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complications change quality of life, increase in demand 
for health services and costs and thereby alter the disease 
profile of the population (Harding et al., 2019). Genetic 
makeup along with differences in dietary patterns, socioeco-
nomic status, environment, access to medical facilities and 
psychosocial factors attribute to ethnic disparities in Type 
2 Diabetes (T2D). Multiple studies have also pointed out 
ethnic inequalities in T2D associated co-morbidities such as 
insulin resistance, predisposition to vascular complications, 
the prevalence of risk factors and response to therapeutic 
strategies (Golden et al., 2012). However, underlying mech-
anisms responsible for inter-ethnic differences in T2D are 
poorly understood.

Across the world, South Asians display an increased bur-
den of T2D in comparison with population from non-White 
and White ethnic backgrounds (Abate & Chandalia, 2001). 
Nurses’ Health Study (NHS) which recruited non-Hispanic 
Whites, Asians, Hispanics and black women aimed to for-
mulate the dietary diabetes risk reduction score. This study 
revealed that risk reduction score was inversely associated 
with the risk of developing T2D in population from all eth-
nic backgrounds and a strong association was observed in 
minority women (Rhee et al., 2015). The Health Improve-
ment Network (THIN) study conducted in the United 

1 Introduction

The convergence of biological/genetic factors associated 
with geographical origins, culture, economic, political/legal 
factors and race contributes to the multidimensional nature 
of ethnic diversity (Williams, 1997). Ethnic differences 
significantly contribute to susceptibility and responses 
to various infectious and non-infectious diseases. Health 
inequalities in diabetes among ethnicities have been known 
for a long time although ethnicities showing a higher risk for 
developing diabetes change over time (Hopkins, 2021). An 
alarming increase in T2D subjects and subsequent vascular 
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Abstract
Type 2 diabetes (T2D) associated health disparities among different ethnicities have long been known. Ethnic variations 
also exist in T2D related comorbidities including insulin resistance, vascular complications and drug response. Genetic 
heterogeneity, dietary patterns, nutrient metabolism and gut microbiome composition attribute to ethnic disparities in 
both manifestation and progression of T2D. These factors differentially regulate the rate of metabolism and metabolic 
health. Metabolomics studies have indicated significant differences in carbohydrate, lipid and amino acid metabolism 
among ethnicities. Interestingly, genetic variations regulating lipid and amino acid metabolism might also contribute to 
inter-ethnic differences in T2D. Comprehensive and comparative metabolomics analysis between ethnicities might help to 
design personalized dietary regimen and newer therapeutic strategies. In the present review, we explore population based 
metabolomics data to identify inter-ethnic differences in metabolites and discuss how (a) genetic variations, (b) dietary 
patterns and (c) microbiome composition may attribute for such differences in T2D.
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was observed in subjects of Turkish and Moroccan origin 
compared with that of Dutch (Hartog et al., 2018). A recent 
study in British Columbia Hepatitis Testers Cohort indi-
cated increased T2D incidence rates in subjects with HCV 
infection. Further, East Asians showed a higher impact of 
HCV associated T2D than South Asians (Jeong et al., 2021).

To address inter-ethnic differences in the manifestation 
of T2D, several cellular and molecular mechanisms have 
been hypothesized. South Asians showed the highest risk 
for developing T2D via increased secretion of insulin from 
pancreatic β-cells whereas African-Americans had higher 
glucose uptake which was not influenced by insulin (Healy 
et al., 2015). Hispanic youth with T2D displayed abnormal 
liver transaminase levels, indicating more risk for develop-
ing the non-alcoholic fatty liver disease when compared to 
African-American and non-Hispanic Whites (Hudson et al., 
2012). Integrative gene network analyses of sub-cutaneous 
adipose tissues revealed significant derangement in the 
expression of several genes related to mitochondrial energy 
and metabolism pathways in African-Americans explaining 
more pronounced insulin resistance than Caucasians (Das et 
al., 2015). Taken together, accumulating evidence suggests 
the existence of multiple mechanisms in developing T2D 
and might be responsible for ethnic differences in develop-
ing T2D.

High throughput technologies along with mathemati-
cal modelling, machine learning algorithms and functional 
screening have enhanced our ability to understand the 
genetic, epigenetic, proteomic and metabolic basis of sev-
eral diseases including T2D and associated vascular com-
plications. In recent years, metabolomics has evolved as a 
robust tool to understand the metabolic status of cells/tissues, 
enabling the discovery of mechanisms, diagnostic biomark-
ers and therapeutic responses for various diseases includ-
ing T2D. Ethnicities with distinct genetic backgrounds and 
lifestyle differentially regulate predisposition, severity and 
response to T2D. Interdependent effects of genetic interac-
tions with environmental factors leading to poor metabolic 
health might result in ethnic differences in the prevalence 
of T2D and associated complications. Ethnicity also con-
tributes to the rate of metabolism and thus, might lead to 
distinct metabolic signatures during the development and 
progression of T2D.

Hence, comprehensive and comparative metabolomics 
analysis between different ethnicities might help to design 
newer therapeutic strategies unique to a population/ethnic-
ity and further facilitate better clinical management of T2D. 
In the present review, we explore population-based metabo-
lomics studies in T2D and associated complications with 
the objectives of (a) comparing metabolic changes among 
ethnicities; (b) examining how these tissue-specific metab-
olites/metabolic pathways might contribute to vascular 

Kingdom (UK) revealed that Asians (7.69%) and people 
from Black ethnicities (5.58%) had a high prevalence of 
T2D when compared to that of other ethnic groups (3.42%) 
(Pham et al., 2019). A multi-ethnic study in Scotland showed 
that Indians and Pakistanis with T2D contained suboptimal 
glycaemic control (Glycated hemoglobin (HbA1c) > 7.5%) 
in comparison with the White Scottish population (Negan-
dhi et al., 2013). In low- and middle-income countries, an 
association between the increase in body weight and obesity 
leading to cardio-metabolic morbidities including diabe-
tes was found (Popkin, 2015). In the mixed population of 
Canada under the Diabetes Population Risk Tool (DPoRT) 
study, non-White ethnicities showed a higher hazard ratio 
of 2.14 in males and 1.71 in females. Further, South Asian 
ethnicities displayed higher hazard ratios (3.0) than white 
ethnicities to develop T2D (< 2.0) (Rosella et al., 2012).

T2D related health disproportions among ethnicities have 
also been observed in risk factors such as obesity. Accord-
ingly, recent study suggests a revision of the Body Mass 
Index (BMI) cut-offs in different ethnic groups enabling bet-
ter clinical management and further reducing the prevalence 
of T2D (Caleyachetty et al., 2021). Zhu et al., upon screening 
4,906,238 individuals observed that racial/ethnic minorities 
showed a higher burden of both diabetic and pre-diabetic 
conditions at lower BMIs than Whites (Zhu et al., 2019). 
Treatment Options for Type 2 Diabetes in Adolescents and 
Youth (TODAY) study has observed that non-Hispanic 
blacks had significantly lower levels of total adiponectin, 
High Molecular Weight Adiponectin (HMWA) and HMWA-
to-total adiponectin ratio at the baseline compared to non-
Hispanic Whites and Hispanics (Arslanian et al., 2017). An 
independent study was conducted to understand the preva-
lence of coronary heart disease (CHD) in South Asians 
(Indian, Pakistani and Bangladeshi) settled overseas. The 
study involved 3,193 men and 561 women residing in Lon-
don, UK. The findings revealed that the prevalence of T2D 
was higher in South Asians (19%) when compared with the 
Europeans (4%). South Asians showed four times greater 
risk of T2D and 1.5 folds high risk towards the development 
of CHD than White Europeans. The study also revealed 
glucose intolerance, hyperinsulinemia, hypertension, low 
plasma High-Density Lipoproteins (HDL) cholesterol and 
elevated triglyceride levels in South Asians than Europeans. 
Independent studies have indicated that insulin resistance 
is associated with central obesity which is a characteristic 
feature of South-Asian men and women (McKeigue et al., 
1991). Inter-ethnic differences are also documented in T2D 
associated infections triggered by Herpes Simplex Virus 1 
(HSV1), Herpes Simplex Virus 2 (HSV2), Hepatitis A virus 
(HAV), Hepatitis B Virus (HBV), Hepatitis C Virus (HCV) 
and Helicobacter pylori. In an epidemiological study in The 
Netherlands, an increased burden of aforesaid infections 
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2 Metabolomics and its applications in 
understanding disease processes

Metabolomics involves comprehensive analysis of small 
molecules (< 1.5 kDa) providing both qualitative and quan-
titative measurements in biological systems (Tan et al., 
2016). Besides being potential biomarkers of the disease, 

complications, differ between ethnicities and (c) investigat-
ing the influence of genetic constitution and dietary patterns 
on these consequent metabolic changes. Various factors 
contributing to pathological differences of T2D among eth-
nicities are summarized in Fig. 1.

Fig. 1 Extrinsic and intrinsic factors contribute to distinct metabolic signatures in T2D among ethnic groups. External elements such as diet and 
lifestyle modifications influence the metabolome in the T2D. Heterogeneity in the prevalence of T2D across various ethnic groups are also due to 
socio-economic status and the availability of health infrastructure. Besides, intrinsic factors such as genetic makeup and epigenetic modifications 
also influence biomolecule metabolism leading to diversity in the metabolite patterns among various ethnic groups in the context of T2D.

 

Page 3 of 21 45



S. Vasishta et al.

1 3

3 T2D associated metabolic reprogramming 
varies among populations

Framingham offspring study demonstrated that euglycemic 
individuals with elevated levels of Branched-Chain Amino 
Acids (BCAA) progressed to T2D over 12 years. Further, 
targeted MS analysis involving participants from a nested 
case-control study carried out in the identical cohort who 
progressed towards developing T2D pointed out a signifi-
cant association between 2-aminoadipic acid and risk for 
T2D (Razquin et al., 2019). Untargeted metabolome profil-
ing using GC-TOF-MS in the plasma samples of the Gullah-
speaking African-American women population revealed 
that leucine, valine, 2-ketoisocaproate, 2-hydroxybutanoate, 
histidine, cystine, carbohydrate derivatives and long-chain 
fatty acids were higher in T2D women when compared with 
non-diabetic women (Fiehn et al., 2010). The increased lev-
els of HbA1c were positively correlated with elevated levels 
of leucine and valine. Further, the study revealed that altered 
metabolism in T2D was due to insulin resistance character-
ized by reduced efficiency of the Tricarboxylic Acid (TCA) 
cycle (Fiehn et al., 2010). One of the causes for compro-
mised TCA cycle activity is increased concentrations of 
2-hydroxybutanoate which is due to amino acid-derived 
2-ketobutanoic acid catalysed by Lactate Dehydrogenase 
(LDH). The metabolism of biotin is altered due to high 
2-hydroxybutanoate. As a consequence of alteration of the 
BCAA, cysteine catabolism reflecting in TCA cycle disrup-
tion was observed (Gall et al., 2010). Metabolic Syndrome 
in Men (METSIM) study is a population-based study in 
Finnish men with 4.7 years of follow-up period. The NMR 
analysis revealed that leucine, alanine, tyrosine, glutamine 
and isoleucine as predictive markers in assessing the inci-
dence of T2D risk. Further, correlation analysis revealed 
that isoleucine was strongly associated with insulin sensitiv-
ity (Stancáková et al., 2012). Botnia Prospective Study was 
launched in 1990 with a 10-year follow-up protocol to iden-
tify the genetic factors related to the progression of T2D. 
The participants were residents of the west coast of Finland. 
A sub-cohort of this population was considered for untar-
geted and targeted metabolomics analysis. Multivariate 
analysis suggested a negative association between histidine, 
glutamine and the (E, E)-isomer of bilirubin with the pro-
gression of the T2D in the population (Peddinti et al., 2017). 
Studies have also reported that bilirubin was negatively 
correlated with nephropathy in subjects with T2D (Hull & 
Agarwal, 2014). Elevated levels of glutamate are sugges-
tive of inflammation and oxidative stress and increased 
glutamate levels also contributes to the deterioration of the 
pancreatic beta cells in both type 1 diabetes (T1D) and T2D 
(Davalli et al., 2012).

metabolites are known to regulate signaling networks or 
effectors of disease process itself (Johnson et al., 2012). 
Over the years, multiple approaches have been explored to 
obtain metabolic profiles of cells/tissues of various organ-
isms to understand biological processes. Mass spectrometry 
(MS) conjugated either with liquid chromatography (LC) 
or gas chromatography (GC) and nuclear mass resonance 
spectroscopy (NMR) are extensively used analytical tech-
niques for metabolomics analysis. Choice of either LC or 
GC depends on solubility or volatility of the samples and 
requires further validation of metabolite annotation based on 
multiple reaction monitoring (Shulaev, 2006). NMR based 
annotation provides structural insights and further valida-
tion is not required and however, experiments require more 
sample. Hence, due to the wide array of metabolites with 
their dynamic nature and heterogeneous chemical composi-
tion within the cell, a complete analysis requires combina-
tion of aforesaid techniques (David & Rostkowski, 2020).

Metabolomics methodologies involve two distinct 
approaches, untargeted and targeted techniques. Targeted 
metabolomics involves measurements of defined set of 
chemically characterized and biochemically annotated 
metabolites. Using internal standards targeted metabolo-
mics approaches provides exact quantitation of predefined 
metabolites and hence these techniques helps in understand-
ing enzyme functions, kinetics and end products (Roberts 
et al., 2012). Untargeted metabolomics protocols provides 
quantitative and qualitative information of all metabolites in 
samples including chemical unknowns. Untargeted metabo-
lomics approaches are useful in identifying overall changes 
in metabolism at a given time and hence, applied in inves-
tigating disease processes, finding novel therapeutic targets 
and drug responses (Joshi et al., 2019), (Patti et al., 2012). 
Accordingly, over the years, both targeted and untargeted 
metabolomics approaches have been widely explored in 
understanding pathophysiology of T2D.

To identify the metabolic diversity across various eth-
nic groups in the context of T2D, we performed a PubMed 
search to access the literature. The following are the dif-
ferent keywords were used ‘metabolomics and Type 2 
Diabetes’, ‘ethnicities and diabetes’, ‘metabolomics and 
race’,‘genetic polymorphism and diabetes’, ‘GWAS and 
diabetes’ and ‘microbiome and diabetes’. Further, based 
on literature obtained we refined articles only pertaining 
to Type 2 Diabetes. Subsequently, with respect to T2D and 
metabolomics related to diverse ethnic groups, we found 26 
relevant studies. Out of these 26 studies, 15% of the studies 
used NMR spectroscopy for their analysis. The remaining 
85% of the studies used either GC-MS or LC-MS or a com-
bination of both. Out of these, 45% of studies conducted 
non-targeted metabolomics and 55% of studies performed 
targeted metabolomics analysis.

45 Page 4 of 21



Ethnic disparities attributed to the manifestation in and response to type 2 diabetes: insights from…

1 3

acids from cytosol to mitochondria are associated with 
insulin sensitivity (Mihalik et al., 2010). A targeted metabo-
lomics analysis in Korea Association REsource (KARE) 
cohort revealed that hexadecanoyl carnitine (C16), gly-
cine, LPC acyl (C18:2) and phosphatidylcholine acyl-alkyl 
(C36:0) were significantly altered in presence of hypergly-
caemia when compared with the control group. Reduced 
levels of lysoPC (C18:2) are attributed to impaired insulin-
stimulated glucose uptake (Lee et al., 2016). Over-nutrition 
causes excessive fatty acid oxidation and results in mito-
chondrial stress and also impaired glucose transporter type 
4 (GLUT4) signalling (Muoio & Newgard, 2008). KORA 
(Kooperative gesundheitsforschung in der region Augsburg 

A meta-analysis of fourteen cohorts comprising 4,592 
subjects revealed that leucine (1.89-fold), alanine (1.63-
fold) and oleic acid (1.87-fold) were positively correlated 
to T2D. On the other hand, lysophosphatidylcholines (LPC) 
18:0 (20%) and creatinine (37%) showed a negative asso-
ciation with T2D (Park et al., 2018). Metabolomics analy-
sis using UHPLC and GC-MS coupled with a tandem mass 
spectrometry in a nested case-control study performed 
among two different cohorts namely, Dongfeng-Tongji 
(DFTJ) cohort and Jiangsu Non-communicable Disease 
(JSNCD) cohort showed that alanine, phenylalanine, tyro-
sine and palmitoyl carnitine as biomarkers of T2D (Qiu et 
al., 2016). Carnitines, involved in the translocation of fatty 

Fig. 2 Different ethnicities display distinct alterations in the organ-specific metabolic pathways and their intermediates related to carbohydrate 
metabolism. In the Chinese population, glycolysis and gluconeogenesis were dysregulated. The fructose and glucose levels were high in Koreans. 
Glycated hemoglobin was more in Indians and Malays. There was an increase in lactate and pyruvate content in Finnish men. Alterations in TCA 
cycle metabolism led to decreased muscle oxidative capacity in South Asian men.
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5 Branched chain and aromatic amino 
acids regulate insulin resistance and are 
differentially modulated among ethnic 
groups

T2D is associated with significant alterations in amino 
acid metabolism. The SABRE (Southall And Brent REvis-
ited study) aimed to understand metabolic status in T2D 
among various ethnic groups. The participants were Euro-
peans (n = 1,279) and South Asians (n = 1,007) (20% of Hin-
dus, 15% of Muslims, 52% of Punjabi Sikhs, and 13% of 
other South Asians). The study demonstrated the relation-
ship between circulating amino acids and the onset of T2D. 
Predisposing factors of T2D such as alcohol consumption 
and smoking were less in the South Asian ethnic groups. 
Isoleucine, tyrosine, alanine and phenylalanine levels were 
significantly elevated in the South Asian cohort. However, 
these amino acids showed cross-sectional correlations with 
glycemic index and insulin resistance in both ethnic groups. 
After a 19 year follow-up, the metabolite profile showed a 
strong association of tyrosine with the incidence of T2D 
in South Asians (Tillin et al., 2015). The association of 
increased BCAAs is attributed to dysregulation of amino 
acid metabolism in the liver, kidneys, muscles, or adipose 
tissues (Krebs et al., 2002; Tremblay et al., 2007). When 
compared with the Europeans, South Asians reportedly have 
low muscle mass, more hepatic fat and high central obe-
sity (Chowdhury et al., 1996; Petersen et al., 2006). Studies 
have shown that, when compared with Caucasians, adipo-
cytes are relatively large in South Asian men. The levels of 
plasma adiponectin in South Asian men were inversely cor-
related with that of the adipocyte size. The study concluded 
that insulin resistance in South Asian men may be due to the 
hypertrophy of the adipocytes and truncal adiposity rather 
than visceral fat (Chandalia et al., 2007). A sub-cohort of 
METSIM study in Finland, also showed that ketone bodies 
were associated with abnormal glucose tolerance. In a pro-
spective 13-year follow-up study, metabolite profiling was 
performed in South African women segregated into normo-
glycemic, T2D and impaired fasting glycaemic groups. The 
study indicated that metabolic products of phospholipids 
and bile acids along with BCAA’s were significantly high in 
subjects who had developed T2D after 13 years. The levels 
of these metabolites were unaltered in subjects who did not 
progress towards T2D. During the follow-up, it was observed 
that at the onset of T2D participants had higher levels of 
LPC(C18:2) levels (Zenget al., 2019). Interestingly, LPCs 
are involved in glucose-dependent insulin secretion by the 
activation of G-protein coupled receptors (GPR) (Soga et 
al., 2005). It is also evident that compared to White South 
African women, higher levels of insulin are secreted by pan-
creatic beta-cell in black South African women (Goedecke 

cohort) of Germany demonstrated that impaired glucose tol-
erance (IGT) is associated with low levels of glycine and 
high levels of acetyl carnitine (Wang-Sattler et al., 2012). 
Qatar Metabolomics Study involving participants of Ara-
bian and Asian descent (QMDiab) performed non-targeted 
metabolomics analysis in plasma, urinary and salivary sam-
ples and revealed that 94 metabolites from all the biofluids 
are significantly associated with T2D (Yousri et al., 2015).

4 Ethnic groups display differences in 
carbohydrate metabolism in T2D

Non-targeted metabolomics analysis in the Shanghai 
Women’s Health Study (SWHS) and the Shanghai Men’s 
Health Study (SMHS) revealed significant modulation of 
metabolites associated with pathways regulating glucose 
homeostasis (glycolysis/gluconeogenesis), BCAA, fatty 
acids, glycerophospholipids, androgen and bradykinin (Yu 
et al., 2016). In contrast, the Korean Genome and Epidemi-
ology Study (KoGES) study showed that metabolic indices 
of valine, alanine, isoleucine, arginine, tyrosine, proline, 
hexoses and five phosphatidylcholine diacyls were associ-
ated with T2D risk which was demonstrated in an 8 year 
follow up study. Yang et al., using flow injection analysis 
(FIA)-MS/MS and LC-MS/MS reported a negative correla-
tion between spermine levels and onset of T2D (Yang et al., 
2018). Interestingly, spermine serves the role of glycation 
inhibitor and mediates glucose stimulated insulin release 
(Welsh & Sjöholm, 1988; Gugliucci & Menini, 2003). A 
Finnish population based study with a 5-year follow-up 
showed α1-acid glycoprotein, BCAA and phenylalanine 
were associated with levels of fasting glycemia. Whereas, 
alanine, pyruvate, tyrosine and lactate were uniquely associ-
ated with post-load glucose. This indicated the altered levels 
of these precursor molecules might be responsible for insu-
lin sensitivity (Würtz et al., 2013). South Asian ethnic sub-
jects are known to consume a high amount of carbohydrates 
when compared to Nordic subjects with T2D. Hence, South 
Asians showed higher production of basal endogenous glu-
cose reflecting increased hepatic insulin resistance (Wium 
et al., 2013). Taken together, metabolomics analysis in T2D 
subjects of different ethnicities showed distinct modulations 
in carbohydrate metabolism and associated intermediates 
(Fig. 2).
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odds ratio per 1-SD increase in plasma BCAA, revealed that 
insulin sensitivity had a higher association with BCAA. The 
association was stronger in Caucasians and Hispanics when 
compared with the participants in other two ethnicities (Lee 
et al., 2016). A Multi-ethnic study was conducted using tar-
geted metabolomics in European American, Hispanic, and 
African-American subjects. Both the extremes of insulin 
resistance values were observed among different ethnici-
ties. Subjects with insulin resistance showed decreased 
levels of glycine and higher concentrations of valine, leu-
cine, phenylalanine, glutamate and glutamine. These levels 
were more pronounced in European Americans and African 
Americans but not in Hispanics (Palmer et al., 2015). The 
altered products of amino acid metabolism among different 
ethnic groups are summarized in Fig. 3.

et al., 2009). Deoxycholic acid and glycodeoxycholic acid 
levels were lower at baseline in subjects who progressed 
towards T2D during the follow-up. Bile acids are known to 
enhance the absorption of fats. Failure to reabsorb the bile 
acids results in altered signalling of glucagon-like peptide-1 
and insulin (Brighton et al., 2015). Hence, Deoxycholic 
acid and glycodeoxycholic acid might serve as predictive 
markers of T2D (Zeng et al., 2019). The Insulin Resistance 
Atherosclerosis Study (IRAS) study is one of the largest 
comprehensive epidemiologic studies that address insulin 
resistance and atherosclerosis which are the cause and con-
sequence of T2D respectively (Wagenknecht et al., 1995). 
Targeted profiling of BCAA as a part of IRAS in a multi-
ethnic population involving African-Americans, Hispan-
ics and Caucasians and performing multivariable-adjusted 

Fig. 3 Different ethnic groups display distinct alterations in the amino acid metabolism and their intermediates. Lower levels of histidine, glu-
tamine and higher levels of isoleucine were observed in the Finnish population. Valine and glycine levels were low in European Americans and 
African-Americans. Increased levels of liver transaminases were observed in Hispanic youth. Alanine, isoleucine, tyrosine, phenylalanine were 
elevated in South Asian men. Hispanics and Caucasians had higher amounts of leucine, valine and isoleucine.
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metabolism is dysregulated in T2D which may lead to alter-
ations in the peripheral circulation of Polyunsaturated Fatty 
Acids (PUFA) (Boden & Laakso, 2004). A nested case-
cohort study within the participants of the PREDIMED trial 
(Prevention with Mediterranean Diet) which involved popu-
lations from different geographies of South America such 
as South (Andalusia and Canary Islands), North (Navarra 
and Basque country), East (Valencia and Balearic Islands), 
North-East (Catalonia). The Targeted lipidomic approach 
showed increased levels of cholesterol esters, LPCs, Sphin-
gomyelins (SMs), Phosphatidylcholine-Plasmalogens (PC-
PLs), and lysophosphatidylethanolamines were negatively 

6 Lipids regulating immuno-metabolic axis 
in T2D varies among ethnicities

One of the pathological changes associated with T2D is 
persistent low-grade inflammation associated with increased 
levels of pro-inflammatory mediators (Ellulu et al., 2017). 
Inflammation is one of the important factors triggering insu-
lin resistance in various tissues (Balakrishnan et al., 2018). 
Accordingly, efforts are made to treat chronic inflamma-
tion and restore immune homeostasis by promoting ‘reso-
lution of inflammation in diabetic conditions (Brennan et 
al., 2018). Accumulating evidence indicates that lipoprotein 

Fig. 4 The fate of dietary fats and cholesterol along with biogenesis and degradation of fatty acids are represented. The ethnicity-specific metabo-
lites of lipid metabolism with their site of synthesis/breakdown are highlighted. Metabolic synchronization between the liver, skeletal muscle, 
adipose tissue and intestine are derailed during the T2D. Black South African Women had increased levels of bile acids. Acylcarnitines and triac-
ylglycerols were high in Chinese. The levels of phospholipids were low in South Americans. Dysregulated mitochondrial energy metabolism was 
observed in African-Americans. Non-Hispanic blacks had low levels of adiponectin.
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BCAA such as leucine, isoleucine, valine and non-esterified 
fatty acids such as palmitic acid, oleic acid, linolenic acid 
and stearic acid were significantly associated with T2D. It 
was also demonstrated that metabolites such as amino malo-
nic acid, urea, proline, 3-carboxy-4-methyl-5-propyl-2-fu-
ranpropionic acid, LPI (16:1) and glycerol are considered in 
predicting the risk of T2D (Lu et al., 2016). A population-
based targeted metabolomics study in Beijing and Shanghai 
revealed that acylcarnitines, a component of the energy pro-
duction unit were significantly associated with T2D (Sun et 
al., 2016). Afro-Caribbean subjects with T2D had a lower 
risk of myocardial infarction in comparison with Whites and 
South Asians. Gray et al., observed that delta-6 desaturase 
(D6D) activity was significantly low in Asian Indian women 
in comparison with White Europeans (Gray et al., 2013). 
SFAs are converted to monounsaturated equivalents by the 
action of the lipid desaturase enzyme. Delta-6 and delta-5 
desaturase (D5D) are important for desaturations (Gray et 
al., 2013). An untargeted metabolomics study in the Indian 
populations residing in North and South Dakota, Oklahoma 
and Arizona reported that 2-hydroxybiphenyl was associ-
ated with risk of T2D. However, 2-hydroxybiphenyl has 
large-scale industrial applications and is an environmental 
toxin indicating the role of pollutants in developing T2D 
(Zhao et al., 2015). Ethnicity specific alterations in lipid 
metabolism are summarized in Fig. 4.

7 Inter-ethnic genetic variations in genes 
regulating amino acid and lipid metabolism 
might contribute to differential metabolic 
reprogramming

Over the years, Genome Wide Association Studies (GWAS) 
have indicated ethnicity based genetic markers associated 
with a variety of diseases including T2D (Ali, 2013). A 
meta-analysis of 26,676 cases of T2D and 132,532 con-
trols belonging to European ancestry revealed 13 novel loci 
(p < 5 × 10− 8) associated with T2D. These loci are associ-
ated with gastric inhibitory peptide (GIP), major histo-
compatibility complex, class II, DQ alpha 1 (HLA-DQA1), 
neurexin 3 (NRXN3), C-Maf Inducing Protein (CMIP) and 
glucagon Like Peptide 2 Receptor (GLP2R) genes (Scott et 
al., 2017). One of the significant associations was observed 
at rs1182436 which is upstream of the motor neuron and 
pancreas homeobox 1 (MNX1) gene which plays a role 
in pancreatic hypoplasia and neonatal diabetes (Flana-
gan et al., 2014). A missense variant (rs17681684) close 
to the GLP2R gene has been shown associated with glu-
cose tolerance (Guan, 2014). A study conducted on Japa-
nese individuals has revealed that cyclin dependent kinase 
inhibitor 2B (CDKN2B) (rs10811661), CDK5 regulatory 

associated with the risk of T2D (Razquin et al., 2018). This 
is because LPCs are known to reduce blood glucose levels 
and have anti-inflammatory effects (Lehmann et al., 2013). 
Plasmalogens possess antioxidant, anti-apoptotic and anti-
inflammatory properties (Huynh et al., 2017). SMs play a 
vital role in mitochondrial function and efficient glucose-
stimulated insulin secretion which was confirmed in SM 
synthase 1 knockout mouse models (Yano et al., 2011). A 
multi-cohort nested case-control study involving European 
Prospective Investigation into Cancer and Nutrition (EPIC)-
InterAct study showed that high concentrations of linoleic 
acid, odd chain fatty acids, and Very-Long-Chain Fatty 
Acids (VLSFAs) are associated with a lower occurrence of 
T2D. This in turn is mediated by genetic and epigenetic fac-
tors. Along with this higher concentration of endogenously 
synthesized fatty acids such as 18:2n-6, odd-chain Saturated 
Fatty Acids (SFAs) and VLSFAs and decreased concentra-
tions of long-chain SFAs and Mono Saturated Fatty Acids 
(MUFAs) reduced the risk of T2D (Imamura et al., 2017). A 
multi-cohort study in Germany with the cohorts labelled, a) 
EPIC Potsdam study is an integral part of multicentre EPIC 
study b) Cooperative Health Research in the Region of 
Augsburg study c) Tübingen Family study for T2D involved 
analysing oral glucose tolerance and targeted serum metab-
olomics. Analysis showed that the elevated levels of diacyl-
phosphatidylcholines C36:1, C32:1, C40:5, and C38:3 and 
decreased concentrations SM C16:1, acyl-alkyl-phospha-
tidylcholines C42:5, C40:6, C44:4, C44:5 and C34:3 and 
LPC C18:2 were associated with T2D (Floegel et al., 2013). 
Phospholipids are an integral part of the cell membrane and 
are involved in several cellular processes. Choline is the 
primary precursor for the production of diacyl-phosphati-
dylcholines and acyl-alkyl-phosphatidylcholines which are 
involved in the production of Very Low Density Lipoprotein 
(VLDL), HDL and are associated with the antioxidant activ-
ity (Wallner & Schmitz, 2011; Cole et al., 2012). Studies in 
mouse models showed dietary intake of choline was neces-
sary for improved glucose tolerance (Raubenheimer et al., 
2006). The METSIM study revealed that serum levels of 
Free Fatty Acids (FFAs), glycerol, SFAs, and MUFAs and 
n-7, n-9 FAs are associated with T2D (Mahendran et al., 
2013). SFAs are further desaturated into MUFAs and hence 
correlated with T2D in the population consuming the West-
ern diet (Sundström et al., 2001; Kouki et al., 2011). The 
intake of SFAs is also related to insulin resistance (Lich-
tenstein & Schwab, 2000). Targeted serum lipidomics in a 
Chinese cohort with T2D revealed an association between 
triacylglycerols, PUFA’s and cholesteryl esters with T2D 
(Lu et al., 2019). A six-year follow-up study in the Chinese 
population with T2D without any previous history of cardio-
vascular diseases showed an alteration in the metabolic pro-
file in T2D subjects. Untargeted metabolomics showed that 
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variations (Gonzalez-Franquesa et al., 2016). Peroxisome 
proliferator-activated receptor gamma (PPARG) alters 
the rate-limiting step of fatty acid biosynthesis mediated 
by stearoyl-CoA desaturase (Brown et al., 2008; Wahli & 
Michalik, 2012) and also regulates carbohydrate metabo-
lism (Radha & Mohan, 2007). A meta-analysis revealed 
that the minor allele of the rs1801282 (Pro12Ala) variant 
of PPARG decreases the risk of T2D. This protective effect 
is significantly observed in Europeans. The OR and CI for 
homozygous (OR: 0.74, 95% CI: 0.59–0.92), for heterozy-
gous (OR: 0.88, 95% CI: 0.79–0.98), under allelic are (OR: 
0.82, 95% CI: 0.73–0.91), for co-dominant (OR: 0.88, 95% 
CI: 0.82–0.95), for recessive (OR: 0.75, 95% CI: 0.61–
0.93), for additive (OR: 0.76, 95% CI: 0.58–0.98) and for 
dominant (OR: 0.86, 95% CI: 0.77–0.96). East Asians had 
an co-dominant (OR: 0.80, 95% CI: 0.65–0.98) and under 
allelic (OR: 0.80, 95% CI: 0.63–1.00) variant (Sarhangi et 
al., 2020). Several case-control studies revealed that Pro-
12Ala variant of PPARG in East Asia (Japanese) (Mori 
et al., 2001), Greater Middle Eastern (Motavallian et al., 
2013) and in the populations with European lineages such 
as Czech (Pintérová et al., 2004), Scottish (Doney et al., 
2004) and Finnish (Douglas et al., 2001) reduces the risk for 
developing T2D. Pima Indians are known to have the high-
est prevalence of T2D (Hanson et al., 1998). A population 
specific study was conducted involving 332 nuclear fami-
lies of Pima Indians. The study screened genetic variations 
associated with phospholipase A2, Group IVA (PLA2G4A) 
which falls in the category of calcium-dependent phospho-
lipases (cPLA2s) and are involved in the cleaving of ara-
chidonic acid from phospholipid membranes. Wolford et 
al., identified a C to G variant associated with PLA2G4A in 
the Pima Indians, which leads to the substitution of phenyl-
alanine with leucine (Wolford et al., 2003). This enzymatic 
activity of cPLA2s helps to provide arachidonic acid as a 
precursor molecule for the biogenesis of eicosanoids (Clark 
et al., 1991). The intermediates and the compounds pro-
duced in this pathway play a vital role in insulin secretion 
which is influenced by secretagogues (Parker et al., 1996; 
Ahrén et al., 2000). Study participants with C to G variant 
had lesser endogenous glucose output and low mean basal 
glucose oxidation. Under normal physiological conditions, 
the variant genotype containing individuals had higher lev-
els of lipid oxidation which reflects the effect of SNP in the 
PLA2G4A gene (Wolford et al., 2003).

The meta-analysis involving two cohorts (a) Asian 
Genetic Epidemiology Network (AGEN) and (b) Diabetes 
Meta-analysis of Trans-ethnic Association Studies (DIA-
MANTE) with 77,418 T2D subjects and 356,122 controls 
revealed 301 distinct signals associated with 183 loci in 
T2D subjects. When gender based stratification was per-
formed aldehyde dehydrogenase (ALDH2) (rs12231737) 

associated protein 1-like 1 (CDKAL1) (rs7756992), solute 
carrier family 30 member 8 (SLC30A8) (rs1326663), insulin 
like growth factor 2 mRNA binding protein 2 (IGF2BP2) 
(rs4402960), C2 calcium dependent domain containing 4 A 
(C2CD4A/B) (rs7172432), potassium voltage-gated chan-
nel subfamily Q member 1 (KCNQ1) (rs2237892), insulin 
receptor substrate 1 (IRS-1) (rs2943641), glucokinase regu-
lator (GCKR) (rs780094) and potassium inwardly rectifying 
channel subfamily J member 11 (KCNJ11) (rs5219) were 
associated with predisposition to T2D. Further, Iwata et 
al., demonstrated a significant association between genetic 
risk score (P = 5.9 × 10− 21) and early onset of T2D (Iwata et 
al., 2012). A population based study conducted in India has 
shown that rs998451 (odds ratio (OR) 1.56; P = 6.3 × 10− 12) 
at 2q21 locus which is close to transmembrane protein 163 
(TMEM163) is associated with reduced levels of fasting 
plasma insulin (Tabassum et al., 2013). Zinc transporter 
protein member 8 (ZnT-8) (SLC30A8) belonging to the zinc 
transporter family is involved in insulin signalling. A meta-
analysis was conducted to find the association between 
SLC30A8 polymorphism (rs13266634) and the risk of T2D. 
The study demonstrated that Europeans (OR = 1.15, 95% 
CI (Confidence Interval) 1.11–1.18, p < 0.001) and Asians 
(OR = 1.15, 95% CI 1.11–1.19, p < 0.001) harbouring this 
single nucleotide polymorphism (SNPs) are at increased 
risk of developing T2D (Jing et al., 2011). Ectonucleotide 
pyrophosphatase/phosphodiesterase 1 ENPP1/PC1 variants 
have been shown associated with insulin resistance leading 
to increased risk for T2D. Genotyping analysis revealed that 
ENPP1/PC1 K121Q variant was relatively higher in Afri-
can-Americans (78.5%) and Hispanics (21.9%) in contrast 
to the non-Hispanic White group. The study also stated that 
African-Americans (14.1%) and Hispanics (11.7%) showed 
a high prevalence of T2D when compared with non-His-
panic Whites (Chandalia, et al., 2007).

KORA S4 survey which was conducted in Germany iden-
tified several genetic variants linked with altered metabolite 
levels. A total of 163 metabolic traits were measured in the 
population. The variants of electron transfer flavoprotein 
dehydrogenase (ETFDH), monocarboxylate transporter 9 
(SLC16A9), correspond to genes encoding solute carriers. 
ACADS, ACADM and ACADL genes are associated with 
beta (β)-oxidation of fatty acids. Fatty acid desaturase 1 
(FADS1), and elongation of very-long-chain fatty acids-
like 2 (ELOVL2) are linked with the biogenesis of polyun-
saturated fatty acids and serine palmitoyl transferase long 
chain base subunit 3 (SPTLC3) is related to phospholipid 
biosynthesis (Illig et al., 2010). The majority of these loci 
were validated which were closer to the genes regulating 
enzymes of β-oxidation, amino acid metabolism, fatty acid 
and phospholipid biosynthesis. The study indicated a 36% 
variance in the metabolite levels contributed by genetic 
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and African--Americans (n = 4,232) has revealed that com-
mon variants of CDH13 and ADIPOQ loci regulate the 
adiponectin levels. A variant of ADIPOQ; rs6810075 [T] is 
associated with the population of European descent. These 
variations, in turn, alter insulin, triglycerides, post-prandial 
glucose, waist-to-hip ratio and HDL in the individuals. 
Genome wide significance of ADIPOQ locus was observed 
in African-Americans whereas in East Asians significance 
was observed at ADIPOQ and CDH13 loci (Dastani et al., 
2012). Interestingly, CDH13 overexpression in vascular 
endothelium led to reduced responsiveness to insulin to acti-
vate endothelial nitric oxide synthase (eNOS) (Philippova 
et al., 2010). GPR induced protein that interacts with MAP 
kinases is encoded by TRIB1. MAP kinases are involved in 
regulating chemotaxis and proliferation of vascular smooth 
muscle cells (Kiss-Toth et al., 2004). Atherosclerosis is a 
macro-vascular complication associated with T2D. The 
expression of TRIB1 is elevated during atherosclerosis vas-
cular smooth muscle cells (Sung et al., 2007). A GWAS 
was performed on the United States of America (USA) 
based Hispanic/Latino background groups to understand 
the genetic underpinning of circulating metabolites. The 
study revealed 46 different loci regulating the metabolome. 
One of the variants in dedicator of cytokinesis 7 (DOCK7) 
gene rs10889335, which is linked with phosphatidylinosi-
tol 1-stearoyl-2-arachidonoyl-GPI (18:0/20:3). DOCK7 is 
co-localized with low levels of angiopoietin-like protein 3 
(ANGPTL3) in the liver. ANGPTL3 is associated with lipid 
metabolism and is known to cause type 2 hypobetalipo-
proteinaemia. Variants of TRIB1 (rs2954029, rs2954021, 
rs17321515) are associated with LDL, CHD and HDL in 
Asian and European populations (Willer et al., 2008; Chas-
man et al., 2009; Teslovich et al., 2010; Waterworth et al., 
2010; Park et al., 2011). Hispanics, an ethnic group are more 
prone to cardiometabolic diseases (Feofanova et al., 2020). 
FADS1 and its corresponding variant rs174554 are associ-
ated with elevated levels of 1-palmitoyl-2-stearoyl-GPC 
(16:0/18:0) which belongs to phosphatidylcholine species. 
These lipid molecules play a vital role in insulin resistance 
(Chang et al., 2019). HbA1c is a widely accepted marker for 
diagnosis and glycaemic control in T2D. GWAS performed 
as a part of the Singapore Malay Eye Study and Living Bio-
bank study indicated deletions at SLC4A1 (rs769664228) 
are associated with reduced HbA1c levels. This variant has 
been significantly associated with the Malay population 
(Chai et al., 2020). Metabolic syndrome is one of the risk 
factors for T2D. Analysis of serum metabolome in a subset 
of the American population, which included Whites, Blacks 
and participants of unknown race revealed that BCAA was 
significantly associated with T2D. Interestingly, these find-
ings are supported by a study that shows that a genetic vari-
ant of the (protein phosphatase, Mg2+/Mn2+ dependent 1 K) 

was associated with males (Pmales=5.8 × 10 − 27). One of the 
significant missense variants associated with rs12231737 
(Phet=2.6 × 10 − 19) is rs671 (ALDH2 Glu504Lys: OR = 1.17, 
risk allele frequencies (RAF) = 77.7%, 95% CI 1.14–1.20, 
Pmales=1.5 × 10 − 24). This variant is known to reduce 
ALDH2 activity (Spracklen et al., 2020). ALDH2 is an alde-
hyde dehydrogenase 2 family member, which catalyses the 
conversion of acetaldehyde into acetic acid. ALDH2 504Lys 
allele is associated with high BMI, increased tolerance of 
alcohol, BP, HDL, and decreased low Density lipopro-
tein (LDL) and cardiovascular risk in East Asians (Xu et 
al., 2010; Takeuchi et al., 2011). A population-based study 
was performed to understand the loss-of-function variants 
associated with the adenylyl cyclase 3 (ADCY3) gene. The 
study participants were a part of two different cohorts; the 
B99 cohort and Inuit Health in Transition (IHIT) located 
in Greenland. One of the variants was known to destroy a 
splice-acceptor site in exon 14 of ADCY3 encoding adenyl-
ate cyclase. This catalyses the formation of cyclic adenos-
ine monophosphate (cAMP) from adenosine triphosphate 
(ATP). The study showed that loss-of-function variants in 
Greenlandic homozygous (ADCY3 c.2433-1G > A) result-
ing in a phenotype characterized by truncal adiposity and 
metabolic alterations associated with insulin resistance, 
dyslipidemia and T2D (Grarup et al., 2018). To identify the 
influence of genetic variations on the health of U.S. military 
veterans, a Million Veteran Program (MVP) was launched 
in 2011. The study consisted of non-Hispanic Blacks, His-
panics and non-Hispanic Whites (Klarin et al., 2018). Based 
on GWAS and subsequent Transcriptome wide association 
studies (TWAS) Gandotra et al., identified the presence of 
rare missense mutation in the gene coding for Perilipin-1 
(PLIN1 p.Leu90Pro). Subjects with these variants showed 
higher levels of plasma HDL. Perilipin-1 in humans is vital 
for the formation of lipid droplets, triglyceride storage and 
metabolism of FFAs (Gandotra et al., 2011). MVP study also 
pointed out that brain-derived neurotrophic factor (BDNF) 
downstream variants were linked with triglycerides and 
HDL levels and imply the association of this gene with T2D 
and metabolic syndrome (Rani et al., 2017). Taken together, 
these genetic variations demonstrate inter-ethnic differences 
leading to dyslipidaemia (Klarin et al., 2018). Serum adipo-
nectin level is one of the factors which inversely correlates 
with blood glucose, indices of insulin resistance and T2D 
(Hivert et al., 2008). Polymorphism in the adiponectin gene 
(ADIPOQ) is correlated with serum levels of adiponectin 
in most of the studies (Manning, et al., 2008; Ling et al., 
2009; Menzaghi et al., 2007). Studies conducted on East 
Asians have revealed that cadherin 13 (CDH13) is linked 
with adiponectin levels (Jee et al., 2010). A meta-analysis 
combining participants from three ethnic backgrounds such 
as White Europeans (n = 29,347), East Asians (n = 1,776) 
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short-chain acylcarnitines. Higher levels of these metabo-
lites are related to elevated levels of fasting glucose and 
lower levels of total adiponectin. This study revealed that 
diet showed a major impact on the development of cardio-
vascular anomalies (Mozaffarian, 2016). A parallel double 
blinded study demonstrated intake of sucrose-sweetened 
beverages and high-fructose corn syrup (3 servings/day for 
16 days) significantly increased the hepatic lipid content, 
plasma lipids concentrations, uric acid and lipoproteins. 
A significant reduction in Matsuda ISI index along with 
decreased insulin sensitivity was observed in the subjects 
who consumed these beverages (Sigala et al., 2021).

A meta-analysis involving 16 randomized control tri-
als has shown that physical activity, reduced caloric intake 
and dietary education showed beneficial outcomes on car-
diovascular complications associated with T2D. Results 
of the Look AHEAD (Action for Health in Diabetes) trial 
have revealed that decreased caloric intake reduced the lev-
els of HbA1c further minimized cardiovascular risk factors 
(Wing et al., 2013). Da Qing Diabetes Prevention Study 
which involved a six-year lifestyle intervention and a fol-
low-up for 23 years in Chinese adults with IGT revealed 
that mortality associated with cardiovascular diseases was 
reduced by 41% (Li et al., 2014). A comprehensive meta-
analysis revealed that intake of whole grain was associated 
with lowering T2D to an extent of 21% (de Munter et al., 
2007). The results of the INTERHEART study revealed 
that diabetic individuals upon dietary intake of fruits and 
vegetables accounted for reduced myocardial infarction in 
the study participants belonging to Asia, Europe, the Middle 
East, Africa, Australia, North America and South America 
(Yusuf et al., 2004). A comprehensive meta-analysis sum-
marized the beneficial effects of different dietary patterns 
on cardiometabolic outcomes was conducted by The Dia-
betes and Nutrition Study Group (DNSG) of the European 
Association for the Study of Diabetes (EASD) (Kahleova 
et al., 2019). The Mediterranean diet (Becerra-Tomás et al., 
2020), Dietary Approaches to Stop Hypertension (DASH) 
diet (Chiavaroli et al., 2019), Portfolio diet (Chiavaroli et 
al., 2018), Nordic diet (Ramezani-Jolfaie et al., 2019) and 
Vegetarian diet (Glenn et al., 2019) is known to reduce the 
cardio metabolic outcomes. These prudent diets are known 
to reduce the levels of both HbA1c and LDL.

Studies in diabetic individuals such as the PREDIMED 
trial which involved the intake of a Mediterranean diet pre-
vented cardiovascular anomalies by 31% (Estruch et al., 
2013). A randomized double-blinded crossover study was 
conducted in European and South-Asian descents to under-
stand the influence of L-arginine supplementation for six 
weeks on skeletal muscle and brown adipose tissue metabo-
lism. The findings indicated improved glucose tolerance in 
European men whereas South Asian men did not respond to 

(PPM1K) gene which activates Branched Chain Amino 
Acid ketoacid dehydrogenase (BCKD) is associated with 
T2D (Lotta et al., 2016). Independent studies have demon-
strated decreased expression of branched-chain aminotrans-
ferase and BCKD causes elevated levels of BCAAs (She et 
al., 2007).

8 Does distinct dietary and microbiome 
patterns reflect on metabolome resulting in 
ethnic disparities in T2D?

Diet significantly influences genetic and epigenetic regula-
tion of gene expression and thus, an imbalanced diet consid-
erably contributes to the pathogenesis of metabolic disorders 
including T2D. Diet consisting of high sodium content, high 
meat and trans fats have been demonstrated as a high-risk 
factor for T2D and obesity (Murray et al., 2013). The NHS 
which tracked 84,941 female nurses between 1980 and 
1996 reported that poor diet, alcohol intake and smoking 
are significantly associated with a high risk for T2D. A diet 
high in polyunsaturated fat, cereal fibre and low in glycae-
mic load and trans-fat proved to maintain good euglycemic 
levels (Hu et al., 2001). A meta-analysis of 15,043 T2D of 
310,819 participants revealed that sugar-sweetened bever-
ages with 1–2 servings per day increased the risk of T2D by 
26% (Malik et al., 2010). A prudent diet with an appropriate 
amount of calorie intake and rich in n-3 fatty acids instead 
of saturated fats and avoiding intake of tobacco and alcohol 
helped to prevent diabetes and associated vascular com-
plications in Indians (Singh et al., 1997). Dalda, a variety 
of vegetable ghee, is known to contain high trans fats and 
is widely consumed in India along with other South Asian 
geographies (Popkin, 2001). Intake of the higher amount 
of trans fats is linked with insulin resistance and elevation 
of several inflammatory mediators which further leads to 
endothelial dysfunction and may result in vascular compli-
cations (Lopez-Garcia et al., 2005). The SWHS involving 
64,227 Chinese women without a history of T2D revealed 
that intake of rice and high glycemic foods may increase 
the probability of developing T2D in women (Villegas et 
al., 2007). Meta-analyses and systematic reviews from 
the Nutrition and Chronic Diseases Expert Group (Nutri-
CoDE) identified trans-fats, sugar-sweetened beverages and 
processed meats are widely responsible for cardiovascu-
lar outcomes. In contrast, intake of a prudent diet showed 
protective effects (Micha et al., 2017). Analysis of the data 
from the cross-sectional study of the Asian Indians a part 
of the Metabolic Syndrome and Atherosclerosis in South 
Asians Living in America (MASALA), a pilot study in the 
USA revealed that western/non-vegetarian diet was associ-
ated with higher levels of BCAA, aromatic amino acids and 
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revealed that TMAO levels are significantly associated with 
the prevalence of prediabetes (Roy et al., 2020). T2D is also 
a risk factor for heart failure (Dunlay et al., 2019). The UK 
Leicester cohort study recruited Caucasians (n = 842, 77%), 
South Asians (n = 129, 12%) and Japanese cohort (n = 116, 
11%) to understand the role of ethnicity in the context 
of elevated levels of TMAO and heart failure. The study 
revealed that elevated TMAO levels resulted in heart failure 
in Caucasian subjects in comparison with the other ethnic 
groups (Yazaki et al., 2020).

One of the by-products of carbohydrate metabolism 
influenced by the gut microbiome is the synthesis of Short 
chain fatty acid (SFAs) such as propanoic acid, butyric acid 
and inter alia. These SFAs are known to protect the intesti-
nal epithelium (Saad et al., 2016). SFAs are synthesized by 
Bacteroides, Clostridium, Bifidobacterium, Eubacterium, 
Streptococcus and Peptostreptococcus (Ma et al., 2019). 
SFAs metabolism alterations are associated with increased 
expression of NF-κB and production of inflammatory medi-
ators such as interleukin-8 (IL-8) and TNF-α by neutrophils 
and macrophages (Tan et al., 2014). The reduced production 
of SFAs inhibited the differentiation of T-cells into T-reg-
ulatory cells which subsequently resulted in inhibition of 
IL-10 leading to the inflammatory response (Lopez et al., 
2014). Reduced SFAs also led to increased phosphorylation 
of tyrosine and serine kinases that resulted in activation of 
the interferon- γ (IFN-γ)/STAT1 signalling pathway contrib-
uting to intestinal inflammation (Klampfer et al., 2003). A 
Metagenome-Wide Association Study (MGWAS) based on 
deep shotgun sequencing was conducted to assess micro-
bial dysbiosis in the context of T2D. The study participants 
were Chinese individuals and analysis revealed lower lev-
els of butyrate producing bacteria in the T2D subjects when 
compared with the controls (Qin et al., 2012). The Asian 
Indian phenotype of T2D is different from that of European 
descent. This is because of a difference in body fat, inflam-
matory markers and lipid profile (Gujral et al., 2013; Unni-
krishnan et al., 2014). This geography-specific phenotype is 
linked with the unique dietary intake of the Indian’s which 
is in turn reflected in the profile of the gut microbiome 
(Bhute et al., 2016; Das et al., 2018; Kalyana Chakravarthy 
et al., 2018; Tandon et al., 2018). A comparison amongst 
healthy individuals and T2D subjects revealed that Esch-
erichia is abundantly present in subjects with T2D in the 
Indian population (Bhute et al., 2017; Pushpanathan et al., 
2016). A trans-ethnic study involving pre-diabetic subjects 
from Denmark (White European ethnicity) and India has 
reported that Megasphaera is one of the species which is 
very abundant in IGT subjects in India. The study showed 
more alpha diversity in the Danish cohort. (Nishikawa et al., 
2009; Guinane & Cotter, 2013). The host-gut microbial axis 
is influenced by lifestyle (Rothschild et al., 2018), dietary 

the supplementation. Further, Boon et al., demonstrated that 
South Asian men possessed lower skeletal muscle oxidative 
capacity compared to European men (Boon et al., 2019). 
L-Arginine is the precursor for the formation of nitric oxide 
mediated by eNOS. Interestingly, an independent study 
showed that endothelial cells isolated from South Asian men 
displayed lower expression of eNOS than men of European 
ethnic groups (Cubbon et al., 2014). Histidine-influenced 
abrogation of hepatic glucose production is a widely used 
treatment for T2D (Kimura et al., 2013). Supplementation 
of the glutamine was protective in the context of T2D (Man-
sour et al., 2015). Specialized pro-resolving lipid mediators 
(SPMs), derived from dietary PUFA facilitated the restora-
tion of immune homeostasis. Peripheral circulation of vital 
PUFA such as linoleic acid and arachidonic acid is carried 
out by lipoproteins and the content of PUFAs varies among 
lipoproteins (Ander et al., 2003). SPMs belonging to the 
family of ‘protectins’, ‘lipoxins’, ‘resolvins’ and ‘mares-
ins’ have recently been demonstrated for their active role 
in adaptive immune response (Duffney et al., 2018). SPMs 
reduce excessive leukocyte infiltration and enhance the 
resolution of immune response by limiting the entry of pro-
inflammatory signalling molecules (Recchiuti et al., 2019). 
SPMs are known to be protective against diabetic complica-
tions such as atherosclerosis, wound healing, nephropathy 
and retinopathy. Also, the activity of enzymes involved in 
the formation of SPMs were altered in T2D (Russo et al., 
2013). Dietary intake is known to mediate fatty acid metab-
olism. Intake of coffee and polyphenols inhibit de novo lipo-
genesis (Murase et al., 2011).

T2D is associated with significant dysbiosis of the gut 
microbiome. Trimethylamine-N-oxide (TMAO) is a gut 
metabolite produced as a result of intestinal microbial 
metabolism (Roy et al., 2020). Trimethylamine is typi-
cally produced by gut bacteria due to the metabolism of 
choline, L-carnitine and phosphatidylcholine in the intes-
tine. The trimethylamine is further converted into TMAO 
in the liver (Roy et al., 2020). Several independent studies 
have shown the association of T2D with elevated levels of 
TMAO (Lever et al., 2014; Tang et al., 2014; Dambrova 
et al., 2016; Shan et al., 2017). A longitudinal cohort study 
entitled, The Oral Infections, Glucose Intolerance and Insu-
lin Resistance Study (ORIGINS) was conducted to assess 
the link between TMAO and T2D. The study recruited 300 
subjects of both genders belonging to non-Hispanic Black, 
non-Hispanic White, Hispanic and other ethnic groups. The 
participants were free of T2D and aged between 20 and 55 
years at the baseline. The association between the TMAO 
and the biomarkers of the T2D were analysed after 2 years 
of recruitment. The results demonstrated that TMAO levels 
were moderately associated with Hispanics when compared 
with the rest of the ethnic groups. The statistical analysis 
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9 Discussion

In this present review manuscript, we explored serum/
plasma metabolomics data of T2D subjects in different pop-
ulations reported in various studies and identified metabo-
lites/metabolic pathways uniquely altered among ethnic 
groups. Further, we discussed that these metabolic differ-
ences may be due to genetic composition along with specific 
dietary intake reflecting in gut microbiome content among 
ethnicities. However, this is an observational study and no 
statistical and bioinformatics analysis was performed due to 
the unavailability of raw data for T2D metabolomics stud-
ies from different ethnic groups. Metabolomics data from 
diverse studies that we analysed were obtained from differ-
ent platforms such as LC-MS, GC-MS and NMR and these 
techniques possess limitations on biochemical analysis of 
metabolites. Studies conducted to compare metabolic dif-
ferences in different ethnicities had varied sample size and 
majority of studies were cross-sectional and case-control 
studies. The analysis did not consider extrinsic and intrinsic 
parameters such as BMI, gender, diet, lifestyle and ethnicity. 
Comparative metabolomics analysis among different popu-
lations of T2D, cited in this manuscript were performed in 
the non-natives from different geographical regions adapted 
to the newer environment which may mask effects of natural 
habitats/dietary patterns and lifestyle. Hence, an appropri-
ate study may involve recruiting subjects from their natives 
and perform comparative metabolomics analysis in different 
ethnicities using one single platform as a consortium study.

T2D is a complex metabolic disorder characterized by 
hyperglycaemia, insulin resistance or impaired insulin 
secretion or both. The 2021 reports of the International Dia-
betes Federation reveals 537 million adults (20–79 years) 
living with diabetes across the globe and these numbers may 
reach 783 million by 2045. The reports also state that three 
in four adults living with diabetes are from low-and mid-
dle-income countries. Epidemiological data indicates geo-
graphical differences in prevalence of T2D across the globe 
(International Diabetes Federation. IDF Diabetes Atlas, 
10th edn. Brussels, Belgium: International Diabetes Federa-
tion 2021). Similarly, shreds of evidence cited in this review 
demonstrates a significant genetic diversity across ethnic 
groups along with varied dietary patterns and life style may 
contribute to altered metabolism in T2D (Ali, 2013), (Scott 
et al., 2017), (Tabassum et al., 2013). Large scale trials have 
shown the effect of dietary interventions in the management 
of T2D and its associated complications (Malik et al., 2010), 
(Lopez-Garcia et al., 2005), (Mozaffarian, 2016). This sug-
gests multiple metabolic pathways may contribute to mani-
festation of hyperglycaemia during T2D among ethnicities 
with different genetic constitution following unique dietary 
patterns. However, precise supplementation of the missing 

intake (David et al., 2014), medications (Blaser, 2016). The 
most widely associated genera associated with T2D include 
Roseburia, Akkermansia, Faecalibacterium, Bacteroides 
and Bifidobacterium and are associated negatively with 
T2D. The bacterial genera having a positive association 
with T2D include Ruminococcus, Fusobacterium and Blau-
tia (Gurung et al., 2020). Analysis of stool samples as a part 
of the South East Asia Community Observatory (SEACO) 
revealed that Indians have a higher presence of Clostridiales. 
The presence of this genus is inversely associated with T2D 
in Indians (Larsen et al., 2010). The Uygurs and Kazaks are 
the two minority groups residing in North-West China. The 
study revealed that Ruminococcaceae, Lachnospiraceae 
and Enterobacteriaceae were predominantly present in all 
the study participants. The genera of Planococcaceae and 
Coriobacteriaceae were significantly elevated in Kazaks 
without T2D. Whereas, Veillonellaceae were significantly 
abundant in Kazaks with T2D. The genera of Erysipelot-
richaceae were relatively low in Uygurs with T2D when 
compared with Uygurs subjects without T2D (Wang et al., 
2017). An inter-ethnic study was performed to understand 
the influence of diet on gut microbial composition. The fae-
cal microbiome was compared between European children 
and children belonging to village of Burkina Faso in Africa. 
High throughput 16 S rDNA sequencing analysis revealed 
that children from Burkina Faso had adequate presence of 
Bacteroidetes and depleted Firmicutes. This reflected in 
presence of abundant SFAs in Burkina Faso children when 
compared with the European children. This study showed 
the influence of rural diet and westernized diet on the gut 
microbiome composition (De Filippo et al., 2010). A multi 
ethnic study involving non-Hispanic, African-American 
and Hispanic, White participants and American Indians 
revealed that African-Americans had abundant Firmicutes 
than Whites. The ratio of Firmicutes/Bacteroidetes was 
also high in African-Americans. In line with the microbial 
diversity the levels of acetate and butyrate were signifi-
cantly low in all African-Americans when compared with 
the other groups (Hester et al., 2015). Healthy Life in an 
Urban Setting (HELIUS) study involving Dutch, Ghana-
ian, Moroccan, African-Surinamese, Turk and South-Asian 
Surinamese participants was performed to understand the 
ethnic contributions for gut microbiome. The study revealed 
that Prevotella is predominantly attributed to Moroccans, 
Turks and Ghanaians. Bacteroides were associated with 
African-Surinamese and South-Asian Surinamese. Dutch 
participants had rich amount of Clostridiales. This study 
reflected the effect of ethnic differences on people residing 
in the same geography (Deschasaux et al., 2018).
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