
fnins-15-698940 July 20, 2021 Time: 15:46 # 1

ORIGINAL RESEARCH
published: 26 July 2021

doi: 10.3389/fnins.2021.698940

Edited by:
Hong Xu,

Nanyang Technological University,
Singapore

Reviewed by:
Rui Li,

Xi’an Jiaotong University, China
Vikram Shenoy Handiru,

Center for Mobility and Rehabilitation
Engineering Research, Kessler

Foundation, United States

*Correspondence:
Taiki Orima

taikiorima@gmail.com

Specialty section:
This article was submitted to

Perception Science,
a section of the journal

Frontiers in Neuroscience

Received: 22 April 2021
Accepted: 21 June 2021
Published: 26 July 2021

Citation:
Orima T and Motoyoshi I (2021)

Analysis and Synthesis of Natural
Texture Perception From Visual

Evoked Potentials.
Front. Neurosci. 15:698940.

doi: 10.3389/fnins.2021.698940

Analysis and Synthesis of Natural
Texture Perception From Visual
Evoked Potentials
Taiki Orima1,2* and Isamu Motoyoshi1

1 Department of Life Sciences, The University of Tokyo, Tokyo, Japan, 2 Japan Society for the Promotion of Science, Tokyo,
Japan

The primate visual system analyzes statistical information in natural images and uses it
for the immediate perception of scenes, objects, and surface materials. To investigate
the dynamical encoding of image statistics in the human brain, we measured visual
evoked potentials (VEPs) for 166 natural textures and their synthetic versions, and
performed a reverse-correlation analysis of the VEPs and representative texture statistics
of the image. The analysis revealed occipital VEP components strongly correlated with
particular texture statistics. VEPs correlated with low-level statistics, such as subband
SDs, emerged rapidly from 100 to 250 ms in a spatial frequency dependent manner.
VEPs correlated with higher-order statistics, such as subband kurtosis and cross-band
correlations, were observed at slightly later times. Moreover, these robust correlations
enabled us to inversely estimate texture statistics from VEP signals via linear regression
and to reconstruct texture images that appear similar to those synthesized with the
original statistics. Additionally, we found significant differences in VEPs at 200–300 ms
between some natural textures and their Portilla–Simoncelli (PS) synthesized versions,
even though they shared almost identical texture statistics. This differential VEP was
related to the perceptual “unnaturalness” of PS-synthesized textures. These results
suggest that the visual cortex rapidly encodes image statistics hidden in natural textures
specifically enough to predict the visual appearance of a texture, while it also represents
high-level information beyond image statistics, and that electroencephalography can be
used to decode these cortical signals.

Keywords: image statistics, visual evoked potentials, texture perception, stimulus reconstruction, naturalness
perception

INTRODUCTION

The visual field is full of complex image regions called “textures.” Increasing evidence shows that
textural information, or ensemble statistics, play a key role in the rapid perception and recognition
of scenes, objects, and surface materials (Lowe, 1999; Oliva and Torralba, 2001; Motoyoshi et al.,
2007; Whitney et al., 2014; De Cesarei et al., 2017; Fleming, 2017; Nishida, 2019).

It has widely been suggested that the perception of a texture is essentially based on the
spatial distributions of low-level image features and their relationships (Julesz, 1965; Graham
et al., 1992; Landy and Graham, 2004). Following extensive investigations into the neural
computations underlying texture segregation (Bergen and Adelson, 1988; Zipser et al., 1996;
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Baker and Mareschal, 2001), recent studies have re-formalized
the theory in terms of image statistics (Portilla and Simoncelli,
2000; Freeman and Simoncelli, 2011; Freeman et al., 2013; Wallis
et al., 2017). Specifically, the early visual cortex decomposes
an image into multiple subbands of different orientation and
spatial frequency, encodes moment statistics and correlations
across subbands of different orientation and spatial frequency,
and exploits these statistics to discriminate among various texture
images. Compelling evidence for this framework is provided by
texture-synthesis algorithms (Heeger and Bergen, 1995; Portilla
and Simoncelli, 2000), which can synthesize a texture image
that looks similar to a given texture by simply matching image
statistics of white noise to those of the target texture.

Recent studies adopting functional magnetic resonant
imaging and electrophysiology suggest that texture statistics are
represented in the early visual cortex (Freeman and Simoncelli,
2011; Freeman et al., 2013; Okazawa et al., 2015, 2017). Yet,
it is unclear how each class of statistic is encoded in the
human brain, especially during the early processing of the
image. To examine such a rapid cortical response in humans,
electroencephalography (EEG) has widely been used as an easy
and non-invasive measure. In visual neuroscience, classical
studies have examined visual evoked potentials (VEPs) for a
specific image feature, but with artificial patterns composed of
lines and dots (Victor and Conte, 1991; Bach and Meigen, 1997,
1998; Peterzell and Norcia, 1997; Bach et al., 2000; Norcia et al.,
2015; Kohler et al., 2018). More recently, several studies directly
measured VEPs for natural images. Adopting reverse correlation
analysis (DeAngelis et al., 1993), they successfully extracted
VEP components correlated to particular image features, such
as pixel statistics, phase statistics, the scene “gist,” and deep
features (Rousselet et al., 2008; Scholte et al., 2009; Bieniek et al.,
2012; Groen et al., 2012a,b, 2017; Hansen et al., 2012; Ghodrati
et al., 2016; Greene and Hansen, 2020). However, these features
are not powerful enough to fully describe the perception of
individual images of scenes and objects they employed, and it is
uncertain if the VEP components correlated with those features
are truly relevant to the perception. In addition, those features
are indifferent to texture perception.

In contrast to the perception of scenes and objects, the
perception of textures is well described and even synthesized
by a particular set of image statistics (Portilla and Simoncelli,
2000). Moreover, such image statistics are spatially global
measurements, whose neural representations could be captured
by EEG with a low spatial resolution. Taking advantage of these
facts, the present study elucidates human cortical responses to
texture statistics using a reverse correlation between VEPs for
various natural textures and image statistics that are critical for
the perceptual appearance of a texture. Our analysis revealed
VEP components specifically correlated with low- and high-level
texture statistics. On the basis of this robust correlation, we
reconstructed image statistics from VEPs with linear regression
and successfully synthesized perceptually mimicked textures
simply from VEP signals. These results suggest that VEPs can
capture neural responses to texture statistics specifically enough
for the prediction of the perceptual appearance of individual
images. We found different VEPs between natural textures and

their synthetic versions, but those VEPs were limited to images
in which texture statistics were not sufficient to synthesize the
appearance of natural textures.

MATERIALS AND METHODS

Observers
Fifteen naïve, paid observers (22 years old on average)
participated in the experiment. All participants had normal or
corrected-to-normal vision. All experiments were conducted in
accordance with the guidelines of the Ethics Committee for
experiments on humans at the Graduate School of Arts and
Sciences, The University of Tokyo. All participants provided
written informed consent.

Apparatus
Visual stimuli were displayed on a gamma-corrected 24-inch
liquid-crystal display (BENQ XL2420T) with a frame rate of
60 Hz. The pixel resolution was 1.34 min/pixel at a viewing
distance of 100 cm, and the mean luminance of the uniform
background was 33 cd/m2.

Stimuli
The visual stimuli comprised 166 natural texture images, each
subtending 5.7◦ × 5.7◦ (256 × 256 pixels; Figure 1A). Images
were taken from our original natural-texture image database or
from the Internet. All RGB images were converted to gray scale,
and the mean luminance was normalized to 33 cd/m2, which was
equal to that of the gray background.

For comparison with the original natural textures, we
additionally employed two types of synthesized image. One was
an image synthesized by means of the Portilla–Simoncelli (PS)
algorithm (Figure 1B; Portilla and Simoncelli, 2000), which can
create a perceptually similar texture by matching low- and high-
level image statistics of a white noise image, including moment
statistics [i.e., standard deviation (SD), skew, and kurtosis] and
cross-band correlations, to those of the original texture image.
The synthesis was performed with a typical parameter setting
as used in the original algorithm (except for the number of
iterations) (Portilla and Simoncelli, 2000). The other synthetic
textures were made by randomizing the spatial phase of the
original natural textures (Figure 1C). These phase-randomized
images were equivalent to the original image only in terms of the
global spatial frequency spectrum.

Procedure
Electroencephalographys were measured in an electrically
shielded, dark room. In each experimental session, each of 166
natural textures was presented once in random order, with a
500-ms duration followed by a 750-ms interval of the uniform
gray background. Observers viewed the stimulus binocularly with
steady fixation on a small black dot (10.8-min in diameter) that
was shown at the center of the display throughout the session.
For each observer, the sessions were repeated 24 times. The
same measurements were also run as different blocks for the
PS-synthesized textures and for the phase-randomized textures.
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FIGURE 1 | Examples of visual stimuli used in the experiment: (A) natural textures; (B) Portilla–Simoncelli (PS)-synthesized versions; and (C) phase-randomized
versions.

Each block was conducted in the same order for all participants
on different days. Therefore, each observer spent 3 days in
total participating in the EEG recordings (i.e., measurements
were made for natural textures on the first day, PS-synthesized
textures on the second day, and phase-randomized textures
on the third day).

EEG Recordings and Preprocess
The EEG recordings were conducted using electrodes positioned
at Fp1, Fp2, F3, F4, C3, C4, P3, P4, O1, O2, F7, F8, T7, T8,
P7, P8, Fz, Cz, and Pz, in accordance with the international
10–20 system, at a 1,000-Hz sampling rate, using Ag-AgCl
electrodes and an electrode cap of appropriate size (BrainVision
Recorder, BrainAmp amplifier, EasyCap; Brain Products GmbH).
An additional electrode, which served as the common ground
electrode, was placed midway between Fz and Fpz. All electrodes
were referenced to another electrode positioned between Fz
and Cz, and they were re-referenced off-line using the average

amplitude of all electrodes. The EEG was resampled at 250 Hz,
band-pass filtered at 0.1–100 Hz, and converted to epochs of
−0.4 to 0.8 s from the stimulus onset. The power frequency
component (50 Hz) was automatically rejected when the EEG was
recorded. The baseline was from −0.1 to 0 s with respect to the
stimulus onset, and the EEG was corrected relative to the baseline.
Artifact components (i.e., eye movements) were removed by the
heuristic examination of independent components. To remove
epochs with eye blinks, epochs with an amplitude outside the
range from −75 to 75 µV (i.e., 1.7% of all epochs) were rejected.
VEPs for each image were defined as the average across the
24 repetitions. We compensated for machinery delay that was
measured in each trial.

Analysis of Image Statistics
We analyzed image statistics for each texture image. In
the analysis, the PS statistics space was not used directly
because it was primarily designed for synthesis and consists
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of very complicated combinations of parameters, which are
not suitable for visualizing the results. Instead, we chose
several classes of statistics that are known to be particularly
important in human texture models, including the PS model
(Portilla and Simoncelli, 2000; Simoncelli and Olshausen, 2001;
Landy and Graham, 2004). In any natural image, some of these
statistics may be correlated with each other, but we defined them
as independent classes in terms of their properties. Thus, we
decomposed each image into different orientation and spatial
frequency subbands and computed five representative image
statistics: the SD, skew, kurtosis, correlation between different
orientation subbands, and correlation between different spatial
frequency subbands. In this space, we confirmed that natural
textures and their PS-synthesized versions had almost identical,
or very similar, image statistics (r = 0.83 on average).

For each texture, the luminance image was first decomposed
to subbands of seven spatial frequencies (2–128 cycles/image, 1-
octave steps: 0.35, 0.70, 1.40, 2.80, 5.61, 11.2, and 22.4 cycles/deg)
(e.g., De Valois and De Valois, 1980) and eight orientation bands
(0–157.5◦, 22.5◦ steps) by using a linear Gaussian band-pass
filter with a spatial frequency bandwidth (i.e., full width at half-
maximum) of 1 octave and an orientation bandwidth of 30◦.
For each subband image, three moment statistics (i.e., log SD,
skewness, and log kurtosis) were calculated. The central three
panels in Figure 2 show these three moment statistics obtained
from a sample image (left-most image in Figure 2) and plotted
as functions of orientation (x-axis) and spatial frequency (y-
axis). We did not consider pixel statistics because visual cortical
neurons have no direct access to pixel information.

In addition, correlations between subband “energy”
images of different orientation and spatial frequency were
calculated. These are known to be important high-level
image statistics in texture synthesis (Portilla and Simoncelli,
2000). In detail, the cross-orientation energy correlations
are related to how much local features in the image are
oriented, and the cross-frequency energy correlations are
related to how much the local luminance modulations are
edgy or stepwise (Portilla and Simoncelli, 2000; Balas et al.,
2009). Here, the energy image was given as a vector sum
of the cosine and sine parts of the subband image. We
calculated correlations in the energy image between different
orientation bands along the same spatial frequency and
between different spatial frequency bands along the same
orientation. We then averaged the resulting correlations across
orientation because the absolute orientation rarely matters in
texture perception.

Specifically, we computed the “cross-orientation correlation”
(XO) between subbands of variable orientation difference (1θ) at
each spatial frequency (f) according to Eq. 1. The panel second
from the right in Figure 2 shows the resulting cross-orientation
correlation plotted as a function of 1θ (x-axis) and f (y-axis).

XO1θ,f =
∑

θ

corr
(
wθ,f ,wθ+1θ,f

)
K

(1)

In a similar manner, we also computed the “cross-frequency
correlation” (XF) for the difference of a variable pair of spatial
frequencies (f and f′) according to Eq. 2. The right-most panel in

Figure 2 shows the resulting cross-frequency correlation plotted
as a function of f′ (x-axis) and f (y-axis).

XFf ,f ′ =
∑

θ

corr
(
wθ,f ,wθ,f ′

)
K

(2)

Here, K is the number of orientations, corr stands for the
correlation coefficient, and θ is the orientation of the subband.

We did not adopt correlation between “linear” subbands in
our analysis because it had an extremely small variation across
images (i.e., the variance was approximately 1/256 of that of
energy subbands) owing to the narrow bandwidth of the spatial
filters that we used, i.e., 30◦ in orientation and 1 octave in
spatial frequency. While the linear cross-scale correlation is
closely related to the cross-scale phase statistics and important in
representing “edgy” structures in the image (Concetta Morrone
and Burr, 1988; Kovesi, 2000; Portilla and Simoncelli, 2000), it
plays a small role in texture perception unless one scrutinizes the
image at the fovea (Balas, 2006; Balas et al., 2009).

Partial-Least-Squares Regression
Analysis
To obtain the regression model for the VEPs and the image
statistics of the visual stimulus, we conducted a partial-least-
squares regression analysis between them. We assigned the VEPs
to the predicator and the image statistics to response variables.
We implemented the SIMPLS algorithm through the MATLAB
function “plsregress”. There were seven components, which
minimized the prediction error of the response in a 10-fold cross
validation in the training set (The mean squared error of the
response was 80.0).

RESULTS

VEPs
Figure 3A shows the average VEPs for all images. Each row
shows the results for one image type; i.e., natural textures, PS-
synthesized textures, and phase-randomized textures. For all
types, large-amplitude VEPs (∼10 µV) were observed at the
occipital electrodes (O1/O2). As we did not find any systematic
and independent components in the other cortical regions, we
here focus on VEPs from those two occipital electrodes.

Figure 3B shows the time course of VEP amplitudes at the
occipital electrodes (i.e., the averaged responses from O1 and O2)
for the different types of stimuli. The light-blue curves show the
average VEPs for the individual images whereas the thick blue
curves are the VEPs averaged across all images. The potentials at
the occipital electrodes began to rise at 100 ms after the stimulus
onset and reached a first small peak at around 120 ms followed by
a second large peak at around 250 ms. The basic waveforms were
also similar across images, but there were large variations across
individual textures.

Correlation Between VEPs and Image
Statistics
We conducted a reverse-correlation analysis of the VEPs and each
image statistic. We conducted the reverse-correlation analysis
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FIGURE 2 | Image statistics calculated for a sample texture image (far left). From the left, the central three panels show the log SD, skewness, and log kurtosis
plotted as functions of the spatial frequency and orientation of the subband. The two right-most panels show the cross-orientation energy correlation plotted as a
function of the spatial frequency and the orientation (Ori) difference between subbands, and the cross-frequency energy correlation plotted as a function of the
spatial frequency (SF) and the paired SF. The color of each pixel represents the value of the statistics, separately scaled for each class of statistics.

for individual observers but the resulting data were noisy and
lacking in robustness. This was thought to be because the
number of repetitions for each image (24 repetitions) was small
for the reverse-correlation analysis. To address this problem,
in accordance with the method used in the previous studies
(Scholte et al., 2009; Hansen et al., 2011), we computed z-scored
VEPs at each time point for each observer and averaged
them across observers. We then computed the coefficient of
correlation between each image statistic and the z-scored VEP at
each time point.

Figure 4 shows the dynamics of the correlations between
image statistics and occipital VEPs (O1/O2). Each pixel in
the heatmap indicates the coefficient of correlation between
the VEPs at a particular timepoint (e.g., 100 ms) and a
particular image statistic (e.g., log SD at 0-deg orientation
and 2-c/image spatial frequency). Red indicates a positive
correlation and blue indicates a negative correlation. Progressing
downward, each row shows the results for a class of image
statistics; i.e., log SD, skew, log kurtosis, cross-orientation
correlation, and cross-frequency correlation. To address the
multiple comparisons among time points and image statistic
parameters, we adopted the Benjamini–Yekutieli false discovery
rate (FDR)-correction method (Benjamini and Yekutieli, 2001).
The significant correlations (FDR-corrected, p < 0.05) are
indicated by vivid colors.

For all classes of image statistics, we found strong correlations
with the VEPs that systematically develop over time. For instance,
the VEPs had a strong positive correlation with the low-spatial-
frequency SDs from∼100 to∼150 ms, a negative correlation with

the mid-/high-spatial-frequency SDs from ∼150 to ∼180 ms,
and a positive correlation with the mid-/high-spatial-frequency
SDs from ∼190 to ∼260 ms. Such systematic rises and falls of
correlations were found for the other classes of image statistics,
with different timing. As we had obtained maps of the correlation
dynamics for VEPs from other electrodes (F3, Fz, F4, P7, and P8),
we confirmed that they were all similar to, or just sign-reversed
from, the results obtained for the occipital electrodes (Figure 4).

Correlation Between VEPs and
Summarized Image Statistics
The correlation maps shown in Figure 4 appear somehow
redundant. Regarding the moment statistics, for instance, the
correlations with VEPs are nearly constant across all absolute
orientations, as expressed by vertical “bands” in the maps. For the
cross-band correlations, the absolute correlation with VEPs was
always higher where the target subbands were close together in
orientation (i.e., small 1θ) and in spatial frequency (small | f-f′|),
which is expressed as diagonal spreading on the maps. This
is not surprising given that VEPs can hardly resolve a neural
response across different absolute orientations. In addition, the
absolute orientation plays a small role in the visual appearance of
a texture. Accordingly, we calculated the correlations between the
VEPs and further summarized measurements, so that we could
interpret the temporal dynamics of VEPs correlated with each
class of image statistics more easily. To that end, the summarized
moment statistics (i.e., log SD, skew, and log kurtosis) were
defined as the averages across the orientation for each spatial
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FIGURE 3 | Visual evoked potentials (VEPs) for texture images. (A) Topography of the grand average VEPs for the natural textures, PS-synthesized textures, and
phase-randomized (PR) textures, in rows from top to bottom. (B) VEPs at the occipital electrodes (mean of O1 and O2). The light-blue traces show VEPs for
individual images and the thick blue traces represent the averages across images.

FIGURE 4 | Correlations between image statistics and VEPs. The rows from top to bottom show the correlation of VEPs with the log SD, skew, log kurtosis,
cross-orientation correlation, and cross-frequency correlation. Red indicates positive correlations and blue indicates negative correlations. The colors are desaturated
for values that are not statistically significant (p ≥ 0.05, FDR corrected). The format of each panel follows that in Figure 2. The maps are arranged in columns for
different time points, from 88 to 316 ms. SF, spatial frequency; Ori, orientation; and r, correlation coefficient.

frequency. The summarized cross-orientation correlation was
given as the average across-orientation difference (1θ except
1θ = 0) for each spatial frequency. The summarized cross-
frequency correlation was given as the average across-frequency
difference (f-f′ except f = f′).

Figure 5 shows the dynamics of correlation between VEPs
and the summary image statistics. The results are shown for
the three types of texture stimulus: natural, PS-synthesized,
and phase-randomized textures. The vividly colored regions
indicate statistically significant correlations identified using the
Benjamini–Yekutieli FDR-correction method (p < 0.05). Similar
patterns of the results were obtained for the other electrodes. We
also confirmed that nearly the same results are obtained if we

use image statistics calculated within the central or peripheral
region in the image.

The temporal development of VEPs correlated with the
summary image statistics is now clearly visible. VEPs correlated
with SDs were particularly strong (rmax ≈ 0.8) and dynamically
rose and fell in a spatial-frequency-dependent manner. They had
a first peak at ∼120 ms for low-spatial-frequency bands (2–
16 c/image), a second negative peak at∼150 ms for middle spatial
frequencies (4–64 c/image), and a third peak at∼200 ms for high
spatial frequencies (8–128 c/image). VEPs correlated to skewness
were observed at ∼200 ms only for middle spatial frequencies
(16–64 c/image). Even after 300 ms from the stimulus onset, we
could observe significant correlations of VEPs to SDs and to some
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FIGURE 5 | Dynamics of VEPs correlated with summary image statistics. The horizontal axes represent the time from the stimulus onset (0–496 ms) and the vertical
axes represent the spatial frequency (c/deg). Reddish pixels indicate positive correlation and blueish pixels indicate negative correlation, for which non-significant
data (p ≥ 0.05, FDR corrected) are desaturated. Panels in the successive rows show the correlations of VEPs with the SD, skew, kurtosis, and cross-orientation
energy correlation and cross-frequency energy correlation. The results are shown for natural textures (left), PS-synthesized textures (middle), and phase-randomized
textures (right).

other statistics. VEPs correlated to kurtosis, cross-orientation
correlation, and cross-frequency correlation appeared to have
similar dynamics. They commonly tended to have a first positive
peak at∼150 ms and a second negative peak at∼200–250 ms, but
only for middle and high spatial frequencies. This similarity may
be partly due to mutual correlations among the three statistics,
which we confirmed not only for our texture stimuli but also
for a wide range of natural images. However, as many texture
models assume, they have independent roles in the perceptual
discrimination of textures, and we confirmed that merging these
VEP components prevented us from reconstructing textures
from VEP signals.

The temporal dynamics of correlation were qualitatively
similar across different types of image, that is, original, PS-
synthesized, and phase-randomized images (Figure 5). The
correlation maps in Figure 5 are highly correlated with each
other; i.e., r = 0.83 (p ≈ 0) for the original and PS-synthesized
textures. However, we still found a small difference in the results
between the original and PS-synthesized textures despite the
equality of image statistics between the two types of texture. We
will discuss this difference later in detail.

Reconstruction of Texture Image From
the VEP
The series of analyses described above reveal a robust correlation
structure between VEPs for natural textures and image statistics.
This led us to the hypothesis that image statistics of a texture are
predictable from VEP signals. In testing this possibility, we next
sought to apply linear regression analysis, to inversely estimate
the image statistics of texture stimuli from the VEP signals, and
to determine if the estimated image statistics would enable us
to synthesize images perceptually similar to the original texture.
If such reconstruction was to be successful, it would further

support the notion that the temporal pattern of VEPs for natural
textures represents the neural processing of perceptually relevant
image statistics.

For the purpose of texture synthesis from VEP signals, we
adopted the texture statistics used in the PS texture-synthesis
algorithm instead of the image statistics used in the above
analyses (Note that most PS statistics are essentially equivalent
or closely related to the image statistics used in the above reverse-
correlation analysis). To construct a linear regression model of
PS statistics and VEPs, we used partial-least-squares regression
analysis. The number of statistics vectors in the PS texture space is
too large to be used in such a regression model, and we therefore
reduced PS statistics by applying a compression method inspired
by a previous study (Okazawa et al., 2015): we set the number of
orientation bands and number of scales each to 3, and the number
of positions to 1; rejected the constant parameters; and utilized
the symmetrical parameters in the cross-subband correlations.
Thereafter, as mentioned in the section “Materials and Methods,”
we chose to utilize these reduced PS-synthesis (cPS) parameters
instead of the original PS statistics. We took VEPs for a period of
0–496 ms (125 points) as the predicator, and the cPS statistics
(110 points) as the response variables. The training data set
consisted of 299 natural and PS-synthesized texture images used
in the experiment (about 90% of all the data), and the test set
consisted of the remaining 33 texture images (about 10%). The
regression model from the VEPs to the cPS-synthesis parameters
was trained on the training set. There were seven components,
which minimized the prediction error of the response in a 10-
fold cross validation on the training set. Finally, the cPS statistics
for the test set were predicted using the trained regression model.

The results indicate that cPS statistics were well predicted
by the temporal pattern of VEP signals, suggesting a robust
relationship between image statistics and VEPs, as also
demonstrated by the reverse-correlation analyses above. R2
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(train) was 0.35 and R2 (test) was 0.20. The correlation between
reconstructed cPS statistics and original cPS statistics was 0.88.

We synthesized textures using the estimated cPS statistics, to
perceptually verify the quality of reconstruction. The synthesized
textures are shown in Figure 6. The images in the upper row show
the textures synthesized from the original cPS statistics, and the
images in the lower row show textures synthesized with the cPS
statistics as estimated from the VEPs. It is found that the VEP-
based textures are very similar to, or almost indistinguishable
from, the original cPS textures.

To obtain behavioral measures of this perceptual similarity
between the original and VEP-based cPS textures, we had five
observers (all of whom participated the EEG experiment) rate the
quality of the VEP-based cPS textures in a separate experimental
block after the EEG recordings. In the experiment, the original
cPS textures and VEP-based cPS textures (7.8◦ × 7.8◦) were
displayed randomly on the left or right side on a uniform
gray background of 40 cd/m2. The observers inspected the
two textures with free viewing and rated their dissimilarity
on a five-point scale; that is, from 4 (not similar at all) to 3
(not similar), 2 (similar), 1 (very similar), and 0 (hard to see
the difference). For each observer, the rating was done with
three repetitions for each of 31 of the 33 textures from the
test dataset (The PS-synthesis algorithm did not work for two
images). The results showed that the average dissimilarity rating
across images was 2.04 (s.e. of 0.22), with an average cross-
observer correlation of 0.90. Defining a rating of less than 2.0
as a successful synthesis, 52% of the textures were successfully
synthesized from VEPs.

Difference Between Natural and
Synthetic Textures
While we observed that the average VEPs were similar
among natural, PS-synthesized, and phase-randomized textures
(Figure 3), we still found differences between the conditions with
regard to individual images. Figure 7 shows the differential VEPs
between natural and PS-synthesized textures (Figure 7A) and
those between PS-synthesized and phase-randomized textures
(Figure 7B). By means of the statistical test introduced
by VanRullen and Thorpe Vanrullen and Thorpe (2001)(i.e.,
significant if p < 0.01 for 15 consecutive periods), we found
a significant mean difference between the natural textures and

PS-synthesized textures at 148–384 ms and between the PS-
synthesized textures and phase-randomized textures at 212–
284 ms. Meanwhile, we found a large variation in the differential
VEPs across individual images (light-blue traces); i.e., large
differential VEPs were found for some images but little or no
difference for other images.

What gave rise to these variations in the differential VEPs?
Whereas the PS synthesis successfully equalized image statistics
in the natural textures for all images, it did not always successfully
replicate the appearance of the natural texture and occasionally
produced texture images that appeared unnaturalistic. Figure 7C
shows example textures that produced small (left) and large
(right) differential VEPs, on average, from 148 to 248 ms.
Especially for the difference between natural and PS-synthesized
textures, these pairs of images illustrate that synthesized textures
that produced large differential VEPs appeared to be unnatural
and perceptually unlike the original natural texture. These
observations led us to the notion that variations in the differential
VEPs are related to variation in the “unnaturalness” of PS-
synthesized textures.

In testing this possibility, we carried out a simple rating
experiment to measure the unnaturalness of each PS-synthesized
texture in a separate experimental block after the EEG recordings.
In that experimental block, all observers who participated in the
EEG experiment used a five-point scale to rate how closely each
PS-synthesized texture appeared like a photograph of a natural
texture (0, almost the same as a natural texture; 1, similar to a
natural texture; 2, a little dissimilar to a natural texture; 3, a little
unnatural; 4, obviously unnatural). We also asked the observers
to rate the unnaturalness of phase-randomized textures, but we
found extremely high ratings (unnatural) for almost all images,
and we therefore did not use those data in the analysis. The other
experimental settings were the same as in the rating experiment
for EEG-based texture synthesis.

We then analyzed how the perceptual unnaturalness of
a synthesized texture was related to the differential VEP
between the natural and PS-synthesized textures. Figure 7E
shows the dynamics of correlation between the PS-synthesized
minus natural differential VEPs and the unnaturalness ratings.
Significant correlations (p < 0.05, FDR-corrected) were observed
at a temporal epoch (168–268 ms) similar to that for the
differential VEPs shown in Figure 7A. This indicates that PS-
synthesized textures that looked unnatural gave rise to VEPs

FIGURE 6 | Compact Portilla–Simoncelli (cPS) synthesized textures and compact-PS-synthesized textures with the image statistics as estimated from VEPs. The
perceptual dissimilarity ratings (0–4) are given below the images.
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FIGURE 7 | (A,B) Differential VEPs at the occipital electrodes (O1/O2) between the PS-synthesized textures and natural textures (A) and between the
PS-synthesized textures and phase-randomized textures (B). The light-blue traces are the differential VEPs for each texture. The red traces show the three largest
differential VEPs and the green traces show the three smallest differential VEPs. (C,D) Pairs of textures that elicited small (left three images) and large (right three
images) differential VEPs. Numbers below the images in (C) represent the average “unnaturalness” rating of the PS-synthesized texture. (E) Correlations between the
differential VEPs and the perceptual unnaturalness ratings. The red bars indicate the statistically significant periods (p < 0.05, FDR-corrected).

different from those of the original texture, even if they had nearly
equal image statistics.

DISCUSSION

The present study investigated the temporal dynamics of
cortical responses to biologically plausible image statistics of
natural textures, by applying a reverse-correlation analysis
between VEPs and image statistics. The analysis revealed that
VEPs at the occipital electrodes are systematically correlated
with image statistics that are known to be important for
human texture perception. Moreover, on the basis of the
robust relationship between the VEPs and image statistics,
we successfully synthesized textures using image statistics as
estimated from VEPs via a linear regression. These results
support the notion that the human visual cortex rapidly encodes
image statistics that play critical roles in the perception of natural
textures. Although small differences were found for images that
were not successfully synthesized, similar VEPs and correlation
dynamics were observed for synthesized textures that had image
statistics equivalent to those of the original natural textures.

Visual evoked potentials that correlated with the subband SD
appeared in a spatial-frequency-dependent manner. They first
peaked for low spatial frequencies at ∼100 ms after the stimulus
onset, then peaked for middle spatial frequencies at ∼150 ms,
and finally peaked for high spatial frequencies at ∼200 ms
(Figure 5). This dynamic shift is consistent with “coarse-to-
fine” processing, as suggested by a number of psychophysical
studies on object/stereo processing (Schyns and Oliva, 1994;
Hegdé, 2008). It is also consistent with physiological findings that

magnocellular cells, which are tuned to low spatial frequencies,
respond faster than parvocellular cells, which are tuned to high
spatial frequencies (e.g., Nowak et al., 1995), and that the spatial
frequency tuning of V1 cells shifts in a time-dependent manner
from low to high spatial frequencies (Bredfeldt and Ringach,
2002; Mazer et al., 2002).

Visual evoked potentials also correlated with higher-order
statistics, such as kurtosis and cross-subband energy correlations,
with a similar temporal profile beginning as early as ∼120 ms
after the stimulus onset. Considering the nature of each statistic,
and past electrophysiological and psychophysical findings
regarding texture processing, we speculate that these types of
image statistic have a common functional and physiological basis.
Kurtosis is primarily associated with spatial sparseness in the
energy (complex-cell) outputs of a subband image (Kingdom
et al., 2001; Olshausen and Field, 2004). As mentioned earlier,
the cross-orientation energy correlations are related to the
orientation of local features whereas the cross-frequency energy
correlations are related to local luminance modulations (Portilla
and Simoncelli, 2000; Balas et al., 2009). Neural computations for
each of these three types of measurement are essentially based
on inhibitory interactions among cortical neurons across space,
orientation, and spatial frequency, respectively (Morrone et al.,
1982; Ohzawa et al., 1982; Ferster, 1988; Zipser et al., 1996; Ferster
and Miller, 2000; Nishimoto et al., 2006). These interactions
are also functionally approximated as the second-order filters
proposed in the human texture-vision model; i.e., filters that
detect gradients of the energy output of a subband across space,
orientation, and spatial frequency (Bergen and Adelson, 1988;
Motoyoshi and Kingdom, 2003; Landy and Graham, 2004). It
is likely that VEPs correlated with the three image statistics
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indicate the temporal dynamics of such interactive computations
among neural channels in V1 and V2. It is not surprising
that VEPs for such higher-order image statistics are observed
at latencies as short as or only a little longer than those
for SDs (except for very low spatial frequencies), given that
the sharp orientation and spatial-frequency tuning of V1 cells
emerges from the cross-channel interactions (Morrone et al.,
1982; Ohzawa et al., 1982; Ferster and Miller, 2000).

The robust correlational structure between VEPs and image
statistics allowed us to reconstruct texture images from image
statistics that were inversely estimated from VEPs (Figure 6).
In the present study, we deliberately applied a linear regression
model even though it had lower prediction accuracy, in general,
compared with prevailing non-linear “black box” models,
including the deep neural network (DNN). Yet, the model we
used still had an ability to reconstruct image statistics from
occipital VEP signals accurately enough to synthesize textures
that were perceptually similar to the target images. These results
support the idea that the perceptual appearance of texture is
ruled by such image statistics as encoded in the early visual
cortex, and that the analysis of simple VEPs can extract these
types of information.

While similar results were obtained for the natural and
PS-synthesized textures, a small difference in VEP was
found for some textures that were less successfully PS-
synthesized and appeared “unnatural,” even though they
had virtually equivalent image statistics (Figure 7). When
we reanalyzed the dynamic correlations without such mal-
synthesized stimuli (“unnaturalness” rating exceeding 3.0),
at 88–300 ms after the stimulus onset, the results of the
natural images and the PS-synthesized image were closer
(with a root-mean-square error of 0.12) than those for the
whole visual stimuli (with a root-mean-square error of 0.17).
This result further supports the notion that VEPs largely
reflect cortical responses to image statistics. However, it is
noted that differential VEPs of unnatural textures were clearly
observed for the period of 180–250 ms from the stimulus
onset. This VEP component indicates that there is a rapid
neural processing of information beyond image statistics.
We also found significant differences in VEPs between PS-
synthesized and phase-randomized textures. According to
previous imaging (Freeman et al., 2013) and electrophysiological
(Ziemba et al., 2019) studies, these differences could be
related to differential neural processing in V1 and V2 for
naturalistic textures.

The present study was limited to achromatic natural textures,
and the texture image reconstruction was restricted to the texture
perception that can be described by image statistics. Despite

these limitations, the results of the present study demonstrated
that reverse-correlation analysis, which focuses on the holistic
features within a relatively large space, enabled us to extract the
characteristics of the response of the visual cortex to natural
“textures,” even with the low spatial resolution of EEG. In
principle, the method proposed in the present study is general
enough to be applicable to a wide variety of visual stimulus
(e.g., natural scenes, materials, and objects) and image features
[e.g., the spatial envelope, bags of features (such as the scale-
invariant feature transform), and DNN features]. Future studies
may extend the approach to better reconstruct the “’impression,”
using non-linear models such as the DNN. The present study
revealed that the impression of natural images is, at least
partially, processed in the early visual cortex as statistical
features. Therefore, according to the findings of the present
study, the impression of a visual stimulus may be summarized
as compact features, which would be beneficial in forming the
basis for the efficient communication and display of real-world,
complex natural images.
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