding pose metadynamics simulation shows the highly persistent H-bond and a stable pose for the theaflavin 
digallate-main protease complex. Using method control, experimental controls, and test set, alchemical trans-
formation studies confirm high relative binding free energy of theaflavin digallate with the main protease. 
Computational molecular interaction suggests that theaflavin digallate can inhibit the main protease of SARS- 
CoV-2.   

1. Introduction 

The current coronavirus disease 2019 (COVID-19) pandemic is 
caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV- 
2), previously tentatively named as 2019-nCoV. The 2012 epidemic of 
Middle East respiratory syndrome (MERS) was caused by Middle East 
respiratory syndrome-related coronavirus (MERS-CoV), and the 2003 
epidemic of severe acute respiratory syndrome (SARS) was caused by 
severe acute respiratory syndrome coronavirus (SARS-CoV). SARS-CoV- 
2, SARS-CoV, and MERS-CoV belong to the same genus, Beta 

coronavirus [1]. As of August 31, 2022, the total number of covid-19 
cases was 599,825,400, including 6,469,458 deaths [2]. 

SARS-CoV-2 is a single-stranded, positive-sense, and enveloped RNA 
virus. The genome size is approximately 30 kilobases. Depending on the 
ribosomal frameshift, either replicase polyprotein pp1a (nsp1-11) or 
replicase polyprotein pp1ab (nsp1-16) is translated from the genomic 
open reading frame 1a and 1ab, respectively [3]. SARS-CoV-2 has four 
structural proteins: spike, envelope, matrix, and nucleocapsid. Apart 
from structural protein, sixteen nonstructural proteins and nine acces-
sory factors are also present in SARS-CoV-2. The 16 nonstructural 
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proteins together form the replicase/transcriptase complex. The role of 
micro-RNA has also been observed to be responsible for viral egression 
and immune evasion [4]. Furthermore, host-related proteins such as 
transmembrane serine protease 2 (TMPRSS2), furin, and cathepsin L 
have also been involved in the viral entry [5]. 

The current chemical therapeutics against SARS-CoV-2 include 
Remdesivir (intravenous), Ritonavir-boosted Nirmatrelvir (Paxlovid, 
oral), and Molnupiravir (oral). Evusheld (intramuscular injection) is 
recommended as monoclonal antibodies for pre-exposure prophylaxis 
and Babtelovimab (intravenous injection) for treatment. Molnupiravir 
and Remdesivir inhibit the function of RNA-dependent RNA Polymerase 
[6,7]. Nirmatrelvir is the only orally available drug against main pro-
tease of SARS-CoV-2 [8]. Ritonavir is a CYP3A4 inhibitor and increases 
the Nirmatrelvir concentration in therapeutic range [9]. 

Main protease (also known as Mpro, 3CLpro, and nsp5 protease) is 
necessary for processing polyproteins from Nsp4–11 or Nsp4–16. Main 
proteases are chymotrypsin-like cysteine proteases. Main protease is 
essential in proteolytic processing and is responsible for the generation 
of functional proteins of SARS-CoV-2. Furthermore, no known homolog 
protease is present in humans. Hence, it has been extensively explored as 
a drug target against SARS-CoV or SARS-CoV-2 [10]. Main protease has 
three domains, Domain 1 and domain 2 are rich in beta-strands, whereas 
domain 3 is predominantly a helical structure. Main protease is bio-
logically active in the form of a dimer. 

Natural products offer a wide range of opportunities in this scenario 
as it provides a diverse chemical scaffold that cannot be represented 
using conventional chemical libraries. Natural products can have known 
side effects/pharmacodynamics/pharmacokinetics as natural products 
may have been used traditionally for several indications. Natural 
products are chiral-rich molecules and offer many stereoisomers whose 
biological exploration might be limited using conventional wet experi-
mental techniques. Furthermore, natural products provide the oppor-
tunity to harness the chemical product, which can result due to the long 
evolutionary interaction. 

The structural bioinformatics efforts to identify inhibitors against 
main protease can be divided into three stages. The first stage was 
numerous high-speed studies published as peer-reviewed/preprints 
involving molecular docking/dynamics, including ours as a preprint 
[11–13]. In a critical review of the 61 peer-reviewed manuscripts from 
the first stage, about half of the manuscripts did not include a molecular 
dynamics study, included single-step docking, and were without 
computational validation [14]. Similarly, in another perspective from 
168 published articles on molecular docking of main protease, approx-
imately half of the articles have not evaluated the docking performance 
[15]. 

The second stage involved the analysis of these published data, 
which led to several critical reviews and benchmarking studies. The 
third stage followed the recommendation of these benchmarking studies 
to seek further computational reproducibility. The computational cal-
culations have inherent biases; hence, one suitable method for one target 
can fail on another target. In benchmarking study on SARS-CoV-2 main 
protease, free energy perturbation methods have performed better than 
routinely used MMGBSA/MMPBSA methods or other less reported 
methods such as linear interaction energy [16]. The residues Thr26, 
His41, Ser46, Asn142, Gly143, Cys145, His164, Glu166, and Gln189 
have been critical for main protease inhibition [16]. Another bench-
marking study by Zev et al. also imposed the limitations of docking 
simulation alone to predict the best pose, despite being shown Glide as 
the top performer compared to Dock, AutoDock, AutoDock Vina, Fred, 
and Enzydoc. Zev et al. also pointed out the need for free energy 
perturbation studies in main protease inhibitor design [17]. 

Computational calculations to identify the potential inhibitor require 
an extensive conformation sampling of ligands. The generation of 
multiple-input ligands structure has been recommended to achieve the 
optimal pose. The sole dependence on docking algorithm to generate 
conformers might not be sufficient to explore the lowest binding free 

energy state of protein-ligand complex [18]. Docking calculations can 
have numerical artifacts and may lack reproducibility over different 
computing variants/input conformation [19]. Similarly, the conclusion 
made from the single/triplicate replica of molecular dynamics trajec-
tories is often error-prone. In molecular dynamics simulation, similar 
molecular systems can explore different trajectories attributed to algo-
rithmic differences, the stochastic nature of simulations such as initial 
velocities, and the difference in computing platforms such as compilers 
and computing cores [20,21]. Furthermore, the inclusion of target 
flexibility and evaluation by achieving consensus across methods has 
been recommended in the main protease inhibitor studies [15]. 

Hence, we have studied the computational molecular interaction of 
SARS-CoV-2 main protease with readily available natural products using 
three independent virtual screening runs using different computing 
environments/input conformations, molecular dynamics using Des-
mond and Amber18, molecular dynamics by varying GPUs, simulation 
time, input structure, and force field, binding free energy estimation 
using Schrodinger and Amber MMGBSA module, the inclusion of explicit 
water in MMGBSA calculation, evaluation of H-bond persistence and 
pose stability using binding pose metadynamics, free energy perturba-
tion using method control, free energy perturbation by varying ioniza-
tion state and core RMSD and further confirmation by thermodynamic 
integration and multistate Bennett acceptance ratio. While analyzing 
interactions in a computational model, we have observed that theaflavin 
digallate (TG) may inhibit SARS-CoV-2 main protease. The in-vitro 
experimental data for the inhibition of SARS-CoV main protease by TG 
is available in existing literature [22]. 

2. Methodology 

Structural coordinates of easily available natural products in SDF file 
formats were downloaded from ZINC database [23]. Ligand preparation 
was performed using the LigPrep module [24]. The force field OPLS3e 
was used to generate the three-dimensional conformation of natural 
products. Natural products were desalted and neutralized. Ionization 
states were prepared at neutral pH using Epik [25]. The similarity of 
natural products in the virtual screening ligand library was accessed 
using hierarchical ligand clustering with a similarity cutoff of 0.8. The 
structure FragFP of data warrior was used as a descriptor [26]. PDB ID 
6LU7 was used as SARS-CoV-2 main protease. Hydrogen atoms were 
added, and side chains were optimized using the prep wizard utility of 
the Schrodinger suite. Ionizable groups at pH seven were predicted using 
PROPKA, and hydrogen bonds were optimized using ProtAssign utility 
[27]. The structure was minimized with only restraints on heavy atoms 
using impref utility. The docking grid files were centered on Cys145 and 
His41 as these residues were identified as a catalytic dyad of main 
protease [28]. 

The protein was docked using a virtual screen workflow combining 
Glide module version 8.1 with high throughput virtual screening (Glide 
HTVS), single-precision (Glide SP), and extra precision (Glide XP). The 
experiments were replicated thrice. We have used 598435 structures as 
an initial set in each virtual screen workflow. Glide XP has more 
extensive conformational sampling, such as anchor-and-grow method-
ology, and a more stringent scoring function, such as high penalty scores 
for receptor-ligand non-complementary than Glide SP. Furthermore, 
Glide XP also includes “virtual water” to estimate the desolvation energy 
and ligand water interaction. The compounds were ranked on the basis 
of docking scores. The binding energy was estimated using Prime 
MMGBSA for the ligand-receptor complex derived after Glide XP dock-
ing and molecular dynamics simulation. The Optimized Variable 
Dielectric Surface Generalized Born version 2.0 (VSGB2) was used as an 
implicit solvation model [29]. The complex was evaluated according to 
MMGBSA dG bind score where the dG bind = E_complex (minimized) - 
E_ligand (minimized) -E_receptor(minimized). The Prime MMGBSA 
total energy includes the energy component viz. Coulombic, covalent, 
Van der Waals, lipophilic, and generalized Born electrostatic solvation. 
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The prime MMGBSA includes correction terms for hydrogen bonding, 
pi-pi, and self-contact interaction. 

2.1. Molecular dynamics study using Desmond 

The molecular dynamic simulation of the top-scoring complex after 
the Glide XP stage was performed using the Desmond molecular dy-
namics package 2019 with OPLS 2005 and OPLS3e force field. The 
solvation model used for molecular dynamics simulation was TIP3P. Ten 
Å orthorhombic box has been used as boundary conditions. The charge 
was neutralized by adding four Na+ ions, and 0.15 M NaCl was added as 
a salt. Simulations were run for 200 ns in NPT conditions and at 300 K 
and 1.01 bars. 

Reversible reference system propagator algorithms (RESPA) inte-
grator has been used with a time step of 2 fs for bonded interaction, 2 fs 
for short-range electrostatic, and van der Waals interaction, and 6 fs for 
the long-range electrostatic interaction. The short-range and long-range 
interaction was defined using a cutoff radius of 9 Å. Nose-hoover chain 
was used as a thermostat with a relaxation time of 1 ps. Martyna-Tobias- 
Klein piston was used as a barostat with a relaxation time of 2 ps [30]. 
No positional restraints have been used. The custom seed value 2007 
was used to randomize the velocity. 

2.2. Principal component analysis 

Principal component analysis (PCA) has been employed to determine 
the essential dynamics of main protease in complex with TG. PCA is a 
multivariate statistical technique that linearly transforms the data to 
extract the important features from a covariance matrix. A cartesian 
coordinate covariance matrix is computed and diagonalized to obtain 
the eigenvector and the corresponding eigenvalues. The cpptraj module 
of the amber software was employed to compute the PCA on the mo-
lecular dynamics trajectory. Translational and rotational motions were 
eliminated by fitting the trajectory C-alpha atom coordinates to the 
average structure. The porcupine plot was visualized using the Normal 
Mode Wizard of VMD to identify the dominant motions in the protein. R 
was used to plot the 2D projection data. 

2.3. Molecular dynamics study using amber 

MD simulations were also performed using the GPU accelerated 
program in Amber18 package [31]. Parameterization of the ligand was 
done using antechamber tool, and charge was assigned using AM1-BCC 
model. Additional force field parameters for the ligand were generated 
using the Paramchk2 program. The tleap module was used in the 
preparation of the topology and coordinate files. Amber force field 
ff99SB and General Amber Force Field (GAFF) parameters were used for 
the protein and ligand, respectively. The complex was solvated using the 
TIP3P water model, and negative charge was neutralized with four Na+
ions. 

Minimization was done to relax the system and was performed in two 
steps - (a) with restraints on the solute and (b) without restraints. 
Minimization with restrains involved 500 steps of steepest descent and 
500 steps of conjugate gradient, respectively. Minimization without 
restraint was performed for 3000 steps involving steepest descent and 
conjugate gradient method. After minimization, the system was slowly 
heated to 300 K within the NVT (constant number of particles, volume, 
and temperature) ensemble for 60 ps. After that, equilibration was 
performed without restraint on the solute at 1 atm pressure under the 
NPT (constant number of particles, pressure, and temperature) 
ensemble. The time involved for equilibration was 100 ps. Langevin 
dynamics (with 1.0 ps-1 collision frequency) and isotropic position 
scaling (relaxation time was 2 ps) were used to maintain the tempera-
ture and pressure. 

The simulations were performed at constant temperature (300 K) 
and pressure (1 atm). Shake algorithm was applied, and hydrogen bonds 

were constrained with a time step of 2 fs in the heating, equilibration, 
and production simulations. Periodic boundary conditions were 
employed, and Particle Mesh Ewald (PME) method was used to deter-
mine the long-range electrostatic interactions. The cutoff value was set 
to 8 Å for the non-bonded interactions. Binding free energy was calcu-
lated using the MMPBSA.py script of the amber tools package. The 
Amber MMPBSA.py primarily calculates the binding free energy in Delta 
G gas and Delta G solvation where Delta G gas score = van der Waals 
interaction in gas phase + electrostatic interaction in gas phase and 
Delta G solvation score = Nonpolar solvation Free energy + Polar Sol-
vation Free Energy [32]. 

2.4. Binding pose metadynamics studies 

The binding pose metadynamics has been carried out as described by 
Clark et al. using the default parameters of the binding pose metady-
namics module of Schrodinger 2018-4 software suite [33]. The force 
field used was OPLS3e. Four sodium ions were used for neutralization. 
One binding pose metadynamics simulation consists of ten independent 
runs of 10 ns each. All simulation was carried out on GTX 1070 GPU 
having Ubuntu 18.04 as the operating system. One-tenth of KbT, 0.05 
kcal/mol, was used as hill height, and 0.02 Å was used as hill width. 
RMSD of ligand-heavy atoms with respect to their starting position is 
considered as a collective variable. 

2.5. Free energy perturbation studies 

The relative binding free energy was calculated by free energy 
perturbation/alchemical transformation of TG to mutated ligand (TG’) 
using the Desmond academic module of DE Shaw research. The relative 
binding free energy of the wild type (TG) and mutated ligand (TG′) can 
be defined as ΔΔG (relative binding free energy) = ΔG2- ΔG1 = ΔG4- 
ΔG3 following the thermodynamic cycle as of below. 

As the calculation of ΔG2- ΔG1 requires high computational re-
sources, the relative binding free energy was calculated using ΔG4- ΔG3. 
Two sets of simulations were carried out to calculate ΔG4 and ΔG3. The 
calculation of ΔG4 is termed as complex calculation as it evaluates the 
energy difference between two complexes R.TG′ and R.TG. Similarly, the 
calculation of ΔG3 is termed as solvent calculation. In these two simu-
lation cycles, the stepwise ligand mutation, i.e., TG to TG′, was achieved 
using an alchemical stepwise window/coupling parameter (λ) value 
from 0.1 to 0.9. TG reflects the λ value = 0, whereas TG’ has the λ value 
= 1. 

For each lambda window, the molecular dynamic simulation of 5 ns 
has been carried out. Replica exchange and solute tempering have been 
employed as a sampling method for receptor and ligand rearrangement, 
which involves temperature variation on the relevant portion of ligand 
and protein. In this process, the temperature increases from the initial 
window to the middle window and gradually decreases to its initial 
value in the final lambda window. The exchange of configuration be-
tween neighboring windows was attempted at every 1.2 ps. In both 
solvent and complex calculations, 12 λ values have been used. 

The box shape was orthorhombic, and the buffer width was 5 Å and 
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10 Å for the complex and solution simulation, respectively. Before 
lambda hopping, the system preparation stage includes the default 
Desmond settings, for example, starting with Brownian dynamics NVT at 
10 K and with restraints on solute heavy atoms for 100 ps, followed by 
NVT and NPT classical dynamics simulation with restraints on the heavy 
solute atom for 12 ps. The next system preparation stage included NPT 
with restraints and NPT without restraints for 24 ps and 240 ps, 
respectively. The same protocols were followed for the TG and TG′ in 
complex with main protease and TG and TG′ in solution. 

The estimated relative binding free energy calculated using FEP was 
validated through thermodynamic integration and multistate Bennett 
acceptance ratio using Sire/OpenMM-SOMD. Briefly, the parameteri-
zation of the ligand was done automatically by FESetup. AM1-BCC 
charge model and GAFF2 force field were used to parameterize the 
ligand. The equilibration was done at the NVT ensemble. The density 
was stabilized using the NPT ensemble. Production run simulations were 
performed using an NPT ensemble. The free energy computation was 
performed using the analyse_freenrg mbar tool of Sire. 

3. Results and discussion 

3.1. Theaflavin digallate has been observed as a top-scoring pose across 
computational platforms and number of input conformation 

We have used unique natural compounds that are reported to be 
readily available on the ZINC database, i.e., marked as “for-sale,” “in- 
stock,” and “natural products.” This resulted in 27256 unique chemical 
entities. The possible isomeric/ionization/minimized conformation 
from this set resulted in 598435 distinct ligands with a cap of a 
maximum of 32 stereoisomers from each chemical ionization state. 
However, we have also employed enhanced ligand conformation sam-
pling at Glide SP and XP stages to generate multiple input structures. 
This enhanced sampling gives each ligand three conformations, i.e., 
original conformation, optimized using MMFFS force field, and opti-
mized using OPLS force field. As the aim of any molecular docking al-
gorithm is to achieve best possible pose of ligand, which in turn is 
dependent on having lowest docking score, we have employed enhanced 
sampling and not dependent solely on docking algorithms for input 
generation [18]. Data on the top 10 conformations of three independent 
virtual screening runs are presented in Table 1 and Supplementary Ta-
bles 1 and 2. Ligands were sorted according to respective docking scores. 
The number of compounds kept in each consecutive step is represented 
in Supplementary Table 3. 

Docking simulation has been carried out on two different operating 
systems, viz. Centos 7 (Supplementary Table 1) and Ubuntu 18.04 
(Supplementary Table 2), although using the same software version, i.e., 
Schrodinger 2018–4. The score/ranking of compounds does not observe 
to be changed by variation in the operating system (comparing Sup-
plementary Tables 1 and 2). This may be caused as glide tries to 
approximate the complete systemic search, and non-deterministic 

sampling algorithm such as Monte Carlo has been applied primarily 
on final top scoring conformations and reported to be more accurate 
than other methods GOLD and surflex [17,34]. 

However, the docking scores were perturbed by software versions, 
input conformation, and computer hardware, such as random access 
memory and the number of processors (data not shown). To increase the 
number of input conformation in Table 1, the number of input com-
pounds is made equivalent to the number of input structures. Hence, 
598435 compounds have been used as input in the HTVS steps of virtual 
screen workflow compared to 26831 compounds in Supplementary 
Tables 1 and 2 (Supplementary Table 3). In the final XP stage, 4800 
input structures were evaluated compared to 2577 in Supplementary 
Tables 1 and 2. In Table 1, The top 3 hits are from ZINC ID 
ZINC000195838435, which corresponds to theaflavin digallate (TG). TG 
has chromane and benzo(7)annulen-6-one as a chemical scaffold. The 
top-scoring pose having docking score of − 15.263 kcal/mol has been 
observed irrespective of number of input conformation or computational 
infrastructure (Table 1 and Supplementary Tables 1 and 2). The mo-
lecular interactions of TG with the main protease have been presented in 
Fig. 1a, which reflects TG has dominant interaction with main protease. 

We have included telaprevir, a reversible covalent protease inhibitor 
clinically approved for hepatitis C, for the reference set [35]. This is 
represented by PDB ID 6XQS with ligand ID SV6 representing telaprevir, 
complexed with main protease. For the non-covalent inhibitor, we have 
included the MCULE-5948770040, which has been experimentally 
shown to inhibit main protease as PDB ID 7LTJ with ligand ID YD1 
representing MCULE-5948770040 [36]. We have also included a feline 
coronavirus inhibitor, GC376, with PDB ID 6WTJ and ligand ID K36 as 
GC376 [37]. We have included the PDB ID 7M01 complexed with in-
hibitor 14c [38]. The inhibitor 14c has two enantiomers, with ligand ID 
YKV and YKS. YKV and YKS have approximately similar propensity to 
form the covalent bond with Cys145. In the crystal structure, both YKS 
and YKV have equal occupancy. The set includes PDB ID 7M03 with 
inhibitor 18c having R, S enantiomer with ligand ID YLJ, and YLD in a 
similar structure series. We have also included the reference set from 
PDB ID 7LZT with inhibitor 8b having enantiomer with ligand ID YMY 
and YN1 [39]. We have also included the reference set from covalent 
inhibitor 2k having enantiomer with ligand ID Y4V and Y7M [40]. 

Table 1 
The top 10 ligands after the virtual screening of 598435 unique compounds (27256 unique chemical entities). The ligands are sorted according to their docking score.  

ZINC_id docking score (kcal/mol) XP Gscore (kcal/mol) Glide Gscore (kcal/mol) Glide energy (kcal/mol) Glide emodel (kcal/mol) 

ZINC000195838435 (Theaflavin 
digallate) 

− 15.263 − 15.2929 − 15.2929 − 80.7874 − 114.878 

ZINC000195838435 (Theaflavin 
digallate) 

− 14.9138 − 14.9437 − 14.9437 − 76.8608 − 109.745 

ZINC000195838435 (Theaflavin 
digallate) 

− 14.4314 − 14.4613 − 14.4613 − 72.5158 − 111.75 

ZINC33861449 − 14.4268 − 14.5059 − 14.5059 − 65.6439 − 106.16 
ZINC000085645325 − 14.24 − 14.24 − 14.24 − 83.6571 − 106.964 
ZINC000085645325 − 14.2216 − 14.2216 − 14.2216 − 72.4829 − 105.12 
ZINC000085645325 − 14.2128 − 14.2128 − 14.2128 − 83.4784 − 112.139 
ZINC67903526 − 14.1658 − 14.1944 − 14.1944 − 73.0363 − 116.279 
ZINC000085645325 − 14.1375 − 14.1375 − 14.1375 − 82.697 − 111.94 
ZINC000085645325 − 14.0532 − 14.0532 − 14.0532 − 81.513 − 109.506  

Table 2 
Residue-wise H bond persistence score of Theaflavin digallate and main protease 
during 10 independent metadynamics runs of 10 ns each.  

Mean Persistence score of ten independent run Residue involved 

0.282 Glutamate166 
0.009 Arginine188 
0.427 Threonine190 
0.145 Threonine190 
0.082 Threonine26 
0.027 Glycine143 
Mean:0.162   
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As the covalent inhibitor also needs noncovalent interaction to 
achieve the required proximity for covalent bond formation, we have 
used the crystallographic covalent inhibitors as non-covalent inhibitors 
in our reference set [41]. We compared the crystallographic poses of 
known noncovalent inhibitors (YD1), covalent inhibitors (SV6, YKS, 
YLJ, YNI, Y4V, and K36), and docked pose of TG (Fig. 1e). None of the 
crystallographic poses of known inhibitors are completely superimposed 
with either TG or each other. However, strong hydrogen bond interac-
tion with Glu166 is observed in all the selected reference ligands and 

docked TG. The superimposed main protease crystal structure surface at 
50% transparency reflects the TG docked deep in the crystallographic 
binding site cavity (Supplementary Fig. 1A). A surface view of crystal-
lographic pose and docked TG pose reflect TG and crystallographic li-
gands share the same active site cavity (Supplementary Fig. 1B). The 
docked poses of reference set have a similar interaction as in the crys-
tallographic pose and as in the docked pose of TG (Supplementary 
Fig. 1C). The crystallographic poses, docked poses of reference com-
pounds, and TG pose showed a strong hydrogen bond interaction with 
Glu166. 

However, TG can be a top hit due to the bias in the ligand library. The 
number of compounds in consecutive stages of the virtual screen 
workflow has been changed to remove this bias, as shown in Supple-
mentary Table 3. Furthermore, we have performed hierarchical clus-
tering of the ligand library. The 27256 unique natural product inputs 
were divided into 3194 clusters (Fig. 1f). TG (ZINC000195838435) falls 
into cluster number 86. Cluster number 86 has 33 natural products out 
of 27256 unique compounds. This may indicate that top ranking of TG is 
not due to the presence of similar compounds in the input library. The 
3194 clusters have a mean compound number of 8.534 and a median of 
2 with a 75th percentile of 6 compounds. Cluster number 93 is observed 
as an outlier having 1481 compounds. However, none of the compounds 
from cluster number 93 have been observed as top-ranking compounds 
in Table 1 or Supplementary Tables 1 and 2 This may indicate the 
specificity of the docking method and grid used for the virtual screening 
workflow. 

3.2. Evaluation of TG and main protease interaction using molecular 
dynamics (Desmond and AMBER module) 

The molecular interaction of TG with main protease has been eval-
uated by molecular dynamic simulations. The total number of residues 
in main protease (PDB ID 6LU7) was 308 (306 amino acids + 2 terminal 
caps) and had a charge of − 4. The total molecular system has 36432 
atoms. The protein and ligand were simulated for 200 ns. During the 
simulation, protein fluctuated around 1.8 Å (Fig. 2a left axis), whereas 
the ligand fluctuated at about 4 Å (Fig. 2a right axis) when superimposed 
to the docked protein at 0 ns. The protein complex was observed to be 
achieved a metastable stage throughout the simulation of 200 ns 
(Fig. 2a). The RMSD of all atoms of binding site residues is represented 
in Fig. 2b to evaluate further the stability of simulation and dynamics of 
ligand interaction. The trajectory of all atoms of binding site residues 
was observed to be converged from 50 ns to 200 ns at 2.3 Å (Fig. 2b). 
Furthermore, RMSF values varied from 1 to 2 Å during the simulation, 
and it correlate with crystallographic B-factor and interaction with 
binding site residue. Corresponding RMSF values of binding site residues 
are shown as vertical lines in Fig. 2c. The radius of gyration of main 
protease varied between 22 and 30 Å during the simulation of 200 ns 
(Fig. 2d). 

Distinct global and collective motions of main protease were deter-
mined by performing PCA on the molecular dynamics trajectory. A 
scatter plot involving the first two principal components (PC1 vs. PC2) 
was also drawn to analyze the projections of the trajectory. The 2D 
projection plot illustrates the phase space explored by the trajectory 
during the simulation (Fig. 2e). The protein explores a large phase space. 
Moreover, the densely populated region represents the stable confor-
mations of the protein structure. First principal component and second 
principal component predominantly define the conformational space 
explored during MD simulation and thus represent conformational 
variance of the main protease. The first and second principal compo-
nents are also depicted as porcupine plots in Fig. 2f and Fig. 2g, 
respectively. The arrows represent the direction (eigenvector), and the 
length of the arrows denotes the magnitude of the motions 
(eigenvalues). 

TG approximately makes three hydrogen bonds, either directly or 
water-mediated, with Glu166 throughout the simulation of 200 ns. 

Fig. 1a. Ligand interaction diagram of theaflavin digallate (ZINC ID 
ZINC000195838435) with main protease, top 1st hit after the virtual screening 
of natural compound libraries. 

Fig. 1b. Ligand interaction diagram of theaflavin digallate (ZINC ID 
ZINC000195838435) with main protease. The ligand interaction diagram de-
picts complex file at time 0 ns, i.e., at the start of the production run for mo-
lecular dynamics simulation. 
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Glu166 of each protomer interacts with the “N-finger” of another pro-
tomer for dimerization, which is required for the catalytic activity of 
main protease [28]. At the start of production run, ligand interaction 
diagram is shown in Fig. 1b, whereas Fig. 1c represents the ligand 
interaction diagram at the end of the simulation. Fig. 1d represents the 
superimposed main protease after docking, at the start of production 
run, and at the end of simulation. While hydrogen bond interaction with 
residue Thr190 is observed at both the start and end of the simulation, a 
more water-mediated interaction and hydrogen bond formation with 
Cys145 of catalytic dyad, have been observed at the end of simulation. 

There are at least 14 residues (Thr26, His41, Cys44, Ser46, Glu47, 
Met49, Asn142, Gly143, Cys145, His164, Glu166, Asp187, Gln189, 
Thr190) in the main protease which interacts with TG for more than 100 
ns either through hydrogen bonds, hydrophobic, water bridges or ionic 
interaction (Fig. 2h). The catalytic residue Cys145 predominantly in-
teracts with water bridges, whereas His41 interacts mainly through 
hydrophobic interaction (Fig. 2h). The TG makes approximately 15 
contacts during the whole simulation (Fig. 2i). 

Among the evaluated interaction, H-bond was observed to be the 
most dominant in main protease and TG interaction. The trajectory of 
total number of hydrogen bonds between TG and main protease is 
shown in Fig. 2j, whereas the hydrogen bond occupancies with respect 
to simulation time and residues are shown in Supplementary Fig. 1D. 
The distribution of occupancy based on the type of hydrogen bond is 
shown as Supplementary Fig. 1E. The total number of hydrogen bonds 
with respect to simulation time varied from 3 to 13, with 25th percentile 
and 75th percentile values of 8 and 10, respectively. The mean and 
median for number of H bonds were 9 and 8.8, respectively. Concerning 
Glu166 residue, the number of hydrogen bonds varied between 1 and 4, 
with a 25th percentile and a 75th percentile value of 2 (Supplementary 
Fig. 1D). The mean and median for number of hydrogen bonds were 2.1 
and 2, respectively. Glu166 forms H-bond predominantly with its side 
chain atom type OE1 and OE2. The interaction fraction (% occupancy) 

for the H-bond formed by Glu166 and main protease was approximately 
2 (200%). Cys44, His164, Asp187, and Thr190 have more than 50% 
occupancy for the backbone acceptor type of H-bond. Gly143 interacts 
with backbone acceptor and Glu47 as side chain acceptor with more 
than 50% occupancy. 

Molecular dynamics simulation was also performed using Amber 
molecular dynamics package 2018 for 100 ns, and NPT condition with 
Amber ff99SB force field. The RMSD and RMSF values are represented in 
Supplementary Fig. 2. The RMSD of main protease and TG complex 
varied from 1.028 Å to 4.150 Å for 100 ns. The 25th percentile of RMSD 
was at 2.039 Å, whereas the 75th percentile was at 2.664 Å. The mean 
and median value of RMSD was 2.375 and 2.410 Å, respectively (Sup-
plementary Fig. 2A). The RMSF value has a mean and median value of 
1.324 and 1.164, respectively, including the terminal residue (Supple-
mentary Fig. 2B). Terminal residues showed an abnormally high value, 
usually observed in typical molecular dynamic simulations. This may 
confirm the reproducible, stable complex of TG and main protease and 
might not be due to the computational calculation artifact. 

3.3. Reproducibility of interacting partner Glu166 during the different 
simulation trajectories 

Reproducibility is an essential prerequisite for any scientific result. 
Experimental/biological replicates are often employed in any research 
method to estimate reproducibility. In molecular dynamics, identical 
atomic coordinates with identical force field parameters can be termed 
as replicates. In a typical molecular dynamics simulation, only the initial 
velocity is randomized. However, even with the same initial velocity, 
replicates can explore different trajectories owing to the computational 
architecture/software used, such as processors, floating-point precision, 
compiler, or type of random number seed generator [20,21,42]. Hence 
molecular interaction can also vary depending on the trajectories. For 
example, in the case of molecular dynamics simulation of T cell 

Fig. 1c. Ligand interaction diagram of theaflavin digallate (ZINC ID ZINC000195838435) with main protease. The ligand interaction diagram depicts complex file at 
time 200 ns, i.e., at the end of the production run for molecular dy-

namics simulation. . 
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receptors, the number of H bonds varied from 12.38 in one replicate to 
19.12 in another replicate [20]. 

The data represented in Fig. 2 have been acquired from GTX 1070 on 
Ubuntu 18.04 platform. Fig. 2 simulation results were completely 
reproducible while keeping all factors constant, as shown in Supple-
mentary Fig. 3 and Supplementary Fig. 4. We have explored the other 
conditions such as 100 ns at K40 GPU (Supplementary Fig. 5), simula-
tion at K40 GPU for 100 ns where the input conformation was of after 
100 ns of molecular dynamics simulation (Supplementary Fig. 6), 
simulation at 100 ns of main protease alone (Supplementary Fig. 7), 
simulation of main protease another template (PDB ID 6y84, Supple-
mentary Fig. 8), For 200 ns on K40 GPU (Supplementary Fig. 9), repli-
cate of 200 ns on K40 GPU (Supplementary Fig. 10), For 200 ns on K40 
GPU with OPLS3e forcefield (Supplementary Fig. 11). A comparison of 
the computing cores, i.e., GTX 1070 and Tesla K40, has been presented 
as Supplementary Table 4. Despite the difference in different molecular 
simulation paths explored, as evident by RMSD and RMSF plots, Glu166 
has appeared as a consensus dominant interacting residue with TG 
across all the evaluated variations. 

3.4. Estimation of binding free energy using MMGBSA (Prime and amber 
module) 

For the estimation of binding energy, we have employed the prime 
MMGBSA using VSGB2 as an implicit solvent model on docked com-
plexes and 1000 molecular dynamics trajectory snapshots [29]. For the 
three top docked complexes that correspond with TG, the MMGBSA dG 
bind score (estimated binding free energy) varied from − 69.06819456 
kcal/mol to − 70.85623647 kcal/mol. While during the 200 ns molec-
ular dynamics simulation involving 1000 snapshots, the MMGBSA dG 
bind score ranged from − 51.79 kcal/mol to − 122.74 kcal/mol, having a 
mean value of − 90.04 kcal/mol with a standard deviation of 9.68 
kcal/mol. The MMGBSA dG bind scores for consecutive snapshots of 
molecular dynamics trajectories in 200 ns simulations were presented in 
Fig. 3a. TG-main protease complexes have shown the average estimated 

binding energy of approximately − 90 kcal/mol throughout the molec-
ular dynamics simulation from 40 ns to 200 ns which may indicate the 
possible strong interaction between TG and main protease of 
SARS-CoV-2 (Fig. 3a). 

In the MMGBSA calculation, inclusion of explicit water molecules 
has been shown to increase the correlation between predicted and 
experimental binding energies [43,44]. The water molecules within 5 Å 
distance from ligand were considered explicitly. The MMGBSA dG bind 
score varied from − 52.95 kcal/mol to − 171.6 kcal/mol, having a mean 
value of − 118.0 kcal (Supplementary Fig. 12). However, a higher value 
of the standard deviation of 22.5 kcal/mol was observed. This can be 
due to the variation in the number of water molecules in the 5 Å region 
due to the movement of water molecules in a dynamic system. 

MMGBSA calculation was also performed using Amber molecular 
dynamics package 2018 for 100 ns and NPT condition with Amber 
ff99SB force field. The MMGBSA Delta Score (estimated binding free 
energy) as calculated from the Amber18 molecular dynamics package 
varies from − 26.23 kcal/mol to − 74.00 kcal/mol with a mean and 
median value of − 51.88 kcal/mol and − 52.60 kcal/mol, respectively 
(Fig. 3b). The MMGBSA delta score converges at approximately − 56 
kcal/mol, which indicates a favorable interaction between TG and main 

Fig. 1d. Superimposition of structural coordinates after docking, before the 
production run (time 0 ns), and after the production run (time 200 ns). Main 
protease after the docking is represented as cyan, at 0 ns is represented as blue, 
whereas at 200 ns is represented as pink. Docked TG is represented as red, at 
0 ns in yellow and 200 ns in green. 

Fig. 1e. Comparison of crystallographic poses of reference compounds with 
docked pose of TG. Superimposed protein crystal structure in cyan, whereas TG 
has been highlighted in yellow. The figure depicts noncovalent inhibitor YD1 in 
forest green, SV6 (telaprevir) in blue, YKS in violet-red, YLJ in light green, YNI 
in hot pink, and Y4V in green magenta, K36 (feline coronavirus inhibitor 
GC3760) in red. The upper panel represents the far view whereas lower panel 
represents the close view. 
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protease. 
The sum of van der Waals contribution and electrostatic interaction 

from molecular mechanics force field is normally termed as Delta G gas 
score, and it is independent of the solvation model used. The sum of 
nonpolar solvation free energy and polar solvation free energy is termed 
as Delta G Solvation Score, which depends on the solvation method 
used. Delta G gas score has the mean and median values of − 111.3 kcal/ 

mol and − 110.5 kcal/mol, respectively (Supplementary Fig. 2C). Delta 
G solvation score has the mean and median of 59.39 kcal/mol and 57.61 
kcal/mol (Supplementary Fig. 2D). Out of the final four interactions 
which contribute to the final estimated binding free energy, van der 
Waal, electrostatic, and nonpolar solvation energy was favorable, 
whereas polar solvation energy was unfavorable. 

3.5. Evaluation of binding pose and H-bond persistence using binding pose 
metadynamics simulation 

We have evaluated the binding pose of TG with main protease using a 
modified molecular dynamics simulation called binding pose metady-
namics, in which root mean square deviation of all heavy atoms in the 
ligand with respect to starting position is considered as a collective 
variable. Binding pose metadynamics simulation enables the enhanced 
exploration of conformational ensembles by employing a time- 
dependent bias on collective variables and thus guiding the simulation 
to search for unexplored free energy landscape and avoid the entrap-
ment of ligand in a kinetic basin. 

The objective of binding pose metadynamics is different from clas-
sical metadynamics simulation. Classical metadynamics aims to explore 
the free energy landscape. In contrast, binding pose metadynamics is 
interested in exploring the relative stabilities of input pose [33]. For 
scoring, we have used the termed persistence score and pose score. The 
scoring is based on the mobility of ligands, such as the persistence score 
measures the persistence of protein-ligand contacts, whereas pose score 
represents the movement of the ligand with respect to its initial position. 
An abrupt change in the pose score often indicates the ligands being not 
present in energy minimum. The persistence score measures the 

Fig. 1f. Hierarchical clustering of the ligand library. The figure shows the 
number of clusters on the X-axis and the number of compounds in the corre-
sponding cluster on the Y-axis. 

Fig. 2a. Root mean square deviation plot of C-alpha atoms of main protease and theaflavin digallate. The main protease is represented in pink line, whereas 
theaflavin digallate in dark line. Left Y-axis represents the RMSD of main protease, and right Y-axis represents the RMSD of theaflavin digallate aligned on protein. 
The X-axis represents the simulation time in nanoseconds. 

Fig. 2b. Root means square deviation plot of all atoms of binding site residues. Y-axis represents the RMSD of binding site residues, whereas X-axis represents 
simulation time in nanoseconds. 
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hydrogen bond persistence during simulation. 
One metadynamics run consists of ten independent runs of 10 ns. The 

simulation properties of two independent runs, such as target temper-
ature, number of atoms, potential energy, temperature, pressure, and 
volume are represented in Supplementary Table 5, which confirm the 
equilibration and convergence of system. The simulation interaction 
diagram of two independent runs of 10 ns has been shown as Supple-
mentary Figs. 13A and 13B. The number of interaction fractions for 
Glu166 was approximately 2.6 in the first run, whereas approximately 
3.3 in the second run. While there were changes in the interaction 
fraction of two independent runs, such as interaction with Cys44 was 
present in the first independent run, it diminished in the second inde-
pendent run. However, while comparing the interaction faction in the 
metadynamics run with classical molecular dynamics run, despite the 
change in the force field, ensemble (NVT vs. NPT), and biased potential, 
the strong interaction of Glu166 with TG was observed (Supplementary 
Figs. 13A and 13B). 

The overall persistence score of the H bond of main protease and TG 
was 0.162 (Table 2). Based on the H-bond persistence score only, Glu166 
has been observed as a robust interacting partner with an individual 
persistence score of 0.282 and mainly interacting with OE1/OE2 atom 
types with H10 of TG. Thr190 showed the H bond persistence score of 
0.427 and 0.145, respectively. The score shown in Table 2 mainly 
focused on the persistence of the H bond, whereas the interaction frac-
tion shown in Supplementary Fig. 13 A and 13 B showed the overall 

Fig. 2c. Root mean square fluctuation plot of C- alpha atoms of main protease. Ligand contacts are shown as vertical lines.  

Fig. 2d. Radius of gyration plot of main protease. Y-axis represents the radius of gyration in angstrom, and X-axis represents the simulation time in picoseconds.  

Fig. 2e. Two-dimensional projection for the first and second principal com-
ponents of molecular simulation trajectories. 
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interaction. The dominant interactor Glu166 has overall strong inter-
action due to the contribution of both H–Bond and water bridges as 
compared to Thr190 because Thr190 mainly interacts with H-bonds 
only. 

The binding pose score of main protease-TG complex was 2.46, as 
shown in Fig. 4. In this binding pose metadynamics, a steep slope of 
RMSD intends to have an unstable complex, which in turn reflects a high 
RMSD change [45]. However, this was not the case with main protease, 
after an initial jump in the RMSD value, i.e., a change in RMSD value of 
1.28 Å at 0.6 ns, which gradually increased to 2.46 Å at 10 ns. In the 
study by Fusani et al., the ligands having pose scores below two have 
been considered stable poses, whereas pose scores above four are 
considered unstable poses. The examples studied include the specific 
crystallographic ligands in which molecular weight was generally below 
500 Da. Natural products are usually chiral-rich molecules and have 
multi-ring scaffolds. As in this study, TG has a molecular weight of 
868.714 Da with 63 atoms, 70 bonds, and four chiral carbons. While 
pose scores are not benchmarked, exact stable pose scores of natural 
products are not defined. However, a higher RMSD can be generally 
expected for a higher molecular weight compound than a low molecular 
weight compound. 

Binding pose metadynamics has been shown to differentiate between 
a set of incorrect binding poses, i.e., not supported by electron density, 
with a set of correct binding poses, i.e., supported by electron density 
(Fusani et al., 2020). In the Drug Design Data Resource Grand Challenge 
2, binding pose metadynamics, although computationally intensive, has 
been observed to predict lower RMSD poses as compared to Smina, 
induced fit docking, and Align-close methods [46]. 

3.6. Estimation of relative free binding energy using alchemical free 
energy calculation 

The docking, classical dynamics, and binding pose metadynamics 
have shown a strong interaction with the hydroxyl groups in the benzene 
ring of benzo(7)annulen-6-one of TG. The alchemical transformation of 
TG to the perturbed TG′ has been performed at 12 “windows” which 
represent the steps carried out to achieve the final perturbed TG’. For the 
method control, aspartyl protease b-APP cleaving enzyme 1 (BACE 1) 
inhibitors, CAT-4j (IUPAC name(2E,5R)-2-imino-3-methyl-5-phenyl-5- 
[3-(pyridin-3-yl) phenyl]imidazolidin-4-one) and CAT-4b ((2E,5R)-2- 
imino-5-(3′-methoxybiphenyl-3-yl)-3-methyl-5-phenylimidazolidin-4- 
one) have been used having PDB ID 2DJW and 2DJV respectively [47]. 
This receptor and ligand system have been extensively studied using the 
free energy perturbation method [47,48]. The two-dimensional struc-
ture of method control ligands is shown in Supplementary Fig. 14 A. 

For the method control ligand (Table 3 FEP10, Supplementary 
Fig. 14A), the value of ΔG4 as corresponded to thermodynamic cycle 
and termed as complex calculation was 30.62+-0.07 kcal/mol whereas 
the value of ΔG3 as corresponded to thermodynamic cycle, termed as 
solution calculation was 31.68+-0.03 kcal/mol. As the relative free 
energy change in the complex form of CAT-4j (at λ = 0) and CAT-4b (at λ 
= 1) is lower than solution form of CAT-4j (a λ = 0), and CAT-4b (λ = 1), 
the binding of CAT-4b is more favorable than CAT-4j. Furthermore, the 
relative free energy by permuting CAT-4j to CAT-4b from the thermo-
dynamic cycle, ΔΔG = ΔG4- ΔG3 = 30.62+-0.07 kcal/mol − 31.68+- 

Fig. 2f. Porcupine plot for the first component of molecular dynamics trajec-
tories. The TG binding residues are highlighted in orange. The arrows in green 
color denote the direction of the dominant motions. Fig. 2g. Porcupine plot of the second component of molecular dynamics tra-

jectories. The TG binding residues are highlighted in orange. The arrows in 
green color denote the direction of the dominant motions. 
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0.03 kcal/mol = − 1.06+-0.08 kcal/mol. From the experimental data, 
the binding energy of CAT-4j is − 9.023 kcal/mol, which corresponds to 
the ΔG1 of the thermodynamic cycle, and binding energy of CAT-4b is 
− 9.633 kcal/mol, which corresponds to the ΔG2 of the thermodynamic 

cycle. Hence ΔΔG from the experimental data = ΔG2- ΔG1 = − 9.633 – 
(− 9.023) kcal/mol = − 0.610 kcal/mol, which is in agreement with free 
energy perturbation studies that CAT-4b has a stronger binding affinity 
than CAT-4j. We have performed the same free energy perturbation 

Fig. 2h. Interaction fraction (occupancy) plot of main protease with theaflavin digallate. Y-axis represents the total number of contact fractions per residue per 
simulation time, i.e., if the residue (presented on X-axis) has one contact during the whole simulation of 200 ns, it will have an interaction fraction score of 1. Glu166 
has a score of ~3, representing Glu 166 retains at least three total contacts during the whole simulation. 

Fig. 2i. Interaction dynamics of main protease with theaflavin digallate. Glu166 predominantly interacts with theaflavin digallate having a number of contacts 
ranging from 2 to 4 across the simulation trajectories. The total number of contacts during simulation was ~15. The heat map shows the number of contacts 
during simulation. 
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methodology for the calculation of relative binding free energy between 
TG and mutated ligand TG′ by the alchemical transformation of TG to 
TG’. 

We have used a method control ligand in the form of CAT-4j and 
CAT-4b, as the wet experimental data were available, whereas, in our 
test set, wet experimental data set was not available. To calculate the 
relative binding free energy of TG with main protease, the neutral TG 
molecule were kept at λ = 0, whereas the three hydroxyls and one 
carbonyl group of benzo(7)annulen-6-one of theaflavin digallate have 
been mutated for λ = 1. Specifically, oxygen atom numbers 19, 21, 54, 
and 52 were deleted, and the valency of carbon atom has been sufficed 
by H atoms (Fig. 5, Table 3 FEP1). The value of ΔG4, i.e., in the complex 
calculation, was 8.78+-0.53 kcal/mol, whereas the value of ΔG3, i.e., in 
solution calculation, was 4.41+-0.39 kcal/mol. Hence, relative free 
energy by permuting TG to TG′ from the thermodynamic cycle, ΔΔG =
ΔG4- ΔG3 = 8.78+-0.53 kcal/mol - 4.41+-0.39 kcal/mol = 4.38+-0.66 
kcal. Thus, TG has more affinity than TG’, and removing the hydroxyl/ 
carbonyl group in benzo(7)annulen-6-one drastically reduces the bind-
ing affinity. 

The free energy change in alchemical perturbation calculation de-
pends on the ligand alignment, and the crystallographic poses of TG/TG’ 
were not known. FEP was generally adapted for small molecule ligands, 
whereas TG has a molecular weight of 868.714 Da [49]. Hence, to 
confirm that the positive relative free energy is not a calculation artifact, 
ligand alignment was perturbed from the initial core RMSD 0.00 to a 
perturbed core of RMSD 0.790. For the perturbed core, ΔΔG = ΔG4- 
ΔG3 = 11.12+-0.70 kcal/mol − 5.48+-0.35 kcal/mol = 5.63+-0.78 
kcal/mol, which reflects the strong interaction of TG with main protease 
and not a calculation artifact (Supplementary Fig. 14B, Table 3, FEP2). 

Furthermore, as we do not have the crystallographic poses and owing 
to the limitation of alchemical free energy approaches in handling 
charges/ionization states, a set of alchemical free energy calculations 
was performed with different mutation and ionization states [50,51]. 
The inclusion of charged/ionization states in standard/default alchem-
ical free energy calculation is usually observed to be problematic in the 
default settings. However, the calculation was done to see the effect on 

the overall conclusion with previous free energy perturbation calcula-
tions (FEP1 and FEP2), i.e., TG can strongly interact with main protease. 
To generate the different ionization state as of non-ionized TG in FEP 3, 
we have used the same oxygen atoms of benzo(7)annulen-6-one of 
theaflavin as in earlier FEP 1 and 2. Specifically, the hydroxyl group of 
O19 and O21 were deleted and replaced by methyl group in TG’ whereas 
the carbonyl oxygen atom number 54 was positively charged and hy-
droxyl oxygen atom number 52 was negatively charged in both native 
and mutated ligand (Supplementary Fig. 14C, FEP3 Table 3). The ΔΔG 
= ΔG4- ΔG3 = 43.61+-0.88 kcal/mol - 41.28+-0.67 kcal/mol =
2.33+-1.11 kcal/mol which confirm the interaction of TG with main 
protease in FEP3 run. While not replacing the O19 and O21 group with 
methyl group and adding hydrogen atom to suffice the valency resulted 
in ΔΔG = ΔG4- ΔG3 = 33.08+-0.91 - 33.65+-0.59 = − 0.58+-1.08 in 
FEP4 (Supplementary Fig. 14 D, Table 3 in FEP4). Furthermore, deletion 
of oxygen atom numbers 19, 21, 54, and 52 have resulted in ΔΔG =
ΔG4- ΔG3 = 163.98+-0.86 - 161.63+-0.54 = 2.35+-1.02 in FEP5 
(Supplementary Fig. 14E, FEP5 Table 3). These studies confirm the three 
hydroxyls and one carbonyl oxygen atom of benzo(7)annulen-6-one are 
required for the interaction TG with main protease. The deletion of only 
two hydroxyl groups (O19 and O21) does not observe to cause the 
decrease in interaction of TG with main protease, which may be as the 
TG being polyphenols and neighboring hydroxyl and carbonyl group can 
compensate for the interaction. 

Furthermore, we have also evaluated the changes which can have 
low confidence in FEP calculation using the same default algorithm as in 
FEP 1–5, e.g., deletion of ten hydroxyl groups (Supplementary Fig. 14F, 
FEP6 Table 3), increase in the RMSD and differential ionization outside 
of benzo(7)annulen-6-one (Supplementary Fig. 14G, Table 3 FEP7 and 
Supplementary Fig. 14H, Table 3 FEP8), not aligned and with different 
software version (Supplementary Fig. 14 I, Table 3 FEP9). In FEP6, The 
TG, λ = 0 is at the same ionization state as FEP5, i.e., carbonyl oxygen 
atom number 54 was positively charged, and hydroxyl oxygen atom 
number 52 was negatively charged, however at λ = 1, ten hydroxyl 
groups were deleted. The ΔΔG = 3.89+-2.43 reflects a decrease in 
relative binding affinity upon deletion of hydroxyl group as in FEP1-5, 

Fig. 2j. Trajectory of total number of hydrogen bonds between theaflavin digallate and main protease. The number of hydrogen bonds varied between 3 and 13 
during the whole simulation, with median and mean values of 9 and 8.8, respectively. 
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although of low statistical confidence. In FEP7-8, at λ = 0, The TG is non- 
ionized as in FEP1-2. The carbonyl oxygen atom number 54 was posi-
tively charged as in FEP3-6. However, instead of hydroxyl oxygen atom 
number 52 as in FEP3-6, hydroxyl oxygen atom number 44 not present 
in benzo(7)annulen-6-one, was negatively charged. In FEP7, O21 was 
replaced by a single CH3 similar to FEP3, whereas 019 was deleted. In 
FEP8, both 019 and 021 were deleted as in FEP4. The ΔΔG value in 
FEP7 = 4.22+-8.94, which shows a decrease in affinity, although with 
low confidence. Similarly, in FEP7, -ΔΔG -2.05+-30.05, which shows a 
negative change, hence increase in interaction, however with low con-
fidence as compared to FEP4. In FEP9, ligands were not aligned, and the 
addition of the methyl group showed positive and negative changes 
depending on the version of the software used, which confirms the 
requirement of a good alignment for an interpretable result using free 
energy perturbation. 

We have also employed alchemical free energy calculation using 
thermodynamic integration and multistate Bennett’s acceptance ratio to 
validate the calculation using FEP (Supplementary Figs. 15A and 15B). 
For the test set, i.e., deletion of four hydroxyl groups, the value of ΔG4 
= complex = − 54.93 kcal/mol whereas ΔG3 = solution = − 59.22 kcal/ 
mol, hence the value of ΔΔG = ΔG4- ΔG3 = − 54.93 kcal/mol – − 59.22 
kcal/mol = 4.29 kcal/mol using MBAR. Similarly using the thermody-
namic integration, ΔΔG = ΔG4- ΔG3 = − 54.59 kcal/mol - − 58.91 kcal 
= 4.32 kcal/mol. Hence the value of estimated relative binding free 
energy using alchemical free energy calculation i.e., using FEP, ther-
modynamic integration, and multistate Bennett’s acceptance ratio are 
4.38 kcal/mol, 4.32 kcal/mol, and 4.29 kcal/mol, respectively. 

Using the similarity ensemble approach, TG appears to be in a pro-
tease inhibitor target class [52]. In the study of screening a natural 
products library against the 2003 SARS-CoV virus main protease, TG has 
a half-maximal inhibitory concentration of 7 μM against the main pro-
tease [22]. Since the onset of pandemic, several computational studies 
on the screening of natural product libraries have been published. 
However, to the best of our knowledge, evidence from alchemical free 
energy calculation has not been presented with any main-protease nat-
ural products complex. In the case of existing drugs, relative binding free 
energy was estimated using FEP for perampanel analogs [53]. An 
accelerated FEP was also used as virtual screening with existing drugs 
[54]. 

In the study of virtual screening of 200 published antiviral natural 
products, TG has appeared as the top-scoring natural product in mo-
lecular docking simulation using a different algorithm (Autodock v4) as 
in this study and our previous complementary study. The achieved pose 
was evaluated using molecular dynamics simulation for 50 ns and using 
another variant of force field as used in this study. A similar molecular 
interaction profile, such as the Glu166, came as the highest interacting 
partner as of this study [55]. Similarly, TG has been reported as a top hit 
in the computational study comprising a virtual screen of 70 tea com-
ponents and molecular dynamics for 100 ns [56]. Similarly, in the mo-
lecular docking studies using two tea polyphenols, TG has been shown to 
interact with Glu166 with two hydrogen bonds as in our molecular 
docking study, although using AutoDock Vina [56]. This may confirm 
the reproducibility of TG docked pose across the docking software 
platforms. 

Fig. 3a. MMGBSA dG bind scores of theaflavin digallate with main protease during molecular dynamics simulation using Desmond molecular dynamics package. X- 
axis represents the 1000 consecutive snapshots of molecular dynamics trajectory in 200 ns simulation. Y-axis represents MMGBSA dG bind score of theaflavin- 
digallate complex. 

M. Manish et al.                                                                                                                                                                                                                                



Computers in Biology and Medicine 150 (2022) 106125

14

The literature reports an extensive application of docking and mo-
lecular dynamics to identify the potential natural product inhibitors 
against the main protease. Such as, by using molecular docking, natural 
2-pyridones have been reported as a potential inhibitor [57]. Similarly, 
using molecular docking and dynamics for ten ns, a set of marine natural 
products has been reported as a putative inhibitor [58]. Microbial 

natural products were also screened using molecular docking and dy-
namics for 20 ns [59]. Similarly, phytochemicals were also screened 
using docking, dynamics for 100 ns, and binding free energy estimation 
using MMPBSA [60]. 251 quantum mechanically optimized natural 
polyphenols were also studied using molecular docking and dynamics. 
Glu166 is observed as a consensus interacting residue in the top 12 re-
ported compounds in this study [61]. 

However, the docking scores alone will not always result in high in- 
vitro inhibition. In the study of natural products and main protease, 
many high-scoring hits, such as tubuloside and maltopentose failed to 
show inhibition in in-vitro assays [62]. Similarly, the sole dependence 
on conformation generator of docking algorithms might not guarantee 
the possible search space for achieving the lowest energy/best pose [18]. 
Similarly, the conclusion based on single trajectories using a single al-
gorithm can be inaccurate [20]. Furthermore, binding energy estimation 
using endpoint methods such as MMGBSA/MMPBSA tends to be less 
accurate than alchemical free energy calculation [63,64]. In the case of 
the main protease inhibitor discovery, free energy perturbation is rec-
ommended in benchmarking studies [16,17]. 

4. Conclusion 

This study is based on mere computational calculations, although 
robust, and indicates that TG may inhibit SARS-CoV-2 main protease, 
maybe by inhibiting protease dimerization due to strong interaction 
between Glu166 of main protease and hydroxyl/carbonyl group in 
benzo(7)annulen-6-one scaffold of TG. Furthermore, in the computa-
tional calculation, the unavailability of crystallographic pose and high 

Fig. 3b. MMGBSA delta total scores of theaflavin digallate with main protease during molecular dynamics simulation. X-axis represents the 1000 consecutive 
snapshots of molecular dynamics trajectories in 100 ns simulation. Y-axis represents MMGBSA delta total scores of theaflavin-digallate complex. 

Fig. 4. Root mean square deviation plot of collective variables (theaflavin 
digallate heavy atoms) during metadynamics simulation of 10 ns. 
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molecular weight of TG limits the overall reliability of binding free en-
ergy calculation [49,65]. The major limitation of our study is the wet 
experimental validation. Only invitro data is available in scientific 
literature to show that TG can inhibit SARS-CoV main protease. Whether 
the TG remains to be effective against SARS-CoV-2 or Covid-19 has not 
been explored in our study. While the computational calculation is 
necessary for any drug discovery pipeline, it alone cannot provide evi-
dence for the effectiveness of any drug against any disease. 

In wet experimental cellular screens against SARS-CoV-2, it has been 
reported that 60% of the reported repurposed drugs against SARS-CoV-2 
are acting through non-specific mechanisms [66]. Natural products, 
although readily available however proven to be difficult to be evalu-
ated in robust clinical settings or as original natural sources such as 
curcumin [67]. Similarly, an exact wet experiment or clinical studies 
providing evidence on TG efficacy are challenging to conduct because of 
the enormous number of variants available as natural resources. How-
ever, this study offers a scientific rationale for initiating an observational 
clinical study and in-vitro experiments with SARS-CoV-2 main protease 
for conclusive evidence. 
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All non-modified, time-stamped, raw data of every step of compu-
tational simulations using Desmond academic version such as classical 
dynamics and free energy perturbations are provided at https://drive. 
google.com/drive/folders/1SvNdMpVvd2Q48vxV_bnR2tYYlBTF6s4H? 
usp=sharing. These raw data include all the input files, output files, 
parameters, and log files. Furthermore, these data are represented as 
tables, figures, supplementary tables, and supplementary figures in the 
manuscript draft. 

Code availability 

Free energy perturbation and molecular dynamics have been per-
formed using an academic version of Desmond, available for an aca-
demic institution with no cost involved at https://www.deshawrese 
arch.com/. Data in the manuscript were generated using only two 
software suites, viz. Schrodinger and Amber, which are being exten-
sively used and can be easily accessed in the form of license or 
evaluation. 

Table 3 
Relative free energy change calculated using alchemical free energy perturba-
tion. Theaflavin digallate is at λ = 0, whereas the mutated residues are at λ = 1. 
*Using Desmond 2018_4, ** Using Desmond2019_4, ***using Desmond 2018_1.   

Starting molecule, 
Mutation at λ = 1 

Relative free energy 
change (kcal/mol) 

Core 
RMSD 
(In Å) 

FEP1 (test set) Non-ionized TG, 
Deletion of four 
hydroxyl groups 

ΔG4 = complex =
8.78+-0.53, ΔG3 =
solution = 4.41+- 
0.39, 
ΔΔG = 4.38+-0.66 

0.000 

FEP2 
(experimental 
control1) 

Non-ionized TG, 
Deletion of four 
hydroxyl groups 

ΔG4 = complex =
11.12+-0.70, ΔG3 =
solution = 5.48+- 
0.35, ΔΔG = 5.63+- 
0.78 

0.790 

FEP3 
(experimental 
control2) 

Ionized TG, Substitution 
of two hydroxyl groups 
with two methyl groups 

ΔG4 = complex =
43.61+-0.88, ΔG3 =
solution = 41.28+- 
0.67, ΔΔG = 2.33+- 
1.11 

0.000 

FEP4 
(experimental 
control3) 

Ionized TG, deletion of 
two hydroxyl groups 

ΔG4 = complex =
33.08+-0.91, ΔG3 =
solution = 33.65+- 
0.59, ΔΔG = − 0.58+- 
1.08 

0.000 

FEP5 
(experimental 
control4) 

Ionized TG, deletion of 
four hydroxyl groups 

ΔG4 = complex =
163.98+-0.86, ΔG3 =
solution = 161.63+- 
0.54, ΔΔG = 2.35+- 
1.02 

0.000 

FEP6 
(experimental 
control5) 

Ionized TG, deletion of 
ten hydroxyl groups 

ΔG4 = complex =
255.07+-1.63, ΔG3 =
solution = 251.18+- 
1.80, ΔΔG = 3.89+- 
2.43 

0.105 

FEP7 
(experimental 
control6) 

Non-ionized TG, 
differentially ionized 
mutated residue, one 
OH deleted, CH3 added 

ΔG4 = complex =
− 137.65+-8.82, ΔG3 
= solution =
− 141.87+-1.46, ΔΔG 
= 4.22+-8.94 

0.356 

FEP8 
(experimental 
control7) 

Non-ionized TG, 
differentially ionized 
mutated residue. Both 
OH were deleted. 

ΔG4 = Complex = −

149.18+-29.98, ΔG3 
= solution =
− 147.13+-1.99, ΔΔG 
= − 2.05+-30.05 

0.356 

FEP9 
(experimental 
control8) 

Ionized TG, OH 
replaced with CH3 

ΔG4 = Complex =
24.32+-3.80 ΔG3 =
solution = 20.40+- 
1.74, ΔΔG = 3.92+- 
4.18* 

Not 
aligned 

ΔG4 = Complex =
21.19+-6.51, ΔG3 =
solution = 23.30+- 
3.99, ΔΔG = − 2.11+- 
7.63** 

FEP10 (method 
control) 

CAT-4j, 
CAT-4b 

ΔG4 = Complex =
30.02+-0.11, ΔG3 =
solution = 31.81+- 
0.04 ΔΔG = − 1.79+- 
0.11*** 

Core 
RMSD: 
0.078 

ΔG4 = Complex =
30.62+-0.07, ΔG3 =
solution = 31.68+- 
0.03, ΔΔG = − 1.06+- 
0.08**  

Fig. 5. Two dimensional structure of test ligands used in free energy 
perturbation calculation. Relative binding free energy of TG with main pro-
tease has been calculated using neutral TG molecule kept at λ = 0, whereas the 
3 hydroxyls and one carbonyl group of benzo(7)annulen-6-one of theaflavin 
digallate have been mutated for λ = 1. The relative binding free energy dif-
ference between TG (λ = 0) and TG’ (λ = 1) was 4.38+-0.66 kcal/mol which 
reflects the increase in binding free energy, thus a decrease in interaction by 
converting TG into TG’. The mutated regions are highlighted as yellow box. 

M. Manish et al.                                                                                                                                                                                                                                

https://drive.google.com/drive/folders/1SvNdMpVvd2Q48vxV_bnR2tYYlBTF6s4H?usp=sharing
https://drive.google.com/drive/folders/1SvNdMpVvd2Q48vxV_bnR2tYYlBTF6s4H?usp=sharing
https://drive.google.com/drive/folders/1SvNdMpVvd2Q48vxV_bnR2tYYlBTF6s4H?usp=sharing
https://www.deshawresearch.com/
https://www.deshawresearch.com/


Computers in Biology and Medicine 150 (2022) 106125

16

Authors’ contribution 

Computational calculations were performed by SM, MM and AA. 
Original Draft was prepared by SM, MM and NS. The final draft was 
prepared by AA, SM, MM and NS. NS provided the computational 
infrastructure and overall guidance. The computational experiments 
were designed by SM, MM, AA and NS. All the authors approved the 
final manuscript. 

Declaration of competing interest 

The authors declare that they have no conflicts of interest or any 
competing interests. 

Appendix A. Supplementary data 

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.compbiomed.2022.106125. 

References 

[1] Coronaviridae Study Group of the International Committee on Taxonomy of 
Viruses, The species Severe acute respiratory syndrome-related coronavirus: 
classifying 2019-nCoV and naming it SARS-CoV-2.,, Nat Microbiol. 5 (2020) 
536–544, https://doi.org/10.1038/s41564-020-0695-z. 

[2] WHO coronavirus (COVID-19) dashboard | WHO coronavirus (COVID-19) 
dashboard with vaccination data, n.d, https://covid19.who.int/. (Accessed 15 
January 2022). 

[3] B. Krichel, S. Falke, R. Hilgenfeld, L. Redecke, C. Uetrecht, Processing of the SARS- 
CoV pp1a/ab nsp7–10 region, Biochem. J. 477 (2020) 1009–1019, https://doi.org/ 
10.1042/bcj20200029. 

[4] S. Zhang, K. Amahong, X. Sun, X. Lian, J. Liu, H. Sun, Y. Lou, F. Zhu, Y. Qiu, The 
miRNA: a small but powerful RNA for COVID-19,, Briefings Bioinf. 22 (2021) 
1137–1149, https://doi.org/10.1093/bib/bbab062. 

[5] M.M. Zhao, W.L. Yang, F.Y. Yang, L. Zhang, W.J. Huang, W. Hou, C.F. Fan, R. 
H. Jin, Y.M. Feng, Y.C. Wang, J.K. Yang, Cathepsin L plays a key role in SARS-CoV- 
2 infection in humans and humanized mice and is a promising target for new drug 
development, Signal Transduct. Targeted Ther. 6 (2021) 1–12, https://doi.org/ 
10.1038/s41392-021-00558-8. 

[6] A. Jayk Bernal, M.M. Gomes da Silva, D.B. Musungaie, E. Kovalchuk, A. Gonzalez, 
V. Delos Reyes, A. Martín-Quirós, Y. Caraco, A. Williams-Diaz, M.L. Brown, J. Du, 
A. Pedley, C. Assaid, J. Strizki, J.A. Grobler, H.H. Shamsuddin, R. Tipping, H. Wan, 
A. Paschke, J.R. Butterton, M.G. Johnson, C. De Anda, Molnupiravir for oral 
treatment of covid-19 in nonhospitalized patients, N. Engl. J. Med. 386 (2022) 
509–520, https://doi.org/10.1056/nejmoa2116044. 

[7] L. Vangeel, W. Chiu, S. De Jonghe, P. Maes, B. Slechten, J. Raymenants, E. André, 
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