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INTRODUCTION

Asthma is a chronic inflammatory airway disease character-
ized by airway hyperresponsiveness (AHR), inflammation, and 
remodeling.1 The prevalence of asthma has been increasing 
over the past few decades, and its economic burden is substan-
tial, especially in uncontrolled asthma.2-5 It has become a major 
public health problem. Understanding the precise pathophysi-
ology of asthma is important to achieve optimal management. 

The transient receptor potential vanilloid 1 (TRPV1) channel 
is a non-selective calcium ion (Ca2+) channel that is expressed 
in various cell types, including sensory neurons, epithelial cells, 
and smooth muscle cells.6,7 It is stimulated by various stimuli, 
including noxious chemicals, low pH, hot temperature, and en-
dogenous mediators.8,9 Many studies have sought to reveal the 
role of the TRPV1 channel in airway diseases, with an emphasis 
on chronic cough. TRPV1 expression in the airway nerves is in-
creased in chronic cough patients, and TRPV1 antagonists may 
have potential value as antitussive drugs.10-12 Mucus hyperse-
cretion and airway inflammation may also be associated with 

TRPV1 sensitization.13 

The role of TRPV1 in the pathophysiology of asthma has at-
tracted attention. TRPV1 expression is increased in the airway 
epithelium of asthmatic patients and is more prominent in se-
vere, uncontrolled disease.14 However, the roles of TRPV1 and 
the effects of TRPV1 antagonism on airway inflammation in an-
imal models are debatable. Rehman et al.15 reported that inhi-
bition of TRPV1 reduced AHR and airway remodeling in inter-
leukin (IL)-13-induced asthma model in BALB/c mice. Howev-
er, Caceres et al.16 induced an acute asthma murine model in 
genetically silenced C57BL/6 mice using ovalbumin (OVA) and 
obtained negative results. The results of TRPV1 blocking are di-
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verse in different experimental materials and study settings.
In addition to the contrary results of TRPV1 antagonism in di-

verse murine asthma models, there was also lack of studies per-
formed in a chronic asthma model compared to acute model. 
Chronic asthma model may demonstrate better asthma features, 
especially airway remodeling, which is important in human asth-
ma pathophysiology. 

In this study, we investigated the role of TRPV1 in the airway 
of a murine model of chronic asthma. We also examined wheth-
er TRPV1 suppression by inhalation of antagomir, a small inter-
fering RNA (siRNA) directed toward TPRV1, may alleviate patho-
logic manifestation of chronic asthma compared to the well-
known TRPV1 inhibitor capsazepine.

MATERIALS AND METHODS

Animals and experimental design
Six-week-old female BALB/c mice (Orient Bio Inc., Seongnam, 

Korea) were randomly allocated to the following groups: 1) con-
trol, 2) OVA challenge, 3) OVA challenge plus capsazepine, or 4) 
OVA plus TRPV1 siRNA.

Sensitization and antigen challenge protocol
Sensitization and antigen challenge with OVA were performed 

as previously described.17,18 Mice were immunized by subcuta-
neously injecting 25 µg of OVA (Grade V; Sigma-Aldrich, St. Lou-
is, MO, USA) absorbed to 1 mg of aluminum hydroxide (Aldrich, 
Milwaukee, WI, USA) in 200 µL of phosphate-buffered saline 
(PBS). Subcutaneous injections were administered on days 0, 7, 
14, and 21, followed by intranasal OVA challenge (20/50 µL in 
PBS) performed on days 33 and 35. Subsequently, intranasal 
OVA challenges were repeated twice per week for 3 months. 
Age- and gender-matched control mice were treated equally 
with PBS. All procedures were performed while mice were anes-
thetized using isoflurane (Vedco, St. Joseph, MO, USA). Mice 
were sacrificed 24 hours after the final intranasal OVA challenge, 
and bronchoalveolar lavage (BAL) fluid and lung tissues were 
obtained for analysis.

All animal procedures were performed in accordance with 
Laboratory Animal Welfare Act, the Guide for the Care and Use 
of Laboratory Animals, and the Guidelines and Policies for Ro-
dent Experiments provided by Institutional Animal Care and 
Use Committee at the School of Medicine, The Catholic Uni-
versity of Korea (approval number: CUMC-2015-0194-04).

Administration of capsazepine and TRPV1 siRNA
Capsazepine (Cayman, Ann Arbor, MI, USA) was given 50 µg 

once daily for 3 months by intraperitoneal injection starting on 
day 38. TRPV1 siRNA (Bioneer, Daejeon, Korea) was also ad-
ministrated intranasally 50 µg 2 times per week once per day 
beginning on day 38 for 3 months, during OVA challenge. The 
control mice were treated identically with normal saline. 

Measurement of AHR
AHR to methacholine (Mch)(Sigma-Aldrich) was assessed 24 

hours after the final OVA challenge with the flexiVent system 
(SCIREQ, Montreal, Canada) as previously described.19 Briefly, 
mice were anesthetized with an intraperitoneal administration 
of a 1:4 mixture of rompun and zoletil. The trachea was exposed 
and cannulated to connect it with a computer-controlled small-
animal ventilator. Ventilation was applied with a tidal volume of 
10 mL/kg at a frequency of 150 breaths/min and a positive end-
expiratory pressure of 2 cm H2O, which was close to the mean 
lung volume of mouse spontaneous breathing. Each mouse 
was challenged with PBS control, followed by Mch aerosol with 
increasing concentrations (6.25, 12.5, 25, and 50 mg/mL). Chang-
es in airway resistance with increasing concentrations of inhaled 
Mch were measured. 

BAL
Mice were sacrificed by CO2 asphyxiation after measurement 

of AHR. The trachea was exposed and cannulated with a sili-
cone tube attached to a 23-gauge needle on a 1-mL tuberculin 
syringe. BAL was performed by instillation of 0.8 mL of sterile 
PBS through the trachea into the lung. The total cell counts in 
BAL fluid were analyzed using a LUNATM Automated Cell Coun-
ter (Logos Biosystems, Inc., Annandale, VA, USA). 

The BAL fluid was cytospun at 2,000 rpm for 7 minutes, placed 
on microscope slides, and stained with Diff-Quick (Sysmax, 
Kobe, Japan). The percentages of macrophages, eosinophils, 
lymphocytes, and neutrophils in the BAL fluid were calculated 
by counting 500 leukocytes on randomly selected areas of the 
slide using light microscopy. Supernatants were stored at −70°C.

Lung tissue histopathology
After BAL was performed, the mouse lungs were inflated, fixed 

in 4% paraformaldehyde for 24 hours, and embedded in paraf-
fin using a standard protocol. Sections were cut 4-µm thick us-
ing a microtome and stained with hematoxylin and eosin (H&E). 
Paraffin-embedded tissues were also sectioned and the 5- to 
6-µm thick sections were stained with periodic acid-Schiff (PAS) 
to distinguish goblet cells in the epithelium. Goblet cell hyper-
plasia was quantified as previously described.20 The pathologi-
cal changes were evaluated according to a modified 5-point 
scoring system (grades 0-4) based on the percentage of goblet 
cells in the epithelium: grade 0 (no goblet cells), grade 1 (<25%), 
grade 2 (25%-50%), grade 3 (51%-75%), and grade 4 (>75%). 
The mean goblet cell hyperplasia score was then calculated for 
each mouse.

Enzyme-linked immunosorbent assay (ELISA)
The concentrations of IL-4, IL-5, and IL-13 were measured in 

BAL fluid. Concentrations of IL-17E (IL-25), IL-33, and thymic 
stromal lymphopoietin (TSLP) were measured with lung ho-
mogenate with an ELISA kit (R&D Systems, Minneapolis, MN, 
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USA). The assay was performed according to the manufactur-
er’s protocol.

Immunohistochemistry
Six-µm-thick lung sections from each paraffin block were de-

paraffinized with xylene and rehydrated in ethanol. For immu-
nohistochemical detection of α-smooth muscle actin (α-SMA) 
and TRPV1, the lung sections were incubated overnight at 4°C 
with a primary monoclonal antibody against α-SMA (titer 1:25; 
Abcam, Cambridge, MA, USA) and TRPV1 (titer 1:100; Abcam), 
or mouse serum as a negative control instead of the primary 
antibody. Immunoreactivity was detected by sequential incu-
bations of lung sections with a biotinylated secondary antibody, 
followed by peroxidase reagent and the 3,3′-diaminobenzidine 
(DAB) chromogen (Invitrogen, Carlsbad, CA, USA). The area in 
each paraffin-embedded lung immunostained by α-SMA was 
outlined and quantified using a light microscope attached to an 
image analysis system (BX50; Olympus, Tokyo, Japan). The re-
sults were expressed as the immunostained area of the bron-
chiolar basement membrane (internal diameter 150-200 μm). 
At least 10 bronchioles were counted in each slide.

Hydroxyproline analysis
Lung tissue (60 mg) from each mouse was used for the hydroxy-

proline assay with hydroxyproline colorimetric assay kit (BioVi-
sion, Milpitas, CA, USA) according to the manufacturer’s instruc-
tions. Hydroxyproline concentrations were calculated from a 
standard curve of hydroxyproline.

Data analysis
The results from each group were analyzed by analysis of vari-

ance (ANOVA) and the nonparametric Kruskal-Wallis test. All 

statistical analyses were performed using Graph-Pad Prism for 
Windows software (ver. 5.00; GraphPad Software, San Diego, 
CA, USA). A P value of <0.05 was considered statistically signif-
icant. All results are expressed as mean±standard error of the 
mean (SEM).

RESULTS

Inhibitory effects of TRPV1 antagonists on AHR
The OVA challenge group showed increased AHR compared 

to the control group at Mch doses of 25 and 50 mg/dL. The OVA 
plus capsazepine group displayed a remarkable decrease in air-
way resistance at 50 mg/mL Mch. Airway resistance was signifi-
cantly decreased in mice treated with TRPV1 siRNA at Mch dos-
es of 25 and 50 mg/dL (Fig. 1).

Effects of TRPV1 inhibition on eosinophilic airway 
inflammation and the level of cytokines

Three months of OVA challenge induced a significant increase 
in number of total cells, macrophages, and eosinophils in the 
BAL fluid. Treatment with either capsazepine or TRPV1 siRNA 
significantly reduced the number of total cells, macrophages, 
and eosinophils in BAL fluid (Fig. 2). Three months of OVA chal-
lenge significantly increased the levels of type 2 T helper (Th2)-
associated cytokines (IL-3, IL-5, and IL-13) in BAL fluid (Fig. 
3A). Mice treated with capsazepine displayed significant de-
creases in IL-4, IL-5, and IL-13. Treatment with TRPV1 siRNA 
significantly decreased IL-4 and IL-5. We evaluated the epithe-
lial cell-derived cytokines IL-17E (IL-25), IL-33, and TSLP in the 
lung homogenate. The OVA challenge group showed increases 
in all the 3 cytokines compared to the control group (Fig. 3B). 
Mice treated with either capsazepine or TRPV1 siRNA showed 

Fig. 1. Effect of capsazepine and TRPV1 siRNA on AHR to Mch. AHR was mea-
sured 24 hours after the final OVA challenge with the flexiVent system. Mch 
concentration was increased from 6.25 to 100 mg/mL. The values are expressed 
as mean±SEM (n=4-8/group). TRPV1, transient receptor potential vanilloid 1; 
siRNA, small interfering RNA; AHR, airway hyperresponsiveness; Mch, metha-
choline; OVA, ovalbumin; SEM, standard error of the mean. *P<0.01, †P<0.001 
compared to control, ‡P<0.01, §P<0.001 compared to the OVA group.
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significantly decreased levels of IL-33 and TSLP. However, IL-
17E level was decreased in both group, without statistical signif-
icance.

Effects of TRPV1 inhibitors on expression of TRPV1 receptors 
and airway remodeling 

Histopathology of H&E-stained sections revealed increased 
infiltration of subepithelial, peribronchial, and perivascular in-
flammatory cells, including eosinophils, in the OVA challenge 
group compared to the control group. In contrast, treatment 
with either capsazepine or TRPV1 siRNA reduced the inflam-
matory cell recruitment (Fig. 4A). Immunostaining of TRPV1 
showed that chronic OVA challenge increased the area of TRPV1 
immunostaining compared to the control group. This effect 
was alleviated by capsazepine or TRPV1 (Fig. 4B). PAS-stained 
sections revealed prominent goblet cell hyperplasia in the OVA 
challenge group. The hyperplasia was attenuated by both treat-
ments (Fig. 5A). The pathologic score was significantly higher 
in the OVA group compared to both treatment groups (Fig. 5B). 
Quantification of peribronchial α-SMA immunostaining was 
performed by imaging (Fig. 6). Chronic OVA challenge induced 

an increase in the area of peribronchial α-SMA compared to the 
control group. Treatment with capsazepine or TRPV1 siRNA re-
duced the area of peribronchial α-SMA. Pulmonary fibrosis was 
evaluated by measuring the total lung collagen level by using 
hydroxyproline analysis. Chronic OVA challenge for 3 months 
resulted in a significant increase in hydroxyproline content (Fig. 
7). Capsazepine treatment significantly decreased the level of 
hydroxyproline compared to the OVA challenge group. TRPV1 
siRNA treatment decreased the hydroxyproline level, without 
statistical significance. 

DISCUSSION

This study revealed that expression of the TRPV1 receptor was 
significantly elevated in OVA challenged asthmatic lungs and 
that inhalation of TRPV1 antagomir effectively suppressed eo-
sinophilic airway inflammation and remodeling. The underly-
ing mechanisms of these effects may be associated with sup-
pression of epithelial-derived cytokines, including TSLP, IL-33, 
and IL-25. This is the first report that the inhibition of the TRPV1 
receptor by TRPV1 antagomir inhalation has significant anti-

Fig. 3. Effect of capsazepine and TRPV1 siRNA on levels of Th2 cytokines and epithelial-derived cytokines. (A) The concentration of IL-4, IL-5, and IL-13 were mea-
sured in the BAL fluid with and ELISA. (B) Levels of IL-17E, IL-33, and TSLP in the lung homogenates were measured. The values are expressed as mean±SEM 
(n=4-8/group). TRPV1, transient receptor potential vanilloid 1; siRNA, small interfering RNA; Th2, type 2 T helper; IL, interleukin; BAL, bronchoalveolar lavage; ELI-
SA, enzyme-linked immunosorbent assay; TSLP, thymic stromal lymphopoietin; SEM, standard error of the mean; OVA, ovalbumin. *P<0.01, †P<0.001 compared to 
control, ‡P<0.05, §P<0.01, llP<0.001 compared to the OVA group for (A). ¶P<0.05, **P<0.001 compared to control, ††P<0.05, ‡‡P<0.001 compared to the OVA 
group for (B).
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Fig. 4. Effect of capsazepine and TRPV1 siRNA on perbronchial inflammation and TRPV1 receptor expression in lung tissues. (A) Lung tissues were fixed with 4% 
paraformaldehyde and embedded in paraffin. Paraffin block were sectioned (4-µm thick) and stained with H&E (×200). (B) The TRPV1 receptor was immunostained 
in paraffin-embedded lung section (blue). TRPV1, transient receptor potential vanilloid 1; siRNA, small interfering RNA; H&E, hematoxylin and eosin; Br, bronchus; 
Bm, basement membrane; Eo, eosinophil; Ep, epithelium; Bl, blood vessel.
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asthmatic effects that are comparable to the established TRPV1 
antagonist, capsazepine.

The 3-month chronic OVA-challenged model is unique in that 

it results in features that are more similar to human asthma than 
the acute model, which features airway remodeling, including 
airway smooth muscle cell (ASMC) proliferation, goblet cell hy-
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Fig. 5. Effect of capsazepine and TRPV1 siRNA on goblet cell hyperplasia in lung tissues. (A) The paraffin-embedded tissues were cut into 5- to 6-µm-thick sections 
and stained with PAS. (B) Goblet cell hyperplasia was quantified using a modified 5-point scoring system, based on the percentage of goblet cells in the epithelium: 
grade 0 (no goblet cells), grade 1 (<25%), grade 2 (25%-50%), grade 3 (51%-75%), and grade 4 (>75%). The values are expressed as mean±SEM (n=4-8/groups). 
TRPV1, transient receptor potential vanilloid 1; siRNA, small interfering RNA; PAS, periodic acid-Schiff; OVA, ovalbumin. *P<0.001 compared to control, †P<0.001 
compared to the OVA group.
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perplasia, and collagen deposition. The present results are im-
portant since, to our knowledge, no prior study has explored 
the role of TRPV1 in a chronic allergic asthma animal model.

Asthma is an allergic inflammatory airway disease in which 
pathogenesis involves various inflammatory cells and media-
tors. The most important cellular pathway of asthma starts with 
recognition of allergen by dendritic cells in airway epithelium 
and submucosa.21 As dendritic cells function as antigen-pre-
senting cells to Th2 lymphocytes, Th2 cytokines are released. 
This release induces eosinophils and mast cells to initiate aller-
gic inflammation.22 In this process, bronchial epithelial cells 
play an important role in asthma pathophysiology. They func-
tion as a mechanical barrier from allergens and other toxic ma-
terials through tight junctions, and also release cytokines─in-

cluding IL-25, IL-33, TSLP, and granulocyte macrophage-colo-
ny stimulating factor─or endogenous danger signals in response 
to various allergens to modulate allergic inflammation.23

The TRPV1 channel is expressed in both sensory neurons and 
non-neuronal cells, including bronchial epithelium, smooth 
muscle cells, mast cells, and dendritic cells.8,11,14,24,25 Consistent 
with a previous study, we identified increased TRPV1 expres-
sion of epithelial cells by immunochemical staining in the mu-
rine asthma model. Activation of TRPV1 in bronchial epithelial 
cells stimulates the release of proinflammatory mediators, in-
cluding ILs, prostaglandin E2, nerve growth factor, and tumor 
necrosis factor-α, to promote airway inflammation and airway 
hypersensitivity.6,26,27 

Recent studies have demonstrated that TRPV1 is important in 

Fig. 6. Effect of capsazepine and TRPV1 siRNA on the area of peribronchial airway smooth muscle. (A) Peribronchial α-SMA was immunostained in paraffine-em-
bedded lung section. (B) The immunostained area was quantified by using a light microscope attached to BX50. The values are expressed as mean±SEM (n=4-8/
group). TRPV1, transient receptor potential vanilloid 1; siRNA, small interfering RNA; α-SMA, α-smooth muscle actin; SEM, standard error of the mean; OVA, ovalbu-
min. *P<0.01 compared to control, †P<0.01 compared to the OVA group.
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Fig. 7. Effect of capsazepine and TRPV1 siRNA on total collagen levels. Lung 
tissue was collected from each mouse for the hydroxyproline assay. The values 
are expressed as mean±SEM (n=4-8/groups). TRPV1, transient receptor po-
tential vanilloid 1; siRNA, small interfering RNA; SEM, standard error of the mean; 
OVA, ovalbumin; HYP, hydroxyproline. *P<0.01 compared to control, †P<0.01 
compared to the OVA group.
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the pathway of airway inflammation and remodeling, which is 
a key pathologic feature of asthma.28-31 Earlier studies reported 
that inhibition of TRPV1 reduced airway constriction using cap-
sazepine and in a knockout animal model. Ellis and Undem32 
revealed that capsazepine inhibits capsaicin-sensitive receptors 
that attenuate airway constriction. Furthermore, Watanabe et 
al.33 demonstrated that loss of TRPV1-positive axon results in 
alleviation of bronchoconstriction. Also, there are some studies 
that explored the role of TRPV1 receptor in asthma animal mod-
els. The findings have been inconsistent. Rehman et al.15 observ-
ed that TRPV1 siRNA treatment in acute asthma murine model 
significantly alleviates asthma features. Also, Baker et al.25 reveal 
attenuation of asthma features in genetically silenced TRPV1, 
although the results did not reach statistical significance. Cace-
res et al.16 reported that TRPV1 knockout mice showed no dif-
ference, compared to the wild type, in AHR or airway inflam-
mation in an OVA-challenged asthma model. Raemdonck et 
al.34 demonstrated a similar result that asthma was not attenu-
ated by the TRPV1 blockers JNJ-17203212 and capsazepine in 
an OVA-induced murine asthma model. Moreover, Mori et al.35 
suggested that TRPV1 gene knockout mice intensified AHR and 
airway inflammation compared to the wild type in an asthma 
model, which is the exactly the opposite result of our study. These 
conflicting results may reflect the mouse strains used; the prior 
study involved C57BL/6 mice. Distribution of capsaicin recep-
tors varies with strain, and there may be less TRPV1 expression 
in C57BL/6 mice than in BALB/c mice.15,36 

Currently, TRPV1 expression was significantly elevated in lung 
tissues of the OVA-induced asthma model. In addition, we con-
firmed that capsazepine (TRPV1 antagonist) and TRPV1 siRNA 
(antagomir) inhalation resulted in the attenuation of AHR and 

inflammation. Antagomir inhalation for 3 months showed non-
inferior effects compared to capsazepine.

In this study, we found that anti-inflammatory effects on the 
asthmatic airway may be associated with decreased expression 
of epithelial-derived cytokines and Th2 cytokines by TRPV1 
blocking. Epithelial cell-derived cytokines, such as TSLP, IL-33, 
and IL-25, are important regulators of Th2 cytokine associated 
inflammation.37,38 IL-33 and IL-25 activate Th2 lymphocytes 
and other cells, which mediate allergic reactions and activate 
TSLP production. TSLP is important in the activation of den-
dritic cells and naïve T cells. In our study, the levels of IL-33 and 
TSLP were significantly decreased after TRPV1 blocking. Also, 
IL-25 displayed a decreasing trend, which did not reach statisti-
cal significance. These results imply that TRPV1 channel may 
play a crucial role in bronchial epithelial cells after chronic OVA 
challenge and affect Th2-mediated inflammation by regulating 
epithelial cell-derived cytokine expression. However, the limi-
tation of our study is that exact mechanism underlying down-
regulation of IL-33 and IL-25 by TRPV1 blocking have not been 
revealed. Further studies are needed to reveal the role of TRPV1 
on airway epithelial cells and other inflammatory cells, includ-
ing in vitro experiment using the epithelial cell line. 

Airway remodeling is an essential pathophysiologic feature of 
chronic bronchial asthma.39 Currently, TRPV1 antagonism alle-
viated airway remodeling by reducing airway smooth muscle 
thickening and collagen deposition. Until now, the effect of 
TRPV1 inhibition on airway remodeling has not been fully un-
derstood. One of the most important features of airway remod-
eling is ASMC hypertrophy and hyperplasia.22 Zhao et al.28 re-
vealed that the TRPV1 channel is overexpressed and activated 
in ASMCs of asthmatic rats. Treatment with capsaicin has been 
reported to enhance ASMC proliferation and decrease apopto-
sis, whereas capsazepine did in an opposite manner. ASMC hy-
pertrophy and hyperplasia are important features of airway re-
modeling. Thus, the TRPV1 channel in ASMCs may play a cru-
cial role in airway remodeling in asthma. Furthermore, the ac-
cumulation of matrix proteins, such as collagen fibers, is also 
responsible for airway thickening in chronic asthma.22 A previ-
ous study revealed that, although TRPV1 channel is not gener-
ally expressed in airway fibroblasts, it is expressed significantly 
in inflammatory conditions induced by tumor necrosis factor-α, 
lipopolysaccharide, and IL-1α.26 This result suggests that bron-
chial fibroblasts may be activated to synthesize collagen fibers 
in inflammatory conditions, such as bronchial asthma, via the 
TRPV1 channel. Further studies are needed to understand the 
exact mechanism of TRPV1 in airway remodeling.

In conclusion, blocking the TRPV1 pathway by capsazepine 
or TRPV1 siRNA inhalation attenuates OVA-mediated asthma 
features, including allergic inflammation, AHR, and airway re-
modeling. The TRPV1 antagonist delivered via nasal inhalation 
might have therapeutic potential in the treatment of bronchial 
asthma.
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