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Abstract

In animals, a Western style diet—high in saturated fat and added sugar—causes impairments
in hippocampal-dependent learning and memory (HDLM) and perception of internal bodily
state (interoception). In humans, while there is correlational support for a link between West-
ern-style diet, HDLM, and interoception, there is as yet no causal data. Here, healthy individ-
uals were randomly assigned to consume either a breakfast high in saturated fat and added
sugar (Experimental condition) or a healthier breakfast (Control condition), over four conse-
cutive days. Tests of HDLM, interoception and biological measures were administered
before and after breakfast on the days one and four, and participants completed food diaries
before and during the study. At the end of the study, the Experimental condition showed
significant reductions in HDLM and reduced interoceptive sensitivity to hunger and fullness,
relative to the Control condition. The Experimental condition also showed a markedly differ-
ent blood glucose and triglyceride responses to their breakfast, relative to Controls, with
larger changes in blood glucose across breakfast being associated with greater reductions
in HDLM. The Experimental condition compensated for their energy-dense breakfast by
reducing carbohydrate intake, while saturated fat intake remained consistently higher than
Controls. This is the first experimental study in humans to demonstrate that a Western-style
diet impacts HDLM following a relatively short exposure—just as in animals. The link be-
tween diet-induced HDLM changes and blood glucose suggests one pathway by which diet
impacts HDLM in humans.

Introduction

The hippocampus is a brain structure long considered to be important for learning and
memory [1]. An extensive body of animal data now suggests that a Western-style diet, charac-
terised by high intakes of saturated fats and added sugars (an HES diet) causes rapid impair-
ments to hippocampal dependent learning and memory [2-6]. Consistent with these findings,
are the observations in humans that poorer hippocampal-dependent learning and memory is
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associated with greater consumption of a Western-style diet [7-10]. In this study, we test
whether HFS diets cause similar impairments in hippocampal dependent learning and mem-
ory in healthy lean young people.

Animals show quite clear impairments in hippocampal-dependent learning and memory
(HDLM) when they are fed a diet high in saturated fat [11-14], high in sucrose [15-17], or
high in both saturated fat and sucrose [18-27]. Importantly, such diet-induced impairments
appear to be specific to hippocampally-based tasks, since non-hippocampal measures remain
unaffected. For example, an HFS diet impairs hippocampal-dependent place-recognition
memory while object-recognition memory (non-hippocampal) remains stable [2]. Another
important consideration is how quickly a shift in diet from healthy rat chow to an HFS diet
can impact HDLM. Impairments in a HDLM task can be found after 3 to 5 days exposure
[2,23].

An important question based upon these animal findings is whether something similar hap-
pens to the human hippocampus when it is exposed to an HFS diet. Correlational evidence in
humans has provided some support for these animal data. Greater consumption of an HFS
diet is associated with impairments in HDLM in children [28,29], adults [7-10] and the elderly
[30,31], suggesting that an HFS diet impacts HDLM across the lifespan. The claim that such
a diet impacts HDLM rests upon the ability of certain neuropsychological tests, such as the
delayed recall of stories or word lists, to selectively measure hippocampal function. This is sup-
ported by the following findings: (1) hippocampal damage severely impairs performance on
such tasks [32]; (2) reduced hippocampal activation during fMRI is associated with poorer ver-
bal memory recall [33,34]; and (3) hippocampal volume best predicts performance on such
tests [35,36]. In addition, as in animals, diet-related cognitive effects appear to be specific to
tests sensitive to hippocampal function, as cognitive tests not related to hippocampal function
(attention and working memory) are unimpaired by HFS consumption [9]. In sum, there is
clear evidence for a relationship between HFS diet and poorer HDLM in humans.

While findings from animal studies indicate that HDLM worsens as a consequence of
consuming an HES diet, this directional causal link has not been tested in humans. However,
current human data suggests improvements in memory and executive function can occur,
although not consistently, following reductions in energy intake and fat [37]. Briefly, perfor-
mance on HDLM improves following a shift to a Mediterranean diet [38-40] or to a diet low
in saturated fats and refined sugars [41,42]. If we consider experiments that have increased
components of a Western-style diet over days or weeks, very few studies are available. Increas-
ing total fat leads to deficits in working memory, attention and processing speed in healthy
men after 5 days [43] and reaction time and attention in male athletes after 7 days [44]. How-
ever, these studies are problematic for the following reasons. First, these studies used a cogni-
tive battery [45] using tests not dependent on hippocampal function, so it is unclear if HDLM
performance would have changed from these diets. Second, changes in cognition were only
evident on reaction time tasks [43,44], which improve following fat ingestion [46]. Third, since
only changes in total fat were reported, conclusions regarding the effect of fat type on cogni-
tion are not possible. Thus, there is currently no human experimental evidence that compo-
nents of a Western-style diet impair HDLM.

Though the hippocampus is traditionally associated with learning and memory, it also
appears to be important for ingestive control [5,6]. One such ingestive control concerns the
ability to perceive internal states such as hunger and satiety (i.e., interoception). Hippocampal
lesions can produce impairments in accurately sensing signals of hunger and satiety (intero-
ception) in animals [47] and humans [48,49]. Given the human and animal data suggest that
exposure to a Western-style diet impairs hippocampal function, this should in turn result in
downstream effects on the control of ingestive behaviour. This has been demonstrated in
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animal research showing that an HFS diet impairs the ability to use interoceptive cues of hun-
ger and fullness [50-52]. Likewise, in humans, habitual consumers of a Western-style diet
show reduced sensitivity to signals of hunger and satiety [9] and thirst [8], and an impaired
ability to use such interoceptive cues to modulate appetitive behaviour [7]. Whether an HFS
diet causes reductions in sensitivity to signals of hunger and satiety has not as yet been estab-
lished in human studies.

Various neurobiological mechanisms may mediate the effects of an HFS diet on the hippo-
campus. Animal data show that HFS diets lead to marked deficits in glucoregulation, insulin
sensitivity and relatedly elevated blood triglycerides [51,53], persistent increases in inflamma-
tion [2,18,54-56] and reductions in brain-derived neurotrophic factor [26,52,57-59]. In
humans, there are similar links between impairments in memory and the aforementioned
neurobiological mechanisms (for reviews, see [5,60]). In particular, poorer insulin sensitivity is
associated with impaired cognitive performance [61-64] and adults with type 2 diabetes are also
impaired on tests of delayed verbal memory [64-66]. This suggests that one likely and plausible
mechanism by which diet may affect the hippocampus in humans may involve glucoregulation.

The present study sought to investigate the impacts of briefly consuming an HFS diet over
four days relative to one lower in saturated fat and added sugar, on hippocampal related func-
tioning. More specifically, we wanted to determine if, in a sample of lean healthy young adults
who generally consumed a diet of adequate nutritional quality (i.e., one not characterised by
high levels of saturated fat and added sugar), a four-day shift to an HFS diet would lead to: (1)
poorer HDLM performance but with no change in control non-hippocampal measures; (2)
reduced sensitivity to hunger and fullness; (3) differences in biological markers (i.e., blood glu-
cose and lipids) and; (4) changes to diet outside of the laboratory manipulation (i.e., compen-
sation)—-all relative to controls.

Materials and methods
Participants

Participants were students recruited from Macquarie University between February 2014 and
May 2016. Power analysis indicated that approximately 100 individuals (50 per group) were
required in order to have an 80% chance of rejecting the null hypothesis if changes in the pri-
mary outcome variable (HDLM) were of a moderate effect size (d = 0.5-0.6) with an o = 0.05.
Inclusion criteria involved participants reporting in a pre-study screen: (1) a BMI less than
25kg/m2; (2) a diet-screener score <60, indicative of a diet relatively low in saturated fat and
added sugar for this student population (more below); (3) fluency in English; (4) no food aller-
gies and omnivorous; and (5) not currently dieting. A total of 885 individuals started the
screening process (detailed below) of which 244 were deemed eligible, and of whom 145 con-
sented to participate. From this, 127 participants commenced the experiment, 25 failed to
complete it, leaving 102 cases for analysis.

Design

This study was a between-subjects experimental design with randomised allocation to one of
two groups—one exposed to four days of breakfasts high in saturated fat and added sugar
(Experimental group) and the other given a breakfast of similar palatability and food types
(i.e., toasted sandwich, etc.), but significantly lower in saturated fat and added sugar (Control
group). Participants were randomised to a group by order of arrival to the experiment. The
primary outcome variable was change in HDLM measured at the start and at the end of the
experiment (alongside other behavioural and physiological variables). All participants were
tested at Macquarie University between February 2014 and May 2016.
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Breakfast meals

The breakfasts presented to each group comprised a toasted sandwich and a chocolate milk-
shake and these had markedly different nutrient profiles (see Table 1). Each of these breakfasts
was pilot tested to ensure equivalent palatability and flavour profile. Twelve healthy lean par-
ticipants consumed a half-portion sample (~250g) of each breakfast in counterbalanced order.
Participants completed a set of ratings of how much they liked the sample, as well as ratings of
how sweet, sour, bitter, salty, fatty and healthy they thought each sample was on a 7-point cate-
gory rating scale (anchors 1 = Not at all and 7 = Very). This testing revealed no significant dif-
ferences between the two breakfasts in terms of palatability, flavour profile, or ratings of
healthiness (ps > .10).

Measures

Pre-study screening tests. Potential participants were screened using an online battery of
questionnaires. This battery was composed of: (1) a demographic and medical history ques-
tionnaire; (2) a 26-item food frequency questionnaire (scores ranging from 26 to 130) to mea-
sure added sugar and saturated fat intake-the Dietary Fat and Sugar Questionnaire (DFS:
[67]); (3) the 18-item Three-Factor Eating Questionnaire (TFEQ-R18; [68]) to assess eating
attitudes (cognitive restraint, uncontrolled eating, and emotional eating); (4) the International
Physical Activity Questionnaire-short form (IPAQ-SQ; [69]) to assess physical activity; and (5)
the 10-item Kessler Psychological Distress Scale (K-10; [70]) to determine current mental well-
being. Participants were excluded from the study if they reported a BMI > 25 kg/m?, a DFS
score > 60, were currently dieting or reported any food allergies.

Hopkins Verbal Learning Task-Revised (HVLT). The HVLT [71] is a 12-item word list
that is read to the participant three times, requiring recall after each presentation. Following a
20-25 minute delay, participants are asked to recall all the words they remember from that list
(delayed recall). This is followed by recognition test, which was not used here due to lack of
variance. The HVLT-R has six alternate forms that make it ideal for repeat testing, and these
were counterbalanced across participants.

Logical Memory (LM). The LM test [72] involves listening to two short stories. Partici-
pants are then asked to repeat back as many details as possible immediately after hearing the
story and then again after a 20-30 minute delay. The standard Wechsler Memory Scale
(WMS) IV stories were used in combination with six alternate stories (counterbalanced across
participants), whose structural and statistical properties were compatible with the standard
WMS-III [73] and WMS-1V stories [74].

National Adult Reading Test (NART). The NART [75] is 50-item single word reading
test of graded difficulty, where all words are irregular and violate grapheme-phoneme corre-
spondence rules (e.g., ache, thyme, topiary) and was used here as a measure of intelligence [76]
to check for any group differences in this variable.

Table 1. Nutritional breakdown of the breakfast by group.

Total mass (g)

Energy (kJ)

Total fat (%)

Saturated fats (%)

Protein (%)

Carbohydrates (%)

Sugar (%)
doi:10.1371/journal.pone.0172645.t001

Experimental group Control group

431 471

3658 2941
53 17
30 6
11 51
36 32
18 11
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Digit Span (DS) test of the Wechsler Memory Scale-IIT (WMS-III). Participants were
read a sequence of numbers of increasing length (two trials per sequence), which they then
had to repeat back either in the same order as delivered or in reverse order. This test, drawn
from the WMS-III [77] was administered as per the manual, to determine any general decline
in cognitive functioning or motivation across the experiment.

Biological measures. Height and weight for each participant were used to calculate body
mass index (BMI). Waist circumference was also measured. Blood glucose and triglycerides
measurements were taken using the CardioChek PA® Analyzer. Measurements ranges in
each test were 20-600mg/dL for blood glucose and 50-500mg/dL for triglycerides. One 50uL
whole blood sample was taken for both measurements using a fingerstick method (Uni-
Stick®3 21 Gauge 2.0mm depth).

Food diary. Participants were required to fill in an online food diary to track their daily
eating behaviours (i.e., energy and macronutrient intake) prior to and during the experiment.
Participants were asked to record, in as detailed a manner as possible, every item that they had
eaten and drunk, the time they consumed it, the amount consumed and how it was prepared.
Participants could estimate portion size using household measures, weight on packaging or
from 15 sets of colour photographs depicting small, medium and large portions of frequently
consumed foods [78]. The food diary was adapted from that developed by the Medical Research
Council collaborative centre for Human Nutrition Research (Cambridge, UK). The food diary
data were analysed using FoodWorks 8 Premium software, which uses food composition data
from several sources including 5740 Australian foods and beverages [79] and 7906 food items
from the United States [80].

Interoception and current mood ratings. Participants completed a set of ratings for how
hungry, full, thirsty, alert and happy they were plus how strong their appetite for something
sweet was, and how strong their appetite for something savoury was-in that order-each on a
separate 7-point category rating scale (anchors 1 = Not at all and 7 = Very).

Procedure

The study protocol was approved by the Macquarie University Human Research Ethics Com-
mittee and written consent (including notification of their right to withdraw without penalty at
any time) was provided by each participant, with debriefing of the detailed study aims at the
end of the experiment. In the week preceding the study, participants were asked to complete the
food diary on two occasions to determine their pre-study dietary habits, from which a daily
average was computed (noting that there were no significant differences in daily intakes on the
two occasions). On the first experimental day (Day 1), and following an overnight fast (with no
restrictions on fluid intake), participants arrived for testing between 6am and 12pm. They then
attended the laboratory at the same time for the remaining three consecutive days of testing.

On Day 1, participants completed the immediate recall measures of the LM and HVLT
tests, followed by the Digit Span and NART, and had their height, weight and waist circumfer-
ence measured. A whole blood sample was then taken to measure blood glucose and triglycer-
ides. Participants were then asked to recall the stories and words from the LM and HVLT tasks,
respectively. The first set of interoception and mood ratings were then completed, and this was
followed by the breakfast meal, with each participant asked to consume as much of it as possible.
Participants were left alone for twenty minutes to eat and were given the option to watch TV or
read a magazine. Following this, the experimenter removed all uneaten food for later weighing.
Participants then completed a second set of interoception and mood ratings, post-prandial
neuropsychological (LM, HVLT and DS) and blood tests (blood glucose and triglycerides) in
the same manner and order as above (excluding the NART). That is, all measures (except the
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NART and BMI) were administered both before and after the breakfast meal. Participants were
allowed to leave and requested to fill in the food diary for the remainder of Day 1.

Participants attended the lab on Days 2 and 3 to consume breakfast, completing the intero-
ception and mood ratings prior to and following the breakfast. Again, each breakfast was
weighed before and after consumption to assess food intake. While the breakfasts and intero-
ception ratings were given across the four consecutive test days, neuropsychological and blood
tests were only administered on Day 1 and 4 of the study. The procedure on Day 4 was identi-
cal to Day 1 (except the NART was not repeated). Participants were then requested to fill out
the food diary for the remainder of Day 4 (noting that Day 1 and 4 diary entries did not differ
and these were collapsed for analysis).

Analysis

All neuropsychological measures were scored as per their respective manuals. For the memory
measures, percent retention scores were computed for both the HVLT (delayed recall trial/ high-
est score taken from immediate recall trial 2 or 3) x 100) and for LM (delayed recall/ immediate
recall) x 100). For Digit Span two scores were computed; forward recall of numbers (Digit Span
forwards; score range 0-16) and the reverse recall of numbers (Digit Span backwards; score range
0-14). The HVLT data for Day 1, first test were non-normal, and this was driven by one outlying
value. This data point was replaced by their less extreme Day 1 second test value. Coefficient
alphas across the 4 testing occasions were adequate for HVLT retention (o = 0.70), poor for LM
retention (o = 0.52), and good for Digit Span forwards (o = 0.89) and backwards (o = 0.88).

Three other variables were identified as being non-normal-the interoceptive data, blood
triglycerides, and participants age, and these were all transformed (root for the former two,
reciprocal for the latter) enabling parametric testing. For the biological measures, coefficient
alphas were adequate for blood glucose (o = 0.62) and good for triglycerides (o = 0.88).

Multiple ratings of current mood and cravings for savoury and sweet foods were obtained
during the study. Preliminary analyses revealed no significant effects of interest and so these
ratings are not further reported. A two-tailed alpha of 0.05 was used for all reported tests, with
all analyses being conducted using SPSS version 21.

Results
Participant characteristics

A total of 102 participants completed the study and their characteristics are summarised by
Group in Table 2. The two groups were similar in age, mental well-being (K-10), exercise hab-
its IPAQ), eating attitudes (TFEQ) and estimated IQ (NART). Some differences were noted
in BMI and waist circumference, which were significantly higher in the Control group, along-
side a trend for greater habitual consumption of saturated fat and added sugar (DFS) in this
group as well. While there was no significant group difference in Gender distribution, we note
that there was nearly double the number of men in the Control group, relative to the Experi-
mental group. To control for any effect of these differences—and recalling that participants
were randomly assigned to Groups-these identified variables (BMI, waist circumference, DFS
& gender) were included as covariates (following Z-transformation) in all of the analyses.

Experimental manipulation

Participants eating the Experimental breakfast consumed more energy, total fat, saturated fat,
total carbohydrates and sugar (ps < .001), but less protein (p < .001) at breakfast, than those
eating the Control breakfast (see Table 3). As our principal interest was in the effect of dietary
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Table 2. Baseline descriptive statistics for each group.

Descriptive statistics, Number/Mean (SD) Difference

Experimental group Control group p-value
Number 51 51 -
Gender (Female/Male) 44/7 38/13 0.14
Age 20.2 (3.9) 21.0(6.6) 0.50
BMI 20.8 (2.3) 22.1(2.5) 0.01*
Waist circumference (cm) 72.9 (7.3) 75.9 (6.3) 0.03*
DFS (diet) score 51.4(6.7) 53.6 (5.7) 0.07
K-10 18.5 (6.3) 18.8 (5.2) 0.78
IPAQ 9.8(3.2) 10.7 (3.8) 0.20
TFEQ-R18 (Cognitive restraint) 13.1(3.5) 13.6 (3.3) 0.52
TFEQ-R18 (Uncontrolled eating) 15.5(5.3) 16.5(3.8) 0.25
TFEQ-R18 (Emotional eating) 5.8 (2.4) 6.2 (2.3) 0.45
NART Full Scale 1Q 108.1 (5.8) 108.7 (5.1) 0.57

BMI: Body mass index; DFS: Dietary Fat and Sugar questionnaire; K-10: Kessler-10 Psychological distress scale; IPAQ: International Physical Activity
Questionnaire; TFEQ-R18: Three Factor Eating Questionnaire- Revised; NART: National Adult Reading Test.
*p<.05

doi:10.1371/journal.pone.0172645.1002

composition (i.e., added sugar and saturated fat) rather than total energy intake on the test
breakfasts, and also because individuals within each group varied in how much of each break-
fast they consumed-we used total energy intake (Z-transformed) at breakfast as a further
covariate (except in analyses where energy intake was already included within the dependent
variable-more below).

Neuropsychological measures

Hopkins-Verbal Learning Test (HVLT). The HVLT percent retention data were ana-
lysed with a three-way mixed design ANCOVA, with Day (Day 1[pre-exposure] vs. Day 4
[post-exposure]) and Time (pre-breakfast vs. post-breakfast) as the within factors and Group
(Control vs. Experimental) as the between factor, with BMI, waist circumference, average
breakfast energy intake, DFS score, and gender as covariates.

The ANCOVA revealed a main effect of Day (F(1,94) = 24.54, partial eta-squared = 0.21,
p < 0.001), which was qualified by an interaction between Day and Group (F(1,94) = 4.54,

Table 3. Nutritional breakdown of breakfasts consumed, averaged across test days.

Descriptive statistics, Mean (SD) Difference
Experimental group Control group p-value

Volume 423 (65) 435 (65) .37
Energy (kJ) 3593 (550) 2716 (412) .00*
Total Fat (%) 53.0(0.7) 15.9 (2.1) .00*
Saturated fat (%) 30.3(0.1) 5.3 (0.6) .00*
Total carbohydrates (%) 35.7 (1.4) 31.8(0.6) .00*
Sugars (%) 17.7 (2.5) 10.0 (0.6) .00*
Protein (%) 11.5(0.7) 51.3(3.1) .00*

Exp. = Experimental group
Sig* = significance level p < .05 of independent samples t-test
Sig~ = significance level p < .05 of repeated measures ANCOVA for Week by Group interaction; kJ = kilojoules.

doi:10.1371/journal.pone.0172645.t003
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Fig 1. HVLT scores. Mean (+ standard error) HVLT retention score (%) on test days one and four for the Experimental and
Control groups.

doi:10.1371/journal.pone.0172645.9001

partial eta-squared = 0.05, p = 0.038). Further pairwise comparisons revealed that retention
was significantly poorer in the Experimental group at the end of the study relative to the start
(M =-15.7%, p < 0.001), but not in the Control group (M = -3.9%, p = 0.251; see Fig 1) consis-
tent with our hypothesis. Moreover, if we consider only the HVLT retention scores before
breakfast, the Day by Group interaction is still significant, (F(1,94) = 4.45, partial eta-

squared = 0.045, p = 0.038), indicating that prandial-related effects did not interfere with our
observation of diet-induced memory impairment.

Prandial-related effects were also observed, with a main effect of Time (F(1,94) = 47.46, par-
tial eta-squared = 0.34, p < 0.001), which was qualified by an interaction between Time and
Day (F(1,94) = 12.84, partial eta-squared = 0.12, p = 0.001). Retention was poorer after break-
fast than before, with this drop being larger on Day 4 (M = -19.5%) than on Day 1 (M = -7.9%).
There were no other significant effects.

Logical Memory (LM). The LM percent retention score data were analysed using the
same three-way mixed design ANCOVA described above. The only significant outcome was a
main effect of Group (F(1,94) = 5.33, partial eta-squared = 0.05, p = 0.023), with the Experi-
mental group (M = 85.9%) performing more poorly overall than the Control group (M = 91.9%).

Forward and backward digit span. The forward and backward digit span data were ana-
lysed separately in two further three-way mixed design ANCOV As. For the forward digit span
data, there were significant main effects of Day (F(1,94) = 15.57, partial eta-squared = 0.14,

p < 0.001) and Time (F(1,94) = 4.46, partial eta-squared = 0.05, p = 0.037) and an interaction
between these two variables (F(1,94) = 5.75, partial eta-squared = 0.06, p = 0.018). Forward
digit span increased from Day 1 (M = 10.5) to Day 4 (M = 11.1), with a larger prandial im-
provement evident on Day 1 (M change = 0.5) relative to Day 4 (M change = 0.1). There were
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no other significant effects. For the backward digit span data, only one effect was significant,
Day (F(1,94) = 20.59, partial eta-squared = 0.18, p < 0.001). Participants backward digit span
increased from Day 1 (M = 6.9) to Day 4 (M = 7.5). As no alternate forms of either forward or
backward digit span were used, these improvements may reflect the effects of practice.

Interoceptive measures

For Day 1 and Day 4 respectively, the energy consumed at Breakfast by each participant was
divided by their change in hunger and fullness ratings combined (as these two variables signifi-
cantly correlate, median r = -0.51), with the resulting group means displayed in Fig 2. This
value (the interoception score) reflects the number of kilojoules (kJ) required to shift hunger
and fullness ratings by 1 point. Following transformation, as the variables were non-normal,
and with Day 4 interoception score serving as the dependent variable, we conducted a univari-
ate ANCOVA, with Group as the between factor, and Day 1 interoception score, BMI, waist
circumference, DFS score, and gender as covariates.

The ANCOVA revealed a significant main effect of Group (F(1,93) = 7.43, partial eta-
squared = 0.07, p = 0.008). Thus, after controlling for differences on Day 1 interoception score,
the Experimental group became significantly less sensitive to the effects of the breakfast, re-
quiring more energy to shift hunger and fullness ratings one point (M = 719 KJ) on Day 4, rela-
tive to the Control group (M = 427 KJ).
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Fig 2. Interoception scores. Mean (+ standard error) kilojoules (kJ) required to shift hunger and fullness ratings
on days one and four for each group.

doi:10.1371/journal.pone.0172645.g002

PLOS ONE | DOI:10.1371/journal.pone.0172645 February 23,2017 9/21



@° PLOS | ONE

Western-style dietary intervention

Biological measures and their relationships

Blood glucose. Blood glucose data were analysed using the same three-way mixed design
ANCOVA as described for the neuropsychological data. The ANCOVA revealed a main effect
of Time (F(1,83) = 135.1, partial eta-squared = 0.62, p < 0.001), and an interaction of Time by
Group (F(1,83) = 15.82, partial eta-squared = 0.16, p < 0.001). Fig 3A illustrates the Time by
Group effect. It is evident that blood glucose readings increase across a meal (Time effect), and
to a considerably greater extent in the Experimental group than for Controls (Time by Group).

We then examined whether the Group-related blood glucose effect (i.e., change across
Time) was associated with changes in the neuropsychological measures of memory and the
measure of interoception. To assess this, we used partial correlations, controlling for BMI,
waist circumference, DFS score, gender, and either average breakfast energy intake (for the
memory correlation) or Day 1 interoception score (for the interoception correlation).

A larger decline in HVLT score between Day 1 and Day 4 was significantly associated (Par-
tial (83) = -0.24, p = 0.028) with greater increase in blood glucose across the breakfasts (i.e.,
main effect of Time; see Fig 3B). There was no significant relationship between the interocep-
tion score and change in blood glucose. To determine whether changes in HVLT performance
were mediated by blood glucose alterations, we also conducted a three-way ANCOVA, as with
the neuropsychological measures, and included blood glucose change across time as an addi-
tional covariate. As expected, taking into account blood glucose change between meals, the
Day by Group interaction for HVLT retention was not statistically significant, (F(1,82) = 3.11,
partial eta-squared = 0.037, p = 0.082).

Triglycerides. Similar to the blood glucose findings, the ANCOVA on the triglycerides
data revealed main effects of Time (F(1,83) = 16.29, partial eta-squared = 0.16, p < 0.001) and
Time by Group (F(1,83) = 7.23, partial eta-squared = 0.08, p = 0.009). As can be seen in Fig 4,
blood triglycerides tended to increase after a meal (main effect of Time) and to a significantly
greater extent in the Experimental group relative to the Controls (Time by Group). There were
no significant partial correlations between changes in blood triglycerides across Time and
neuropsychological or interoception measures.

Anthropometric data. There were no significant differences in BMI or waist circumfer-
ence across the experiment, between groups. Changes in BMI and waist circumference were
not significantly associated with the neuropsychological or interoception measures.

Food diary data

The descriptive statistics for the nutrient profile of the food diaries (averaged across the two
entries for the pre and during-study periods) are provided in Table 4. The dietary data were
analysed using a three-way mixed design ANCOVA, with Week (Week 1[pre-study] vs. Week
2 [during study]) and Time (breakfast vs. post-breakfast) as the within factors and Group
(Control vs. Experimental) as the between factor, with BMI, waist circumference, DFS score,
and gender as covariates.

For energy intake, the ANCOVA revealed a main effect of Week (F(1,91) = 11.42, partial
eta-squared = 0.11, p = 0.001), a main effect of Time (F(1,91) = 375.45, partial eta-squared =
0.81, p < 0.001), and a significant three-way interaction between Time, Week and Group,
(F(1,90) = 18.08, partial eta-squared = 0.17, p < 0.001). Importantly, there was a non-signifi-
cant Week by Group interaction, (F(1,90) = 0.29, partial eta-squared = 0.003, p = 0.59). Despite
consuming more energy at breakfast (shown earlier), the Experimental group consumed sig-
nificantly less energy the rest of the day (i.e., caloric compensation) during the experimental
period, relative to the Control group (See Fig 5).
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Fig 3. Blood glucose data. (A)—Mean (+ standard error) pre- and post-prandial blood glucose levels at the start and
end of the study for each group; (B)—Scatterplot of the negative linear relationship between HVLT retention score (%)
by day (Day 4 —Day 1) and blood glucose levels (mg/dL) by time (post-breakfast—pre-breakfast).

doi:10.1371/journal.pone.0172645.g003
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The Experimental group appear to have achieved this by reducing carbohydrate and sugar
intake post-breakfast. Thus, while carbohydrate intake was significantly greater at breakfast in
the Experimental group relative to the Control group, as with added sugar, overall intake did
not differ between groups either before or during the experiment (see Table 4).

The Experimental group did not show compensation over the course of the day for total
fat, saturated fat, or protein intake (see Table 4). That is, relative to intake prior to the study,
there were significant increases in the Experimental group in total fat, (F(1,90) = 21.04, partial
eta-squared = 0.19, p < 0.001), saturated fat, (F(1,90) = 60.27, partial eta-squared = 0.40, p <
0.001), and in protein, (F(1,90) = 73.59, partial eta-squared = 0.45, p < 0.001) relative to the
Control group.

In sum, while energy, fat and sugar intakes were significantly higher at breakfast in the
Experimental group providing a discrete ‘burst’ of these nutrients, group differences in energy
and sugar intake were not evident when the whole experimental days intake was computed.
Across the whole of the experimental days, only differences in fat and saturated fat and protein
were evident.

B Day 1 Pre Breakfast
Bl Day 1 Post Breakfast
[1Day 4 Pre Breakfast
[JDay 4 Post Breakfast

—t—t

—t—

Control Experimental

Group

Fig 4. Triglycerides data. Mean (+ standard error) pre- and post-prandial triglyceride levels at the start and end of the study

for each group.

doi:10.1371/journal.pone.0172645.9004
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Table 4. Nutritional breakdown of self-report food diaries prior to and during the study.

Descriptive statistics, Mean (SD) Week by Group
Pre-study During study
Exp. (n = 48) Control (n =48) Exp. (n = 48) Control (n =48) p-value

Volume 2180.8 (1018.2) 2164.9 (927.9) 2117.5(645.9) 2216.9 (853.9) .04*
Energy (kJ) 7766.9 (1937.4) 7627.9 (2192.5) 8463.4 (1833.6) 8522 0 (2069.9) .59
Total Fat (%) 35.0 (7.6) 35.0(5.9) 42.0 (5.0) 27.7 (5.4) .00*
Saturated fat (%) 13.1(3.7) 13.1(3.3) 19.5(3.1) 9.8 (2.9) .00*
Total carbohydrates (%) 43.7 (8.5) 42.1(6.7) 40.6 (4.9) 39.9(5.9) 51

Sugars (%) 16.3 (6.2) 16.6 (6.3) 15.9 (4.9) 14.0 (4.7) .36
Protein (%) 18.5(4.7) 20.2 (5.8) 15.6 (3.4) 30.5 (6.8) .00*

Exp. = Experimental group
Sig* = significance level p < .05 of repeated measures ANCOVA for Week (Week 1[pre-study] vs Week 2 [during study]) by Group interaction;
kJ = kilojoules.

doi:10.1371/journal.pone.0172645.t1004

Discussion

The primary aim of this study was to determine if an HES diet causes poorer performance on
tests of HDLM. Additionally, we examined for changes in interoceptive sensitivity for hunger
and fullness, as well as testing whether any observed changes in behavioural measures were
associated with biological markers (i.e., blood glucose and lipid measures). Our key findings
were: (1) a brief four-day HFS intervention led to significantly poorer memory retention, rela-
tive to the Control group, on the HVLT test, but not on the LM test; (2) the magnitude of this
change in HVLT performance was significantly associated with the change in blood glucose
across the experimental meals; (3) the Experimental group became significantly less sensitive
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Week 1 Week 2

Fig 5. Food diary data. An illustration of the compensation of energy intake across weeks and between groups, following the breakfast
manipulation. Overall energy intake is greater in Week 2 relative to Week 1, with no differences between groups (i.e., caloric compensation).

doi:10.1371/journal.pone.0172645.g005
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to the effects of the breakfast, requiring more energy to shift hunger and fullness ratings an
equivalent amount on Day 4 relative to Day 1; and (4) the Experimental group did not con-
sume more energy than the Controls overall, despite consuming significantly more energy at
breakfast. Most of this compensation was for carbohydrate intake, as the Experimental group
still consumed more saturated fat.

The principal finding from this study was the decline in performance on the HVLT reten-
tion score in the Experimental group, relative to the Control group. This is the first experimen-
tal evidence in humans that a brief dietary manipulation of saturated fat and added sugar
intake leads to poorer performance on tests known to be hippocampally-related. To the best of
our knowledge, this is the first experimental study in humans to parallel the findings in the ani-
mal literature. Moreover, the reduction in HDLM performance (as in the animal data) was evi-
dent after a relatively brief period of exposure to the diet. Another important element of this
finding is that HDLM impairments were independent of energy intake, and thus were a conse-
quence of the macronutrient profile of the diet. Again, similar to animals, impairments in
HDLM occurred in a healthy and lean population. Importantly, performance on non-hippo-
campal control measures did not deteriorate as a function of diet (noting that this is based on a
limited set of such measures—forward and backward digit span), suggesting that HFS diets
impact hippocampal measures specifically. Indeed, this diet-related specificity would likely be
supported further by the use of multiple non-hippocampal measures in future studies.

The food diary data indicate the Experimental group, despite consuming more energy at
breakfast than the Control group, did not consume more energy overall relative to the Control
group. While daily energy intake was comparable, macronutrient intake differed between
groups. Specifically, there were no difference in daily carbohydrate and sugar intake (i.e., evi-
dence of compensation), while daily total and saturated fat intake remained elevated. An inter-
esting question raised by the food diary data is what particular aspect of the dietary
manipulation led to the change in HVLT performance? There are at least three possibilities.

The first is that the breakfast ‘burst’ of saturated fat and added sugar in the Experimental
group was the causative factor. Indeed, tests of verbal memory-known to be hippocampally-
based-appear to be most sensitive to experimental manipulations of macronutrient content
[37, 46]. Likewise, the design of this study (i.e., a brief exposure to an HFS diet giving a ‘burst’
of saturated fats and refined sugars) is consistent with rodent studies showing that animals
given restricted access to HFS foods show similar deficits in learning and memory perfor-
mance (e.g., [81, 82]). The second possibility is that the greater net intake of saturated fat and
total fat inside and outside of the laboratory in the Experimental group-across all four experi-
mental days-represents the causative factor. The third possibility is that overall saturated fat
and added sugar intake (and perhaps overall energy intake) were actually higher in the Experi-
mental group, but this was disguised deliberately or otherwise by dietary underreporting. We
would suggest that the first alternative may be the most plausible, simply because we observed
a relationship between changes in blood glucose across breakfast and change in HVLT perfor-
mance across Days, with additional evidence that changes in blood glucose mediated alter-
ations in HVLT performance. This would suggest that it was something about the breakfasts
that led to changes in HDLM. The second possibility cannot, however, be discounted. Diets
rich in just saturated fat can lead to impairments in HDLM in animals [11-14] and are associ-
ated with poorer memory recall in young women [10], and so this could represent either an
alternative or additional route to changes in HVLT performance in the Experimental group.
However, given that few human studies have effectively manipulated saturated fat intake [37],
it is unclear whether saturated fat or sugar intake alone evoked such changed in HDLM perfor-
mance. While the third account is plausible it may be the least likely. Dietary underreporting
seems to be a more persistent phenomena for the obese [83], with healthy weight participants
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generally being more accurate reporters. Finally, while we note that protein intake also differed
between the Groups, we are not aware of any mechanism by which this macronutrient could
generate the observed outcomes.

An unexpected finding was that while the HVLT was sensitive to changes in dietary fat and
sugar intake, the LM measure showed no such change. One possible reason for this difference
may arise in the appropriateness of using alternate forms of each test. The HVLT has six alternate
forms that make it ideal for repeat testing, and these have been cross-validated and are indeed
recommended and considered appropriate to be used in such a manner. On the other hand, the
alternate forms of the LM test were taken from [73] and [74], which have been validated against
the LM test from the Wechsler Memory Scale 4™ edition and the Wechsler Memory Scale 3™
edition, respectively. Importantly, while multiple forms of the LM test were required for this
study, these alternate forms have not been validated against each other, making the assumption
of equivalency across these alternate forms potentially problematic. That alternate forms may be
a problem for the LM test comes from consideration of coefficient alpha. For the HVLT this was
adequate (o = 0.70), but it was poor for LM retention (o = 0.52). It may ultimately be this poorer
reliability that accounts for the failure to detect any diet-related changes with LM.

The Experimental group breakfasts led to far greater increases in blood glucose and triglyc-
erides than the breakfasts consumed by the Control group. Furthermore, controlling for meal-
related changes in these markers removed the difference between groups in HVLT perfor-
mance across days, suggesting that significant alterations in these markers may contribute to
changes in cognitive performance. That blood glucose and triglycerides show a similar pattern
of change is not surprising. Glucoregulation is associated with lipid regulation [84], and con-
sumption of HES foods leads to marked increases in both blood glucose and triglyceride levels
[85,86]. As we noted in the Introduction, impaired glucoregulation may represent one putative
causal pathway by which an HFS diet may adversely affect the hippocampus. Consistent with
this possibility, we observed a significant association between blood glucose changes across the
test breakfasts and changes in HDLM on the HVLT across the course of the study. Whether
this effect is mediated directly by changes in blood glucose or indirectly via some other mecha-
nism such as inflammation, remains to be established. Support for an inflammatory mediation
account comes from the well-established relationship between inflammation and impaired
HDLM ([87,88]. In addition, animal studies show that diet-induced impairments in HLDM are
linked to increased levels of inflammation [2,18,55,56,89] and changes in blood glucose con-
centration are correlated with elevated markers of inflammation in the hippocampus, but not
the perirhinal cortex or hypothalamus [18]. Likewise, a diet high in processed meat, refined
grains and sugar-sweetened beverages is strongly related to inflammatory markers in women
with type-2 diabetes [90], and increasing sucrose intake in overweight individuals increases
inflammation [91]. Recent evidence suggests that poor diet may also contribute to neuroin-
flammation and neurodegeneration (see [92]). The potential link between glucoregulation and
inflammation may be a causative factor in diet-induced impairments in HDLM, but remains
to be experimentally verified for the paradigm used here.

Another consequence of shifting healthy subjects to an HES diet was that the Experimental
group showed reduced sensitivity over days to changes in hunger and fullness following break-
fast consumption. The Experimental group required more energy on Day 4 than on Day 1 to
shift hunger and fullness ratings an equivalent amount relative to the Control group. Our find-
ings parallel correlational research in humans linking HFS diet and an impaired sensitivity to
hunger and fullness [7-9]. What this suggests is that an HFS diet not only impairs performance
on hippocampal-related memory tasks, but also the ability to accurately sense changes in hun-
ger and fullness. It has been argued that the regulation of appetitive behaviour is based on the
ability of satiety to inhibit food-related associations and this ability depends on the functional
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integrity of the hippocampus [3]. A Western-style diet impacts hippocampal function and
therefore the ability of satiety cues to inhibit this association, ultimately leading to excess
weight gain [3]. Here, we provide evidence of impaired sensitivity to hunger and fullness fol-
lowing experimental manipulation of HFS intake in healthy lean humans.

A further issue and one not addressed in the current study, or indeed in the wider animal
literature, is the reversibility of the changes in HDLM. That these changes are reversible seems
likely. This is because several factors are known to up-regulate neurogenesis and relatedly hip-
pocampal-related functioning in animals and these include exercise, environmental enrich-
ment and ant-depressant medications [93,94]. At least in the case of anti-depressants, these
may exert some of their therapeutic effect by returning the hippocampus to a pre-depression
state of functioning [93,94]. As the time course for anti-depressant effects to up-regulate neu-
rogenesis and hippocampal functioning is between 4-6 weeks in humans and rodents [93,94],
we would tentatively suggest that the recovery period from a dietary intervention such as the
one used here may have a similar time course.

Limitations

We are aware that there are at least three main limitations in conducting this study. First, one
HDLM measure (i.e., Logical Memory) did not show diet-related changes, which we argue is
related to appropriateness of its alternate forms. Furthermore, the specificity of this diet-related
change to HDLM was supported by a limited number of non-hippocampal measures. Future
research would benefit from the use of multiple, appropriate hippocampal and non-hippocam-
pal measures. Second, self-report of dietary habits was used in the recruitment of participants
and in the food dairy collection. One potential criticism is that self-report dietary measures may
be problematic due to underreporting. This is based on the finding that, in comparing what one
would need to eat to maintain current body weight and what people self-report, individuals typ-
ically underreport the amount of food they consume (e.g., [95]). Underreporting is also more
common in individuals with a higher BMI (e.g., [96,97]), where factors such as social desirabil-
ity may play a role. We addressed this potential concern by using a lean healthy-eating sample
population who would likely be more accurate in their recall (e.g., [9]) and less likely to underre-
port (e.g., [98]). Third, a lean healthy university population is likely more homogenous than the
general population and this may limit external validity. However, we argue that a more hetero-
geneous sample may vary considerably on many factors that are also known to impact hippo-
campal functioning (e.g., body weight, dietary habits, physical activity, smoking etc.). A more
homogenous sample, therefore, allows for greater control over these factors, thereby maximis-
ing the opportunity to observe diet-related changes in hippocampal-related functioning.

In conclusion, we show that brief consumption of a Western-style diet leads to impairments
in HDLM and interoception in healthy lean young adults. Further, these changes in HDLM
were linked to shifts in blood glucose across breakfast, suggesting one potential mechanism by
which a Western-style diet can affect hippocampal function.
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