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Ectomycorrhizal (ECM) symbioses play an important role in tree biology 

and forest ecology. However, little is known on the composition of bacterial 

and fungal communities associated to ECM roots. In the present study, 

we surveyed the bacterial and fungal microbiome of ECM roots from stone 

oaks (Lithocarpus spp.) and Yunnan pines (Pinus yunnanensis) in the subtropical 

forests of the Ailao Mountains (Yunnan, China). The bacterial community was 

dominated by species pertaining to Rhizobiales and Acidobacteriales, whereas 

the fungal community was mainly composed of species belonging to the 

Russulales and Thelephorales. While the bacterial microbiome hosted by ECM 

roots from stone oaks and Yunnan pines was very similar, the mycobiome of 

these host trees was strikingly distinct. The microbial networks for bacterial 

and fungal communities showed a higher complexity in Lithocarpus ECM 

roots compared to Pinus ECM roots, but their modularity was higher in Pinus 

ECM roots. Seasonality also significantly influenced the fungal diversity and 

their co-occurrence network complexity. Our findings thus suggest that the 

community structure of fungi establishing and colonizing ECM roots can 

be influenced by the local soil/host tree environment and seasonality. These 

results expand our knowledge of the ECM root microbiome and its diversity in 

subtropical forest ecosystems.
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Introduction

Boreal, temperate and tropical forests are major terrestrial 
biomes and host a large part of the plant, animal and microbial 
diversity (Baldrian, 2017). Importantly, forests play a crucial role 
in global climate regulation (Pan et al., 2011; Pohjanmies et al., 
2017; Mishra et al., 2020). Forest trees are tightly associated to soil 
microorganisms, including widespread beneficial mycorrhizal 
associations (van der Heijden et  al., 2015). Ectomycorrhizal 
(ECM) fungi colonize up to 95% of tree root tips in temperate, 
boreal and subtropical forest ecosystems—biomes that make up 
much of the global terrestrial carbon sink. These root-colonizing 
fungi receive photosynthetically-fixed carbon from their host 
plants in exchange for plant growth-limiting soil nutrients, such 
as nitrogen and phosphorus, and they are key players in soil 
carbon sequestration. Apart from improving tree nutrition, 
symbiotic fungi also enhance plant resistance against abiotic and 
biotic stresses (van der Heijden et al., 2015; Nehls and Plassard, 
2018; Dreischhoff et al., 2020). Together with other commensal 
and endophytic bacteria and fungi, ECM symbionts constitute the 
plant microbiome which significantly expands the genomic 
potential of the host as it serves functions that support host 
development, growth and nutrition (Berendsen et  al., 2012; 
Turner et  al., 2013; Berg et  al., 2014; Beckers et  al., 2017). 
Mycorrhizal roots represent an important niche for soil bacteria 
and fungi (Garbaye, 1994; Perotto and Bonfante, 1997; Bending 
et  al., 2002; Frey Klett et  al., 2007; Marupakula et  al., 2016). 
However, the factors influencing the composition and structure of 
the microbial communities inhabiting ECM roots and their 
interactions are still poorly known. Given the importance of ECM 
fungi in tree biology and forest ecology, there is thus a need for a 
better understanding of the mechanisms driving the assembly of 
bacterial and fungal communities in ECM roots.

Izumi et al. (2007) identified that the most abundant cultivable 
bacteria found in Pinus nigra roots colonized by the fungal ECM 
fungi Suillus variegatus and Tomentellopsis submollis pertained to 
the Pseudomonas, Burkholderia and Bacillus genera. Further 
studies have shown that the zone adjacent to hyphal tips of 
arbuscular mycorrhizal fungi (AMF), the so-called hyphosphere, 
hosted a wide range of bacteria belonging to the Firmicutes, 
Actinobacteria, Bacteroidetes, Proteobacteria, Chloroflexi, 
Planctomycetes and Verrucomicrobia (Marupakula et al., 2016; 
Emmett et al., 2021). Bacterial populations were much higher in 
the rhizosphere compared to the hyphosphere and a striking shift 
in the bacterial composition between the hyphosphere and the 
rhizosphere has been reported (Andrade et al., 1997; Frey Klett 
et al., 2007). Bacillus and Arthrobacter were frequently found in 
the hyphosphere, while Pseudomonas dominated in the 
rhizosphere soil confirming the effect of mycorrhizal fungi on 
bacterial composition (Frey Klett et  al., 2007; Gahan and 
Schmalenberger, 2015; Zhang et al., 2021). In Betula pubescens, it 
has also been shown that different ECM associations hosted 
distinctive bacterial and fungal microbiomes (Izumi and Finlay, 
2011). Carbon compounds, such as trehalose, released by the 

fungal mycelium likely promote bacterial growth and the mycelial 
networks may facilitate bacterial co-migration in soil (Frey Klett 
et al., 2007; Nazir et al., 2010; Warmink et al., 2011). On the other 
hand, the direct access of ECM fungi to glucose released by root 
cells entails a competitive advantage over other soilborne 
microbes. Thus, the presence of ECM fungi can, in some 
circumstances, lead to suppressed growth and respiration by other 
soil microorganisms, such as saprotrophic fungi, thereby further 
increasing belowground carbon sequestration. In turn, bacteria 
have beneficial effects on symbiotic fungi; Burkholderia BS001 is 
able to protect its fungal host from the detrimental effect of 
antifungal agents (Nazir et al., 2014), whereas some mycorrhiza-
associated bacteria produce compounds that are antagonistic to 
plant pathogens (Riedlinger et al., 2006; Frey Klett et al., 2007). 
Pseudomonas and Bacillus of the AMF hyphosphere mobilize soil 
inorganic phosphorus (Wang et al., 2016). Mycorrhizal helper 
bacteria play a role in diverse key functions, including germination 
of fungal propagules, promotion of mycelial growth, reduction of 
soil-mediated stresses and affect host recognition (Garbaye, 1994; 
Perotto and Bonfante, 1997; Bending et al., 2002; Frey Klett et al., 
2007; Aspray et  al., 2013; Marupakula et  al., 2016; Zhang 
et al., 2021).

Biotic and abiotic factors strongly influence the composition 
of bacterial and fungal communities. Plant developmental stages 
shape the assembly patterns of the plant microbiome (Xiong et al., 
2021a), including the community of ECM fungi. The composition 
of the microbiome inhabiting ECM roots is modulated by the host 
tree genotype and physiology, but also by rhizospheric 
microorganisms, soil properties and seasonality (Frey Klett et al., 
2007; Izumi and Finlay, 2011; Bonito et al., 2014; Deveau, 2016). 
Analysis of the core bacterial microbiome of ECM roots suggested 
that it is not influenced by the species of ECM fungi, while roots 
play an important role in shaping its composition (Marupakula 
et al., 2016). However, the contribution and importance of tree 
species on the ECM microbiome composition remain poorly 
understood. A deeper knowledge of the mechanisms that govern 
the assemblage of microbial communities in ECM roots is needed 
to better understand and predict the greater ecosystem impacts of 
ECM associations. This includes determining how the host affects 
the microbiome composition, as well as how ECM fungi impact 
their associated microbes.

In a companion study, we  surveyed by metabarcoding 
sequencing, the diversity and composition of soil bacteria and 
fungi in an old-growth forest, dominated by stone oaks 
(Lithocarpus spp.) and in a secondary Yunnan pine woodland in 
the subtropical Ailao Mountains in the Yunnan province, China 
(Zeng et al., 2022). Limited information exists on the alterations 
of soil microbiological characteristics in subtropical montane 
forests, while little is known of how the microbiome distribution 
pattern, life history and functional traits vary during forest 
replacement, e.g., old-growth Lithocarpus forest versus native pine 
woodlands. We therefore assessed the effect of forest replacement 
and other environmental factors, including soil horizons, soil 
physicochemical characteristics and seasonality (monsoon vs. dry 
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seasons). We showed that tree composition and variation in soil 
properties were major drivers for both soil bacterial and fungal 
communities, with a significant influence from seasonality. ECM 
symbionts dominated the functional fungal guilds. Owing to the 
importance of the ECM fungal community, we aimed here to 
characterize the fungal and bacterial microbiomes of ECM roots 
from stone oaks and Yunnan pines. We  have used culture-
independent, high-throughput ribosomal DNA amplicon 
sequencing to investigate variation patterns in bacterial and fungal 
communities associated to ECM roots. We hypothesized that (1) 
tree species would be the primary factor shaping the ECM root 
microbiome due to host selection effects and (2) the microbial 
composition would differ with environmental factors, such 
as seasonality.

Materials and methods

Experimental design and sample 
collection

The sampling site was located in the Ailaoshan National Forest 
Ecosystem Research Station in Jingdong country, Yunnan 
Province (24°31′ N, 101°01′ E). The Ailaoshan lie between the 
southern and northern subtropical forest formations in a 
transition area. The most extensive forest ecosystem is a 
contiguous primary, old-growth broadleaf evergreen stone oaks 
(Lithocarpus) association which covers 75–80% of the region 
(Young et  al., 1992). Two types of forests, dominated by 
Lithocarpus sp. and Pinus yunnanensis, were selected in this study. 
The stone oaks (Lithocarpus) old-growth forest, lies in a protected 
area of 5,100 ha of evergreen forest with a stand age of more than 
300 years (Song et al., 2017). The upper canopy of the forest is 18 
to 25 m high. Diameter at breast height (DBH) of the selected 
stone oaks ranged from 75 to 180 cm. The soils are loamy Alfisols 
(Chan et al., 2006; Wen et al., 2017). The nearby Pinus woodland 
replaced evergreen old-growth broadleaf stands about 55–65 years 
ago (Young and Wang, 1989). The pine woodland was located in 
an open, park-like area with a minimum of human interference. 
The DBH of the selected pine trees ranged from 65 to 95 cm. 
Although these two forest associations are located a dozens of km 
apart, they had few plant species in common. In this area, the 
annual mean temperature is 11.6°C and the mean annual 
precipitation is 1799 mm, 86% of which occurs during the wet 
season from May to October (Song et al., 2017). Sample collection 
in these two forests was performed in April and August 2020, 
corresponding to the end of the dry season and wet seasons, 
respectively.

Both stone oaks and Yunnan pines are known to form ECM 
associations. We collected ECM root samples in six plots, three 
located beneath stone oaks and three located beneath Yunnan 
pines. Individual plots were separated by ~100 m and the area of 
each plot was ~900 m2. In each plot, four individual adult trees, 
separated by 5 m to 15 m, were selected for ECM root collection. 

For each tree, two samples were collected at 1 m (north and south) 
from the base of the trunk. We sampled the ECM root tips and 
ECM root cluster found in a series of soil samples (20 × 20 cm, 
depth of 0–30 cm). In total, 96 samples were collected for 
microbial community DNA analysis (2 sites × 3 plots × 4 trees × 2 
directions × 2 seasons). ECM root tips and clusters were separated 
from the main root system using forceps and a cutter, and any 
remaining soil particles attached to ECM roots or ECM root 
clusters (Supplementary Figure S1) were carefully removed using 
forceps and distilled water. ECM roots were distinguished based 
on external morphological characteristics (i.e., presence of a 
fungal mantle, forked pine roots, clustered roots). Between 10 to 
100 ECM roots were harvested per replicate and snap frozen in 
dry ice until brought back to the Kunming Institute of Botany 
(KIB) where root samples were stored at −80°C prior to 
DNA extraction.

DNA extraction, gene amplification and 
sequencing

Total DNA was extracted from ECM roots using a modified 
CTAB protocol (Maropola et al., 2015). In brief, 850 μl CTAB 
buffer (1 M Tris–HCl, 4 M NaCl, 0.5 M EDTA, 2% CTAB, 0.2% 
β-mercaptoethanol) was added to ECM roots and incubated at 
65°C for 1 h, followed by the addition of 850 μl 24:1 (v/v) 
chloroform/isoamyl alcohol solution. The tubes were vortexed for 
10 min and centrifuged (12,000 rpm, 10 min). The supernatant was 
collected in a new tube and 850 μl chloroform/isoamyl solution 
was added to the samples. Next, the tube was vortexed for 10 min 
and centrifuged (12,000 rpm, 10 min). Equal volumes of ice-cold 
isopropanol were added to the supernatants collected in a fresh 
tube and mixed by inverting, followed by incubation at-20°C for 
24 h and centrifugation (12,000 rpm, 30 min). The supernatants 
were discarded and DNA pellets were washed twice with 800 μl 
75% ethanol and eluted following centrifugation (12,000 rpm, 
3 min). The DNA pellets were air-dried and then resuspended in 
80 μl ddH2O before storing at-20°C. The concentration and quality 
of DNA were determined using the Nanodrop ONE 
spectrophotometer (Thermo Fisher Scientific, Waltham, MA, 
United States).

Bacterial and fungal communities were analyzed by high-
throughput DNA metabarcoding sequencing. Bacterial 
communities were profiled by targeting a region of the 16S rRNA 
using the primer pairs 515F/806R. The composition of the fungal 
community was assessed by targeting the internal transcribed 
spacers (ITS). The ITS1 primers were used to amplify the samples 
collected during the dry and wet seasons, whereas the 16S and 
ITS2 primers were only used to amplify the samples collected 
during the wet season. We sequenced both the ITS1 and ITS2 
regions using the primer pairs ITS1F/ITS2 and ITS86/ITS4, 
respectively (Caporaso et al., 2011; De Beeck et al., 2014). All PCR 
reactions were performed in 30 μl volume with 15 μl of Phusion® 
high-Fidelity PCR Master Mix (New England Biolabs), 0.2 μM 
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each of forward and reverse primers and 10 ng template 
DNA. PCR amplifications were performed using the following 
program: 1 min initial denaturation at 98°C, 30 cycles of 10 s at 
98°C, 30 s at 50°C, and 30 s at 72°C, with a final 5 min elongation 
at 72°C. Libraries were generated using the Illumina TruSeq DNA 
PCR-Free Library Preparation Kit (Illumina, United  States) 
following the manufacturer’s recommendations and index codes 
were added. The library quality was assessed using the Qubit 2.0 
Fluorometer (Thermo Scientific) and on the Agilent Bioanalyzer 
2,100 system. All samples were pooled in equimolar concentrations 
and subsequently sequenced on the Illumina NovaSeq platform 
with a paired-end protocol by Novogene Biotech Co., Ltd. 
(Beijing, China).

Bioinformatic processing of the 
sequences

Amplicon data were analyzed using a combination of 
VSEARCH v2.13.3 and QIIME 1.9.1. softwares (Caporaso et al., 
2010; Zgadzaj et al., 2016). Raw sequences were split based on 
their unique barcodes and the primer sequences, and low-quality 
sequences were trimmed off using an in-house script. Next, the 
paired-end sequences were merged using the USEARCH software 
v11.0.667 and the resultant sequences were quality-filtered. 
Singletons were removed using VSEARCH. The sequence reads 
were then clustered into operational taxonomic units (OTUs) at 
97% similarity level using the UPARSE pipeline. Chimeric 
sequences that were identified using the reference-based methods 
were removed from the data. Representative sequences were 
classified using the BLAST algorithm with SILVA v.13.2 and 
UNITE v8.0 reference databases (Quast et al., 2013; Nilsson et al., 
2019). Mitochondrial and chloroplast DNA sequences, as well as 
the OTUs with a total relative abundance of <0.00001  in all 
samples were discarded. The raw sequencing data have been 
submitted to the Sequence Read Archive under the accession 
number PRJNA820166 (16S and ITS2) and PRJNA782391 (ITS1).

Statistical analysis

To assess alpha-diversity indices, a rarefaction step of 
sequence reads was performed to obtain the same amount of reads 
among samples, i.e., 29,715, 34,997 and 6,744 reads, corresponding 
to the lowest number of sequenced reads per sample, for 16S, ITS1 
and ITS2 amplicons, respectively. The cumulative sum scaling 
(CSS) was used as a normalization method for beta-diversity 
analysis. A principal coordinate analysis (PCoA) was performed 
using the cmdscale function in the vegan packages. Bacterial and 
fungal alpha-diversity (observed OTUs and Shannon index) was 
calculated using QIIME. The observed significant differences were 
evaluated by one-way ANOVA (analysis of variance). Bacterial 
and fungal beta-diversity was estimated according to the Bray-
Curtis distance between samples. Permutational multivariate 

ANOVA (PERMANOVA) statistical tests were performed using 
the R packages, vegan, with the adonis function having 999 or 
1,000 permutations (Xiong et al., 2021b).

Venn diagrams were drawn using the OECloud tools (https://
cloud.oebiotech.cn) to analyze the overlapping and unique OTUs 
between Lithocarpus and Pinus samples. Differential abundance 
between Lithocarpus and Pinus samples was assessed at phylum 
and class levels using the STAMP software and Welch’s tests 
followed by Benjamini-Hochberg FDR corrections (Parks et al., 
2014). This analysis was also performed at OTUs level using the 
Edge’s generalized linear model (GLM) in the “edgeR” packages, 
with trimmed mean of M-values (TMM) normalization method 
and a threshold of significance set at p < 0.05 (Robinson et al., 
2010). To identify the biomarkers of different tree species and 
sampling season, a linear discriminant analysis effect size (LEfSe) 
was employed (Wilcoxon value of p  <0.05, logarithmic LDA 
(linear discriminant analysis) score > 2; http://huttenhower.sph.
harvard.edu/galaxy; Segata et al., 2011). To elucidate the microbial 
interactions taking place in the two forest associations and at 
different sampling seasons, microbial association networks were 
created using the OTU tables. To reduce network complexity, 
OTUs present in all samples for bacterial and 40% or 60% samples 
for fungal communities were selected to construct the 
co-occurrence networks (Xiong et  al., 2021b). Spearman’s 
correlation coefficient between two OTUs were considered 
statistically robust at ρ > 0.6 with a corresponding value of p of 
<0.01 (Barberan et al., 2014). The pairwise comparisons based on 
abundances were performed using the rcorr function in the 
“Hmisc” package and the value of p was adjusted using the 
Benjamini-Hochberg method (Zhu et al., 2019). Co-occurrence 
networks were obtained, with each node representing one OTU 
and each edge denoting a strong and significant connection. 
Network visualization and calculations of network topological 
properties (e.g., degree and modularity) were performed using the 
interactive Gephi platform (Xiong et al., 2021b). Cladograms for 
taxonomy were drawn using the R package Metacoder (Foster 
et al., 2017). All the statistical analyses for data were performed 
using the R software v3.6.0.

Results

Microbial diversity and networks in ECM 
roots

Bacterial and fungal communities associated to ECM roots of 
stone oaks and Yunnan pines were characterized by metabarcoding 
rDNA sequencing. In total, 4,791,454, 8,160,173 and 4,235,698 
high-quality sequences were obtained and clustered into 6,081, 
1,284 and 916 OTUs for 16S, ITS1 and ITS2, respectively. 
Lithocarpus ECM roots had a significantly higher bacterial alpha-
diversity (observed OTUs and Shannon index) than Pinus ECM 
roots (p < 0.01, one-way ANOVA, Figure 1A). This bacterial alpha-
diversity was positively correlated to the tree circumference (DBH; 
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p < 0.001) for Lithocarpus ECM samples, whereas this was not the 
case for Pinus ECM roots (Supplementary Figure S2). Pine ECM 
roots displayed a significantly higher fungal alpha-diversity than 
Lithocarpus ECM roots (Figures 1B,C). No correlation between 
this alpha-diversity and tree circumference was observed 
(Supplementary Figure S2).

Both bacterial and fungal beta-diversities were mainly 
impacted by the host tree (Lithocarpus vs. Pinus; R2 > 22%, 
p = 0.001). Seasonality also exerted a significant influence on the 
fungal community, but only accounted for a slight variation of  

the fungal OTU composition (9.79%; Figures  1D–F; 
Supplementary Table S1). The position of the soil sampling 
location relative to the tree trunk did not significantly influence 
the root microbiome (Supplementary Table S1).

To gain a deeper insight into the interactions among 
microorganisms, we performed a co-occurrence network analysis 
for each tree species. The microbial networks obtained for 
bacterial and fungal communities followed similar trends. Their 
complexity was higher in Lithocarpus ECM roots compared to 
Pinus ECM roots, but their modularity was higher in Pinus ECM 

A

B

C

D

E

F

FIGURE 1

Diversity of bacterial and fungal communities associated to Lithocarpus and Pinus ECM roots. Alpha-diversity measurements are based on the observed 
OTUs and Shannon index for the bacterial (A) and fungal (B, ITS1; C, ITS2) microbiomes. Unconstrained PCoA for beta-diversity using Bray-Curtis 
distances in bacterial (D) and fungal (E, ITS1; F, ITS2) communities identified in Lithocarpus and Pinus ECM roots. Statistical data analyses were performed 
using one-way ANOVA (**p < 0.01, ***p < 0.001). For the alpha-and beta-diversity analyses based on ITS1 sequences we used samples collected during 
both the dry and wet seasons, while for the analyses based on ITS2 sequences we only used the samples collected during the wet season.
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roots (Figure 2; Table 1). We also detected more hub nodes in the 
networks associated with Lithocarpus ECM roots compared to 
Pinus ECM roots. Bacterial hub nodes pertained to the 
Actinobacteria and Proteobacteria phyla, whereas fungal hub 
nodes pertained to the Agaricomycetes class (Figure  2; 
Supplementary Table S2). The bacterial network associated with 
Lithocarpus ECM roots was enriched in OTUs pertaining to 
Planctomycetes (p < 0.05, fisher’s exact test, Supplementary  
Table S3). Fungal networks associated with Lithocarpus ECM 
roots were enriched in OTUs pertaining to Agaricomycetes (based 
on ITS1), whereas those associated with Pinus ECM roots were 
enriched in Eurotiomycetes and Archaeorhizomycetes OTUs 
(based on both ITS1 and ITS2).

Composition of bacterial and fungal 
communities of ECM roots

The bacterial species identified in ECM roots belong to 
Proteobacteria (44.3%), Acidobacteria (20.3%), Actinobacteria 
(19.3%), Planctomycetes (4.5%) and Verrucomicrobia (3.7%). 
Rhizobiales (13.6%) and Acidobacteriales (13.2%) dominated this 
bacterial community leaving on the surface or inside ECM roots 
(Supplementary Figure S3). Pine ECM roots were enriched in 
Actinobacteria, Cyanobacteria, Tenericutes and Dependentiae 
with Actinobacteria being the most important biomarker taxa. 
Lithocarpus ECM roots were enriched in Acidobacteria, 
Bacteroidetes, Verrucomicrobia, Armatimonadetes and 
Planctomycetes with Acidobacteria being the most important 

biomarker taxa (Welch’s test, p < 0.05; Figure  3A; 
Supplementary Figure S4A). Interestingly, Pinus ECM roots 
comprised a higher proportion of specific OTUs relative to 
Lithocarpus, while the latter had more significantly enriched 
OTUs (Figures 3B,C). OTUs annotated as Alphaproteobacteria, 
Actinobacteria, Thermoleophilia, Acidimicrobiia, Babeliae, 
Ktedonobacteria and Melainabacteria were more abundant in 
Pinus ECM roots, whereas Bacteroidia, Deltaproteobacteria, 
Verrucomicrobiae, Clostridia, Bacilli, Anaerolineae, Blastocatellia 
(subgroup 4) and Acidobacteria (subgroup 6) were more abundant 
in Lithocarpus-ECM roots (Fisher exact test, p < 0.05; 
Supplementary Table S4).

In the stone oak old-growth forest and the pine woodlands in 
Ailaoshan, ECM fungi, such as Russula, Lactarius and Lactifluus in 
the Russulaceae, were the most abundant OTUs detected in the soil 
fungal community, irrespective of the soil layers and season (Zeng 
et al., 2022). As shown by the present analyses, the fungal community 
of ECM roots was significantly different between the tree species and 
the sampling season had also a significant influence on this root-
associated mycobiome (Figure 1; Supplementary Table S1). It was 
dominated by Agaricomycetes with a total relative abundance of 65 
to 78% based on ITS1 or ITS2 sequencing, respectively 
(Supplementary Figures S5, S6). The most abundant OTUs 
associated to Lithocarpus roots belong to ECM taxa, such as Russula, 
Tomentella and Laccaria, whereas Tomentella, Tylospora and Inocybe 
were dominant in pine roots (Supplementary Figures S5, S6). Of 
note, a large proportion of OTUs comprised unidentified fungal taxa. 
In addition, Leotiomycetes, Archaeorhizomycetes, Eurotiomycetes, 
Dothideomycetes, and Tremellomycetes was significantly higher in 

FIGURE 2

The co-occurrence networks of bacterial and fungal OTUs in Lithocarpus and Pinus ECM roots. The nodes in the network are colored based on 
phylum and class level or modularity class. The edge thickness is proportional to the weight of each correlation and node size is proportional to 
the degree of each OTUs. The co-occurrence network analysis based on ITS1 sequences have been carried out using samples collected during 
the wet season only.
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stone oak ECM roots, whereas Agaricomycetes, Saccharomycetes 
and Mortierellomycetes were significantly lower in pine ECM roots 
(Welch’s test, p < 0.05; Figure 3A). Notably, we  found substantial 
differences in OTU distributions according to the rDNA ITS region 
used for metabarcoding (ITS1 vs. ITS2; Supplementary Figures S7, S8). 
For example, the LEfSe analysis identified Tomentella in the 
Thelephoraceae (Supplementary Figure S4) as the main biomarker 
taxa for Pinus ECM roots, while the ITS1-based survey identified 
Leotiomycetes and Archaeorhizomyces taxa (Supplementary  
Figure S4). For Lithocarpus ECM roots, Russula was the major 
biomarker taxa based on both ITS1-and ITS2-sequencing.

Enriched ITS1-related OTUs affiliated to Russulaceae, 
Sebacinaceae, Boletaceae, Cortinariaceae, Hydnangiaceae, 
Tricholomataceae, Leotiaceae, Cephalothecaceae and Mortierellaceae 
were more abundant in Lithocarpus, while those annotated as 
Herpotrichiellaceae, Myxotrichaceae, Aspergillaceae, Inocybaceae, 
and Trichocomaceae were more abundant in Pinus (Fisher’s exact 
test, p < 0.05; Supplementary Table S5). On the other hand, enriched 
ITS2-related OTUs belonging to Russulaceae, Hyaloscyphaceae, 
Tricholomataceae, Cortinariaceae, Hydnangiaceae, Sebacinaceae 
and Gomphaceae were more abundant in Lithocarpus, while those 
corresponding to Atheliaceae, Myxotrichaceae, Inocybaceae, 
Trichocomaceae and Vibrisseaceae were more abundant in Pinus 
(Fisher’s exact test, p < 0.05; Supplementary Table S6). This 
discrepancy in OTU distribution related to the ITS sequences used 
for metabarcoding has been reported previously (De Beeck et al., 
2014; Supplementary Figure S8) and thus, use of both ITS1 and ITS2 
sequences are recommended for OTU surveys.

Effect of seasonality on the fungal 
microbiome of ECM roots

The OTU richness and diversity of ECM roots sampled during 
the dry season were higher than those collected during the wet 
season. Notably, the observed OTU indexes for ECM roots 
harvested at the end of the dry season were significantly higher 
than those sampled at the end of the wet season (p < 0.05, one-way 
ANOVA; Figure  4A). Seasonality had a significant impact on 

beta-diversity (Supplementary Table S1). On our principal 
coordinate analysis (PCoA), the two main coordinates explained 
39.24% of the variation, of which PC1 accounted for 25.64%, while 
PC2 for 13.6% of the total variation (Figure 4B).

The complexity of the microbiome networks taking place in 
ECM roots was higher during the wet season by comparison to the 
dry season, but the annotated nodes were not significantly 
different (Figure 4D; Supplementary Table S7). We found a higher 
abundance of Eurotiomycetes and Leotiomycetes and a lower 
abundance of Mortierellomycetes in dry season-samples compared 
to the wet season-samples (Welch’s test, p < 0.05; Figure 4C). The 
Leotiomycetes class was identified as the most significant marker 
of the dry season and the Tomentella genus was the most significant 
marker of the wet season (Supplementary Figure S9); 362 OTUs 
(e.g., Aspergillaceae, Trichocomaceae, Helotiaceae) and 440 OTUs 
(e.g., Thelephoraceae, Boletaceae, Cordycipitaceae, Amanitaceae 
and Gomphaceae) were significantly enriched in the ECM roots 
collected at the end of the dry season and wet seasons, respectively 
(Fisher’s exact test, p < 0.05; Figures 4E,F; Supplementary Table S8).

Discussion

Forest trees are intimately associated with hundreds of 
microorganisms that contribute substantially to their biology. 
They are supra-organisms hosting a wide range of commensal, 
beneficial and detrimental bacteria and fungi. The tree with its 
associated microbiome—the collection of all microorganisms in a 
location—faces altered environmental conditions as a result of 
forest replacement and a rapidly changing climate. Characterizing 
the mechanisms shaping the tree microbiome is therefore required 
for a better understanding of tree fitness and adaptation to 
changing environments, and the ecology of forest ecosystems 
(Hacquard, 2016; Mishra et al., 2020; Hacquard et al., 2022). As 
tree roots are associated to hundreds of ECM fungi, there is a need 
to characterize the communities of bacteria and fungi inhabiting 
ECM roots (Garbaye, 1994; Perotto and Bonfante, 1997; Bending 
et al., 2002; Frey Klett et al., 2007; Marupakula et al., 2016). Several 
studies have characterized the bacterial communities associated 

TABLE 1 Topological properties of the co-occurrence networks of Lithocarpus and Pinus ECM roots.

Category Average degree Node Edge Modularity Average 
clustering 
coefficient

Average path 
distance

16S

Lithocarpus 18.946 810 7,673 0.503 0.443 5.46

Pinus 12.726 647 4,117 0.52 0.393 4.367

ITS1

Lithocarpus 25.763 338 4,354 0.347 0.535 2.777

Pinus 3.833 276 529 0.791 0.552 5.763

ITS2

Lithocarpus 25.931 319 4,136 0.534 0.649 4.017

Pinus 3.259 243 396 0.822 0.463 6.241
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with ECM roots (Izumi et  al., 2007, 2008; Uroz et  al., 2010;  
Vik et al., 2013; Nguyen and Bruns, 2015; Marupakula et al., 2016,  
2017). On the other hand, little information is available on the 
fungal communities, i.e., the mycobiome, associated to ECM roots 
(Izumi and Finlay, 2011; Marjanović et al., 2020). In the present 
study, we surveyed both bacterial and fungal communities of roots 
from stone oaks and Yunnan pines, two dominant species of the 
subtropical forest associations found in the subtropical Ailaoshan. 
Our findings confirmed and extended previous studies in showing 
that the ECM microbiome is mainly shaped by the host tree. In 
addition, we found that seasonality had a significant effect on the 
fungal diversity and microbial network complexity of stone oak 
and pine ECMs.

Distribution of bacterial and fungal OTUs 
in Lithocarpus and Pinus ECM roots

The diversity and composition of the bacterial microbiome of 
stone oak and Yunnan pine ECM roots were very similar with 
Actinobacteria, Acidobacteria and Proteobacteria dominating this 

community. Previous studies have also failed to demonstrate 
substantial differences between bacterial microbiomes associated 
with ECM roots (Burke et al., 2006; Izumi et al., 2007). In contrast, 
Izumi et  al. (2007) have shown that the roots of B. pubescens 
colonized by various ECM fungi hosted distinct bacterial and 
ascomycetous communities. One explanation to explain the 
observed discrepancies between studies may be differential flow 
of carbohydrates and other nutrients from ECM fungi to the 
bacteria depending on the host tree species and age. The lack of 
any systematic variation in bacterial community structure related 
to the presence or absence of particular ECM fungal symbionts 
may also be  related to the fact that temporal variation may 
confound systematic effects of the dominant mycorrhizal host 
fungi on bacterial community structure (Marupakula et al., 2016). 
The dominant orders found in Lithocarpus and Pinus ECM roots 
were Acidobacteriales, Rhizobiales, Betaproteobacteriales and 
Frankiales. Further studies will be  required to elucidate the 
functional significance of these bacterial taxa but there is a broad 
correspondence between the groups found here and those 
identified in other studies of ECM roots. The presence of a core 
bacterial microbiome in ECM roots suggests that many of the 

A B C

FIGURE 3

Tree species shape the microbial composition of ECM roots. (A) Differential abundance of bacterial and fungal OTUs in Lithocarpus and Pinus ECM 
roots. Welch’s tests followed by Benjamini-Hochberg FDR corrections were performed between Lithocarpus and Pinus ECM roots at phylum 
(bacterial OTUs) and class (fungal OTUs) levels. (B) The volcano plot shows the enriched OTUs in Lithocarpus and Pinus ECM roots. Each dot 
represents a single OTU. Each red dot represents an individual enriched OTUs in Lithocarpus ECM roots and each blue dot represents an individual 
enriched OTUs in Pinus ECM roots. The x-axis represents the fold-change in abundance and the y-axis represents the average OTUs abundance 
(in counts per million, CPM). (C) Venn diagrams showing the shared and specific bacterial and fungal OTUs among Lithocarpus and Pinus ECM 
roots. The ITS1 sequences used for this analysis were produced from samples harvested during both the dry and wet seasons.
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bacterial genera were persistent in different ECM roots (i.e., from 
stone oak and pine), although there were changes in their relative 
abundance. This study highlights the diversity of bacteria 
associated with roots of major tree species growing in 
subtropical forests.

The fungal microbiome of stone oak and pine ECM roots 
was strikingly different at the OTU level, suggesting that the two 
tree species are recruiting a different set of ECM symbionts. As 
a consequence, this diversity impacts the cortege of 
non-symbiotic fungi inhabiting ECM roots. Russula, Tomentella, 
Laccaria and Sebacina taxa were the most abundant OTUs in 
Lithocarpus ECM roots and they are those forming the sampled 
ECM roots. OTUs belonging to commensal/saprotrophic fungi 
were also identified, including Candida, Penicillium, Leotia and 
Oidiodendron taxa. In Pinus ECM roots, the symbiotic 
Tomentella and Tylospora taxa were abundant, but a large 
proportion of OTUs belong to saprotrophic and endophytic 
taxa, such as Archaeorhizomyces and Oidiodendron. Tree 

phenology and thus leaf litter, but also metabolites released by 
roots, have a major impact on the rhizospheric microbial 
communities and recruitment of ECM symbionts (Frey Klett 
et al., 2007; Boberg et al., 2014), likely explaining the differences 
observed here in the distribution of ECM symbionts. In addition 
to root exudates, hyphal exudates, such as trehalose, released by 
the various ECM fungi played an important role in recruiting 
bacterial and fungal microbiomes (Zhang et al., 2021). We have 
shown in our companion study (Zeng et  al., 2022) that the 
edaphic features, such as soil pH and nutrient content, were 
significantly different in the Lithocarpus old-growth forest by 
comparison to the Pinus woodland. These differences in edaphic 
features influenced the soil microbial communities (Zeng et al., 
2022), but also the ECM microbial communities (present study) 
as shown in other forest ecosystems (Peay et al., 2013; Liu et al., 
2014, 2015; He et  al., 2017). Given that soil microbial 
communities feed the plant microbiome, both the reservoir of 
microorganisms in soil adjacent to roots and the soil edaphic 

A B C
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FIGURE 4

Seasonality influences the fungal microbiome of ECM roots. (A) Alpha-diversity measurements are based on the observed OTUs and Shannon 
index for the fungal OTUs. Statistical data analyses were performed using one-way ANOVA (*p < 0.05). (B) PCoA of beta-diversity using Bray-Curtis 
distances for fungal OTUs. (C) Differential abundances of fungal OTUs in ECM roots at the end of the dry season (2020Dry) and at the end of the 
wet season (2020Wet). Welch’s tests followed by Benjamini-Hochberg FDR corrections were performed for different sampling seasons. (D) Co-
occurrence networks in fungal communities at the end of the dry season (2020Dry) and at the end of the wet season (2020Wet). (E) Venn 
diagrams showing the shared and specific fungal OTUs identified at the end of the dry season (2020Dry) and at the end of the wet season 
(2020Wet). (F) The Volcano plot displays the enriched OTUs for each sampling season. Each dot represents a single out, while red and blue dots 
represent an individual enriched OTUs identified at the end of the dry season (2020Dry) and at the end of the wet season (2020Wet), respectively.
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parameters strongly influence the plant microbiome (Frey Klett 
et al., 2007; Bonito et al., 2014).

Our results showed that the alpha-diversity of the bacterial 
community from Lithocarpus ECM roots was significantly higher 
than that of Pinus ECM roots, while the trend was reversed for the 
fungal microbiome. Moreover, the microbial network occurring 
in Lithocarpus ECM roots was higher than that of Pinus ECM 
roots with a significantly different OTU composition (Figures 1, 2). 
A positive relationship between the alpha-diversity and tree 
circumference of Lithocarpus for the bacterial community was 
observed (Supplementary Figure S2). Of note, it has been reported 
that the ECM alpha diversity is not strongly linked to tree growth, 
while variations in the beta diversity of ECM community is the 
strongest predictor of tree growth rate across Europe (Anthony 
et al., 2022).

Seasonality influences the ECM root 
mycobiome

The Ailaoshan resides in the center of the largest subtropical 
land area in the world (Young and Wang, 1989). This region is a 
major climatic border between China southwestern and 
southeastern monsoon systems, and the northern Himalaya 
Plateau. Influenced by the southwest and southeast monsoons, the 
climate of the Ailaoshan alternates between wet and dry 
conditions. Mean annual precipitation is 1799 mm, 86% of which 
occurs during the monsoon rainy season from May to October 
(Song et al., 2017). Therefore, seasonal variability in soil water 
content is substantial (Wu et al., 2014) and influences the soil 
microbial communities (Zeng et al., 2022). As soil water content 
affects the soil mycobiome composition (Zeng et al., 2022) and 
competition between ECM and saprotrophic fungi (Baldrian, 
2017), we surveyed the ECM root mycobiome at the end of the wet 
or dry seasons. The alpha-diversity of the fungal community of 
ECM roots at the end of the dry season was higher than at the end 
of the wet season. Furthermore, samples collected during the dry 
season showed a higher abundance of saprotrophic Eurotiomycetes 
and Leotiomycetes, while ECM roots collected during the wet 
season were enriched in saprotrophic Mortierellomycetes. The 
observed seasonal changes in the ECM root mycobiome may 
be linked to variation in root metabolic activities. Frequent soil 
droughts taking place during the dry season may also favor ECM 
root senescence and decay, providing favorable conditions for the 
establishment of saprotrophic fungi.

Fungal identification biases

As reported in previous studies, the recovered taxonomic 
richness of the fungal community differs among selected barcode-
primer pair combinations for amplifying the rDNA ITS (De Beeck 
et al., 2014; Tedersoo et al., 2015; Mbareche et al., 2020). ITS1 and 
ITS2 sequencing provided consistent results in ranking taxonomic 

richness and recovering the importance of tree species in  
driving fungal community composition in stone oak and pine 
ECM roots, except for the Archaeorhizomycetes and 
Tremellomycetes which were mainly detected by ITS1 sequencing 
and Lecanoromycetes was more abundant in ITS2 sequencing 
(Supplementary Figures S7, S8).

Conclusion

In conclusion, the present study provides new information 
about the identity and diversity of different bacterial and fungal 
microbiomes associated with different types of ECM associations 
from two major native tree species of a subtropical mountain 
forests. As reported previously, our results confirmed the major 
influence of the tree species on the composition of the ECM 
mycobiome. On the other hand, the bacterial communities 
associated with ECM roots were less influenced by the changes in 
the host tree and associated ECM fungal communities. This work 
paves the way for more detailed studies of the function expressed 
by the communities of ECM fungi and their associated 
communities of bacteria and fungi. A better understanding of the 
interactions between bacteria and fungi in the mycorrhizosphere 
of stone oaks and Yunnan pines will be critical to understand the 
soil–plant interface in the threatened subtropical forests.
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