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Abstract 

Background: Well-differentiated gastroenteropancreatic neuroendocrine neoplasms are rare tumors with a slow proliferation. They 
are virtually resistant to many DNA-damaging therapeutic approaches, such as chemo- and external beam therapy, which might 
be overcome by DNA damage inhibition induced by proteasome inhibitors such as bortezomib. Methods and results: In this study, 
we assessed several combined treatment modalities in vitro and in vivo . By cell-based functional analyses, in a 3D in ovo and an 

orthotopic mouse model, we demonstrated sensitizing effects of bortezomib combined with cisplatin, radiation and peptide receptor 
radionuclide therapy (PRRT). By gene expression profiling and western blot, we explored the underlying mechanisms, which resulted 

in an impaired DNA damage repair. Therapy-induced DNA damage triggered extrinsic proapoptotic signaling as well as the induction 

of cell cycle arrest, leading to a decreased vital tumor volume and altered tissue composition shown by magnetic resonance imaging 
and F-18-FDG-PET in vivo , however with no significant additional benefit related to PRRT alone. Conclusions: We demonstrated 

that bortezomib has short-term sensitizing effects when combined with DNA damaging therapy by interfering with DNA repair in 

vitro and in ovo . Nevertheless, due to high tumor heterogeneity after PRRT in long-term observations, we were not able to prove a 
therapeutic advantage of bortezomib-combined PRRT in an in vivo mouse model. 

Neoplasia (2021) 23, 80–98 

Keywords: Bortezomib, Neuroendocrine tumors, Peptide receptor radionuclide therapy (PRRT), DNA repair, Combination therapy, Proteasome inhibition 
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Introduction 

Well-differentiated neuroendocrine neoplasms (NEN) of the pancreas
and the intestine are rare tumors, characterized by slow proliferation and
the absence of common driver mutations. Although mutations within the
phosphoinositide 3-kinase (PI3K) pathway are only present in up to 14% of
pancreatic NENs [1] , primarily epigenetic dysregulation results in the loss
of mTOR-associated tumor suppressors and renders the tumors accessible
for mTOR inhibitors, such as everolimus [2 , 3] . Moreover, ATRX, DAXX or
MEN1 mutations trigger aberrant chromatin structure and genetic instability,
which impairs the function of other tumor suppressors, such as TP53, ATM
or CDKN2A [4–7] . 

Based on the NETTER-1 randomized clinical trial, peptide receptor
radiotherapy (PRRT) using Lu-177-DOTATATE has been approved for
somatostatin receptor 2 (SSTR2)-positive, nonresectable or metastatic,
progressive, well-differentiated G1 and G2 NENs due to significantly
increased progression-free survival (median time-to-progression was 36
months) [8–10] . The suggested mechanism is that after binding of the Lu-
177 labeled ligand to SSTR, the emitted beta particles induce DNA single-
and double-strand breaks (SSB and DSB) in SSTR2-positive tumor cells [11] .
Accumulated SSBs and DSBs block transcription and/or DNA replication
until repaired or finally induce cell death in the case of repair failure [12] .
Although disease control rates are comparably satisfying and can improve
patients’ quality of life, relatively low OR rates indicate mechanisms of
baseline or acquired resistance to PRRT from a molecular-biological point
of view. 

Highly proliferative cancers frequently develop therapy-resistant tumor
areas by selecting subclones, which are able to clear therapy-induced damage
at an increased pace. In contrast, the slow proliferation of well-differentiated
neoplasms per se provides extended time for DNA damage repair (DDR).
The maintenance of DNA damage by inhibition of damage repair might
therefore be a novel treatment approach in both, fast progressing cancers
and slowly proliferating tumors such as well-differentiated pancreatic and
intestinal NENs. 
Accordingly, chemotherapeutic agents have limited application potential 
n well-differentiated NENs, where combined regimens containing 
treptozotocin (STZ) and 5-fluorouracil (5-FU), or capecitabine (CAP) 
nd temozolomide (TEM) are deployed for the therapy of progressive
r metastatic pancreatic NENs. Platinum-based regimens are only 
ecommended for NEC and highly proliferative, progressive G3 tumors 
ccording to the current guidelines [13 , 14] , yet with very limited effects
n well-differentiated tumors [15] . Although there are canonical guidelines
or the treatment of well-differentiated G1 and G2 NENs as well as poorly
ifferentiated G3 NECs, there is no established therapy for G3 NETs so far.
his produces the need to adapt regimens that are used for G2 NENs or G3
ECs (such as PRRT or Chemotherapy) to fit to the specific features of high

roliferative and well-differentiated G3 NETs. 
For in vitro experiments, the use of radiopharmaceuticals is limited due to

adiation safety issues during long experimental hands-on times. To mimic
RRT in these experiments, we chose cisplatin and radiation, since their
xpected DNA damage response profiles were most likely to be comparable
o those after Lu-177-DOTATATE. Whereas antimetabolites (such as 5-FU 

nd its prodrug CAP) inhibit DNA and RNA metabolism by inhibition
f thymidylate synthetase, or through incorporation into RNA and DNA,
onofunctional alkylating agents (such as STZ and TEM) generate DNA

dducts, and bifunctional platinum-based regimens (such as cisplatin) induce 
nter- and intrastrand DNA crosslinks. Thereby, alkylating and crosslinking 
rugs interfere with DNA replication by steric interference, which leads to

nhibition of replication and DNA strand breaks, eventually requiring DNA
epair mechanisms similar to those of PRRT repair. 

In this study, we discuss the targeting of proteins that are involved
n mechanisms, which repair cisplatin- and PRRT-induced DNA damage. 
his includes accumulation of intermediates, such as single-strand breaks 

SSB). Accumulated double-strand breaks (DSB) and SSB finally induce 
poptosis directly or by blocking transcription and/or DNA replication [12] .
f cell death is not induced and cell cycle progresses, DNA repair defects
ead to severe replication failure and chromosomal instability. Besides a

ajor role in degradation of disposable proteins, the ubiquitin-proteasome- 
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system is highly involved in the regulation of DNA damage response.
On the one hand, the stabilization of wild type p53 toward its negative
regulator MDM2 (which is frequently upregulated in pancreatic NENs
[6 , 16] ) might lead to a reactivation of “sensing” mechanisms and induction of
a proapoptotic damage response in p53 wildtype neoplasms [7] . On the other
hand, (poly-) ubiquitination strongly regulates the activity and specificity
of a very high number of DNA-damage repair proteins and postreplicative
bypass mechanisms [17–19] . Furthermore, ubiquitination modulates histone
conditions and thereby controls the accessibility of DNA damage loci to DNA
repair protein complexes [19] . 

The proteasome inhibitor bortezomib has been shown to inhibit advanced
stages of DNA-damage repair while maintaining early stage damage response
mechanisms, such as phospho-H2AX and replication protein A (RPA) foci
accumulation. The preservation of early steps in the context of damage
repair inhibition might be essential for the induction of controlled cell death
rather than uncontrolled events [20] . Bortezomib has further demonstrated
chemotherapy-sensitizing effects in several cancers in preclinical settings,
where we were able to show an increased antitumoral effect in cisplatin
plus bortezomib-treated small cell lung cancer in vivo [21 , 22] . Nevertheless,
bortezomib has been withdrawn from clinical assessment as monotherapy
after a very small clinical phase II study including 14 patients with mixed
neuroendocrine tumor entities due to failure of objective therapy response
[23] in 2004. Thus, its potential in combined drug therapy of GEP-NENs has
not been analyzed so far. In the study presented herein, we analyzed the effect
of the proteasome inhibitor bortezomib in preventing the repair of cisplatin-,
radiation- and Lutetium-177-induced DNA-damage in pancreatic and
intestinal neuroendocrine tumors in different preclinical models. Thereby,
we explored clinically relevant and potential agents with comparable damage
signatures for combined therapy. 

Material and Methods 

Cell lines 

The following GEP-NEN cell lines were used for in vitro experiments:
pancreatic: BON [24] and QGP-1 [25] (obtained from Japanese Collection
of Research Bioresources), ileal: KRJ-I [26] and colonic: LCC-18 [27] .
BON cells were a generous gift from CM Townsend (University of Texas,
Galveston). KRJ-I midgut NET cells were generated by R. Pfragner (Medical
University of Graz) and kindly provided by I. Modlin (Yale University, New
Haven). The neuroendocrine origin and phenotype of KRJ-I cells has recently
been questioned [28] . However, these cells have been shown to share a
number of relevant properties with other GEP-NEN cell lines [29 , 30] . 

Cells were cultured and handled as previously published [31] . All cell
lines were authenticated (if indicated as unique) by genetic STR typing
at the DSMZ, Braunschweig, Germany in 2012, 2013 and 2015 ( in
vitro experiments were finished in 2017). Cells were not passaged longer
than 20 passages after receipt. Cells were further tested periodically for
maintained cell line specific expression of neuroendocrine and differentiation
markers (chromogranin A, synaptophysin, cytokeratin, vimentin, syntaxin)
by immunofluorescence microscopy. 

Immunocytochemistry and establishment of SSTR2-positive BON cells 

Native BON cells showed a low SSTR2 expression, which was verified by
immunofluorescence microscopy using a SSTR2-antibody (Supplementary
material and methods) and a standard immunocytochemistry protocol as
previously published [16] . 

BON cells were transfected with human SSTR2 to generate BON-
SSTR2 + , a stably expressing SSTR2-positive BON cell line [32] . Briefly,
BON-SSTR2 + cells were produced by transfecting wild type BON cells
using the plasmid pcDNA3.1-huSSTR2 (#SSTR200000, cDNA Resource
enter, Bloomsberg, PA, USA; www.cdna.org) and jetPEI transfection 
eagent (Polyplus-transfection, Illkirch, France). Positive clones were selected 
y addition of 600 μg/mL G-418 to the media and were tested for their
STR2 expression by qPCR [32] , immunofluorescence and radioligand 
inding assay. 

u-177-DOTATOC radioligand binding assay 

Cellular uptake of Lu-177-DOTATOC by native BON and BON- 
STR2 + cells was measured as described previously [32] . Briefly, cells were
eeded in 24-well plates (2.5 × 10 5 cells/well). Radioligand binding assay 
ncluding the washing steps, were performed in Hanks’ balanced salt solution 
HBSS, Invitrogen), containing 10 mM HEPES, 0.5% BSA at pH 7.3. The 
BSS incubation buffer further contained approx. 0.0074 MBq/mL Lu-177- 
OTATOC. After one hour of incubation with HBSS/Lu-177-DOTATOC 

t 37 °C, wells were rapidly washed with ice-cold washing buffer (50 mM Tris-
Cl pH 7.4, 125 mM NaCl, 0.05% BSA), before lysis with 1 N NaOH. Cell

ysate measurements (quintuplicates) were performed in γ -counter (Wallac 
470 Wizard, Perkin Elmer, USA) 

estern blot 

SDS page and western blot of NP-40 lysed primary tumor or cell line
aterial (cells were synchronized in 0.01% FBS for 24 h before treatment) 
as performed using a standard protocol and documented by ponceau 
 staining. Primary antibodies are listed in Supplementary material and 
ethods. Secondary antibodies were obtained from Dako (swine anti rabbit 

gG-HRP and goat anti-mouse IgG-HRP; Agilent, Santa Clara, USA). 
ntibody binding was documented by Fujifilm LAS-4000 luminescent image 
nalyzer using ECL prime Western Blotting detection reagent (Amersham 

E healthcare). For reprobing, membranes were treated with acidic glycine 
uffer as published [31] . Chemiluminescence signals were densitometrically 
nalyzed with Multi Gauge V3.1 or Image J 1.53. Values of ≥3 independent
xperiments were normalized to internal controls and mean values were 
tatistically assessed by using IBM SPSS Statistics v22.0.0.0 (based on Python 
.7) or Graphpad Prism 8.4.1. 

ubstances and radiopharmaceuticals 

Bortezomib (velcade) and cisplatin were obtained in physiological saline 
rom the Charité Universitätsmedizin Berlin dispensary. DOTA-D-Phe1- 
yr3-octreotide (Lu-177-DOTATOC) was obtained from ABX advanced 
iochemical compounds GmbH, Germany. Lutetium-177 was purchased 
rom ITG Isotope Technologies (Garching, Germany) and synthesized 
o Lu-177-DOTATOC in our Laboratories at the Berlin Experimental 
adionuclide Imaging Center (BERIC). 

iability assay 

WST-1 (Roche; Basel, Switzerland) or AlamarBlue (Thermo Fisher, 
altham, USA) assays were performed according the manufacturer’s 

nstructions in quintuplets after treatment with decreasing concentrations 
f the substances or their combination. Signal density was colorimetrically 
uantified with a multi-well spectrophotometer (TECAN sunrise) and 
nalyzed with MS Excel 2013 and GraphPad Prism 7. 

Combined concentration-response curves were analyzed as recommended 
y the Chou-Talalay method [33] . Data was analyzed by use of Prism 7 and
ompuSyn 1.0 [34] . 

uman tumor clonogenic assay 

Sterile methylcellulose solution (MC) was prepared as follows: 
% MC was dissolved in 50:50 sterile water/Iscove ś MDM. 0.06% 

http://www.cdna.org
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2-Mercaptoethanol (BME) solution in sterile PBS and 3% (w/v) agar
solution in sterile water were prepared. Prewarmed agar-solution was diluted
1:3680 in cell culture medium. Cells were harvested, counted and diluted
to 30,000 cells/ mL. MC solution was prewarmed and working solution
was prepared including 57% MC (4%) solution, 43% FBS, 0.001% BME
(0.06%) solution, 0.01% cell culture medium, 0.005% cell suspension.
Working solution was mixed with diluted agar solution and 1 mL/disc was
transferred in Human tumor clonogenic assay (HTCA) disks and incubated
in the cell incubator. Colonies were counted and data was analyzed by use of
GraphPad Prism 7 software. 

Radiation 

KRJ-I and BON cells were irradiated with 0, 5, or 10 Gy and treated with
increasing concentrations of bortezomib (Bon: 1–50 nM, KRJ-I 0.1–20 nM)
for 48 h. Viable KRJ-I (floating) cells were quantitated by alamarBlue Cell
Viability Assay by Thermo Fisher Scientific (Waltham, USA) according to the
manufacturer’s instructions. BON (adherent) cells were counted after DAPI
staining. Data was analyzed using GraphPad Prism 7 software. 

Combined concentration-response curves were studied as recommended
by the Chou-Talalay method [33] . Data was analyzed by use of CompuSyn
1.0 [34] . 

In vivo models 

Chicken chorioallantoic membrane xenografts [35] 
Fertilized pathogen free chicken eggs (VALO Biomedia, Cuxhafen,

Germany) were maintained as described earlier [36] . 
On day 7 of embryonic development, BON-SSTR2 + cells (1 × 10 7 

cells in an equal volume of RPMI1640 [Invitrogen, Germany] and matrigel
[basement membrane matrix high concentration from Corning, USA]) were
grafted onto the chorioallantoic membrane (CAM) and maintained for 5 d
to allow angiogenic connection of the tumors to the CAM and degradation
of matrigel [37] . For treatment, CAMs were either injected intravenously
with approximately 20 MBq Lu-177-DOTATOC or tumors were treated
by dropping 80 μL bortezomib (25 nM) or NaCl (0.9%, negative control)
onto microtumors. A second dose of 25 nM bortezomib was applied to the
bortezomib only and combined treatment tumors on day 14. On day 18,
tumor plaques were explanted and analyzed by Western blot. For details
on multimodal imaging of the in ovo model see Supplemental materials &
methods. 

Final concentrations of bortezomib were calculated by a dose escalation
study (data not shown) with respect to the toxicity of bortezomib to the
chicken fetus assuming a blood volume of approximately 1.2 mL on the day
of treatment [38] . 

Orthotopic pancreatic NET mouse model and multimodal imaging 
For the development of an orthotopic, pancreatic NET xenograft mouse

model, BON-SSTR2 + cells were implanted into the pancreas of 12-wk-old
SCID mice as previously described by Aristizabal Prada et al. [39] . 

Tumor growth was monitored once a week by a preclinical 1T PET/MRI
(nanoScan PET/MRI, Mediso, Hungary) using a mouse whole body coil. For
tumor delineation and volumetry, a high-resolution T2w 2D fast spin echo
(FSE) sequence was established. 

When the tumor size reached ∼1000 mm 

3 , the metabolic activity and
tumor heterogeneity of the engrafted tumors was determined by simultaneous
F-18-FDG PET/MRI (approximately 15 MBq injected i.v.). Animals were
scanned after 30 min to ensure tracer accumulation in the tumor tissue. 

When tumors reached a size of ∼1400 mm 

3 , the experiment was
terminated. Animal experiments were performed in accordance with the
national and local guidelines for animal welfare and approved by the ethics
committee of the state Berlin (G0011/16). 
For detailed imaging parameters, please refer to Supplementary material 
nd methods. 

ata analysis assessing tumor heterogeneity 
The viable tumor area was determined as previously described [40] , using

MOD software version 3.505 (PMOD Technologies, Zürich, Switzerland). 
riefly, a whole tumor region of interest (ROI) was placed onto the T2w

mages and copied to fused PET/MRI images. Using a threshold of 30%
f the hottest voxel within the ROI, FDG-avid tissue was automatically
elineated within the tumor. We defined viable tissue as the FDG-avid
raction of the whole tumor. T2 images were used to analyze the amount of
ecrotic tissue within the tumors. A custom Matlab script (Mathworks v15.0,
SA) was used to identify the necrotic proportionate from viable/undefined

issue based on SI per voxel. A ROI was manually drawn to delineate the
umor from other tissues. A second ROI was drawn in a region of tumor
o annotate viable tissue SI (vSI) as a reference value for the necrotic tissue.
he standard deviation of the vSI was calculated and used to determine the
ecrotic tissue, where voxel values of 3 standard deviations lower (outside the
9.7% confidence interval) than the vSI were deemed to be necrotic [41] . The
mount of voxels containing necrotic tissue are represented as a percentage of
he whole tumor. 

reatment regime 
Mice were treated according to the following treatment schedule: 0.5

g/kg bortezomib i.p. on days 0, 3, 7, and 10 in the first treatment cycle
nd 0.3 mg/kg bortezomib on days 21, 24, 28, and 31 in the second cycle.
he combined treatment group received additional 30 MBq of Lu-177-
OTATOC i.v. on days 0 and 21. The PRRT only treatment group received

0 MBq of Lu-177- DOTATOC on days 0 and 21 as previously published
42] . Vehicle control was sterile saline. Animals were observed for maximum
5 weeks after start of treatment or euthanized at a tumor volume of 1400
m 

3 . MRI of tumor size was performed once per week. 

mmunohistochemistry 
Paraffin sections (1–2 μm) of formalin-fixed tissues were prepared 

rom 2 different tumor areas, dewaxed and subjected to heat-induced
pitope retrieval prior to incubation with anti-cleaved PARP1 (clone E51,
bcam), anti-53BP1 (polyclonal rabbit, Novusbio) or anti-Ki67 (clone 
IB1, Agilent). For detection, Dako REAL EnVision Detection System 

r for detection of MIB1, alkaline phosphatase-labeled streptavidin and 
hromogen RED (both Agilent) were employed. Nuclei were counterstained 
ith hematoxylin (Merck) and sections were coverslipped with glycerol 
elatin (Merck). 

Images were acquired using the AxioImager Z1 microscope (Carl Zeiss
icroImaging, Inc.). All evaluations were performed in a blinded manner. 
HIF1-alpha, cPARP, and 53BP1 immunohistochemistry was quantitated 

y a 12-point immunoreactivity scoring (IRS) [43] integrating the product
f the expression level (0 = no; 1 = low; 2 = intermediate; 3 = strong) with
ercentage of positive cells (0 = no; 1 = < 10%; 2 = 10%–50%; 3 = 51%–
0%; 4 = > 80%). Necrosis and Ki-67 were displayed as percentage of cells. 

ell cycle analysis 
For mitotic index flow cytometry, cells were treated with 50 nM

ortezomib, 10 μM cisplatin or their combination for 24 h and stained
ollowing a previously published protocol [31] . For JC-1 staining, cells were
arvested after treatment with 50 nM bortezomib, 10 μM cisplatin or 50
M bortezomib + 10 μM cisplatin and suspended in PBS. Positive controls
ere incubated 1:500 with the generic mitochondrial membrane depolarizer 
arbonylcyanide m-chlorophenylhydrazone (CCCP) for 5 min. All samples 

negative controls excluded) were incubated with 1:500 JC-1 and incubated
0 min at 37 °C. Flow cytometry was conducted with FACSCalibur (Becton
ickinson) by BD Cell Quest Pro software and analyzed with FlowJo 8.7

oftware, Prism 7 and IBM SPSS Statistics 22. 
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nCounter multiplex gene expression analysis 
BON cells were treated in triplets with 25 nM bortezomib, 10 μM

cisplatin or their combination versus DMSO for 24 h or transfected with
siRNA as explained below. Messenger RNA (mRNA) was isolated with
RNeasy Mini Kit (Qiagen) according to the manufacturer’s instructions.
RNA was measured using nanodrop (Thermo Fisher Scientific). 60 ng
RNA was analyzed using the PanCancer pathway panel kit (NanoString
Technologies, Seattle, WA, USA) according to the manufacturers instruction
[44 , 45] and nSolver v2.5 (based on R v3.1.1). The differentially expressed
(DE) genes of the gene expression analysis were analyzed with nSolver v2.5
software (NanoString Technologies) using first principal component analysis
and regression analysis with and without Benjamini-Yekutieli procedure. Raw
data was normalized to the following housekeeping genes: AGK, DDX50,
EIF2B4, ZC3H14, CNOT10, MRPS5, PRPF38A, NUBP1, AMMECR1L,
PIAS1, HDAC3, ACAD9, EDC3, RBM45, NOL7, USP39, COG7, ZNF384,
SF3A3, VPS33B, SAP130, PIK3R4, TLK2, SLC4A1AP, ZKSCAN5, ZNF346,
MTMR14, ERCC3, CNOT4, TMUB2, C10orf76. 

Pathway visualization was done with the nSolver software based on the
KEGG ontology pathway system [46–48] . 

To compare bortezomib treated cells with cells under FOXM1
knockdown, we performed RNA interference for 72 h as described below.
Knockdown efficiency was determined as 93% to 94% FOXM1 reduction.
Messenger-RNA of FOXM1 knockdown and control cells was prepared and
analyzed as described above. Raw data was normalized to the following
housekeepers: CNOT10, SF3A3, DDX50, USP39, PIAS1, SLC4A1AP, FCF1,
NOL7, SAP130, HDAC3, EIF2B4, ZC3H14, ERCC3, PRPF38A, EDC3,
ZNF384, TMUB2, ACAD9, AMMECR1L, VPS33B, TLK2, C10orf76,
CNOT4, AGK, PIK3R4, MTMR14, ZNF143, MRPS5, TRIM39, ZKSCAN5,
DNAJC14 . 

Matching differentially expressed genes were identified. A gene pathway
overrepresentation analysis was performed with the http://pantherdb.org/
database using the PANTHER Overrepresentation Test (release 20,170,413,
reference list: homo sapiens) based on the “panther pathway” annotation
data set (PANTHER version 12.0 Released 2017–07–10) with Bonferroni
correction for multiple testing [49] . Gene enrichment was estimated by use
of the ENRICHR platform [50 , 51] . 

RNA interference 
Cells were transfected with 40 pmol/mL siRNA in appropriate

amounts of Lipofectamine 3000 (Life Technologies, Carlsbad, CA, USA)
according to the manufacturer’s instructions for 72 h. An endoribonuclease-
prepared heterogeneous siRNA pool was used in order to enhance
specificity and reduce off-target effects: enhanced siRNA (esiRNA) against
FOXM1 by Sigma (EHU124431: NCBI reference sequences: NM_021953,
NM_202002, NM_202003) or negative control: Sigma Mission siRNA
Universal negative control #1. Knockdown efficiency was measured by qPCR.

Real time qPCR 

RNA was isolated by use of the Qiagen RNeasy RNA isolation kit,
quantified with Nanodrop 2000 and DNA digesting was carried out with
0.1 μL/100 ng RNA DNase I peqGOLD (Peqlab, VWR International
GmbH, Erlangen, Germany). 1000 ng RNA was transcribed into cDNA
using the High-Capacity RNA-to-cDNA Kit according to the manufacturer’s
instructions (Thermo Fisher, Carlsbad CA, USA). Real time quantitative (q)
PCR was performed with 25 ng cDNA with the StepOne Real time PCR
System (Thermo Fisher) and analyzed with StepOne v2.3 Software and MS
Excel using the ��Ct-Method. Figure was prepared with Prism 7 software.
The PCR primers were used as follows: FOXM1 forward 5 ′ GGA GCA GCG
ACA GGT TAA GG 3 ′ , FOXM1 reverse 5 ′ GTT GAT GGC GAA TTG TAT
CAT GG 3 ′ ; GUS (Housekeeper) forward 5 ′ GAA AAT ATG TGG TTG
GAG AGC TCA TT 3 ′ , GUS reverse 5 ′ CCG AGT GAA GAT CCC CTT
TTT A 3 ′ (all Metabion). 
tatistical analyses 

Data (excluding the Nanostring gene expression analysis) was analyzed 
sing IBM SPSS Statistics v22.0.0.0 (based on Python 2.7), Prism 7 and 
 (v7.04 and v8.4.1; GraphPad Software, San Diego, USA). Unpaired 
tudents t test was used for 2 groups and one-way analysis of variance
ANOVA) or 2-way ANOVA for multiple groups of normally distributed 
ata, respectively. Kruskal-Wallis Test was applied for multiple group data 
ith rejected assumption of normality. Dunn’s or Sidak’s correction was used 

or correction of multiple testing. The choice was dependent on the structure
f the data (number of groups, comparison with one or multiple groups), low
umbers of samples ( < 5) were always analyzed with non-parametric tests, 
arametric tests were chosen after testing for normality in data with n ≥5.
ormality was assumed after Shapiro-Wilk normality test. All differences 
ere considered to be significant with alpha = 0.05. 

esults 

ortezomib has antiproliferative effects GEP-NEN and sensitizes to 
isplatin therapy by induction of G2/M arrest and death receptor-driven 

poptosis in GEP-NEN cell lines 

To analyze the effects of bortezomib monotherapy, we treated the 
ell lines BON, LCC-18 and KRJ-I with increasing concentrations of 
ortezomib for 24, 50, and 72 h and analyzed the cell viability. All cell lines
esponded significantly in a time- and concentration-dependent manner by 
he reduction of cell viability. The IC50 values for 72 h of treatment ranged
etween 4.7 nM in KRJ-I and 270 nM in LCC-18 cells ( Figure 1 ). 

In order to study the chemosensitizing effects in neuroendocrine tumor 
ell lines, we chose cisplatin due to its low monotherapeutic effect in the cell
ines. Subsequently, we performed viability studies after 24 h (not shown) and 
0 h of combined treatment versus monotherapy control. Here, bortezomib 
xhibited additive and synergistic effects combined with cisplatin, leading to 
urther decreases in IC50-values ( Table 1 ). In KRJ-I, representing the only
53 wild type cell line in this study, bortezomib alone induced a very strong
ffect (including the lowest IC50 values of all tested cell lines), which was not
urther enhanced by cisplatin in the majority of the experimental settings. 
s demonstrated for BON cells, the antiproliferative effect was proven by 
TCA. Here, bortezomib significantly reduced the cell’s capacity to form 

ew colonies and induced strong morphological changes (Supplementary 
ig. 1). 

While cisplatin induced S-phase arrest in accordance with the necessity 
o repair DNA crosslinks before entering the DNA replication step 
52] , bortezomib induced G2 and G2/M arrest respectively, indicating 
hat crucial G2/M checkpoint mediators were affected by the treatment. 
he combination of both substances significantly induced apoptosis in 
oth cell lines with an earlier induction in KRJ-I cells (Supplementary 
igure 1). 

To clarify the underlying signal transduction, we analyzed BON cells after 
4 h of combined treatment by targeted mRNA profiling on the Nanostring 
Counter platform [45] . The affected signaling pathways ( Figure 2 ) showed
nly slight changes upon cisplatin only treatment, including an upregulation 
f DDR and cell cycle-associated genes. In contrast, bortezomib alone 
nd the combined treatment exhibited large effects, especially on cell cycle 
egulatory and transcription-associated genes ( Figure 2 A–C). The pathway- 
llocated gene groups include both, positive and negative regulatory genes. 
ere, the apoptotic signaling varied from an upregulation of primarily 

roapoptotic genes upon bortezomib monotherapy to overall downregulation 
f anti-apoptotic genes in the combined treatment arm, resulting in an 
verall proapoptotic signaling in either case. Furthermore, transcripts of 
he death receptor-related apoptotic pathways (encoding caspase 7 and 8, 

http://pantherdb.org/
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Figure 1. Therapeutic effect of bortezomib in vitro : (A) BON, LCC-18 and KRJ-I cell lines were treated with increasing concentrations of bortezomib for 24 h, 
50 h, and 72 h, respectively, and cell viability was measured by WST-1 proliferation assay. Dose-response curve and histogram of the same data (representative 
data out of three independent experiments is shown, bar represents means and SD of n = 5 replicates) is shown for a more concise presentation. All cell 
lines showed a significant antiproliferative response to the treatment (one-way ANOVA: P < 0.0001; and Holm-Sidak’s multiple comparisons test; normality 
was assumed after both, Shapiro-Wilk and Kolmogorov-Smirnov normality test). Dose of relative half-maximal inhibitory effect (IC50) was determined by 
non-linear regression using Prism 7. Captions: ∗P < 0.05; ∗∗P < 0.0001. (B) In vitro combinatory effects of cisplatin and bortezomib after 50 h of treatment: 
cell lines were treated with a combination of bortezomib and cisplatin 1:10 (starting from 100 or 50 μM cisplatin + 10 or 5 μM bortezomib, respectively, and 
subsequent dilutions) versus the corresponding single agents (representative experiment of three independent experiments, bar shows median and interquartile 
range of n = 5 replicates). Dose response curves were analyzed according to the method of Chou and Talalay. BON cells responded in all measured dilutions 
(excluding the starting concentrations) with synergistic effects. In LCC-18 cells, bortezomib induced synergism in doses > 10 nM, which is lower than the 
respective IC50. KRJ-I cells, which showed very strong effects even at low concentrations of bortezomib alone, exhibited a very strong response, however, 
synergism only substantiated for intermediate doses (500 nM cisplatin + 50 nM bortezomib and 5 μM cisplatin + 500 nM bortezomib) (2-way ANOVA with 
Sidak’s multiple comparisons test). ∗P < 0.05; ∗∗P < 0.01; ∗∗∗P < 0.001; ∗∗∗∗P < 0.0001. 
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tumor necrosis factor receptors, I-kappaB kinase subunit gamma, calpain,
BID and FAS) were overrepresented after combined treatment ( Figure 2 B).
Here, as proven by western blot, the strongly increased DNA damage,
indicated by histone H2AX phosphorylation, did not increase the expression
of BAX as mediator of intrinsic apoptotic processes ( Figure 2 D). In
contrast, cisplatin treatment alone induced a slight, but not significant, BAX
pregulation. The combination of bortezomib plus cisplatin rather induced 
he expression of death receptors (Fas and TRAIL-receptors). The signals of
as and TRAIL receptors are canonically transduced by Fas/TNF-receptor-
ssociated proteins with death domain (FADD/TRADD) and cleavage 
f caspase 8, which in turn cleaves BID and activates effector caspases,
hich eventually results in apoptotic events such as in the cleavage of
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Table 1 

IC50 values after cisplatin, bortezomib and combined treatment of cell lines in vitro : 95% confidence intervals 

(CI) of IC50 values after 50 h of treatment. For combined treatment with a fix ratio of bortezomib to cisplatin of 

1:10, the respective IC50 values of the bortezomib content is shown. 

Cell Line 95% CI (IC50 Cisplatin) 95 % CI (IC50 Bortezomib) 95% CI (IC50 Combination, Given c[Bor]) 

BON 4.960 to 11.54 μM 0.01963 to 0.05009 μM 0.01148 to 0.01921 μM 

LCC-18 9.056 to 31.38 μM 0.03125 to 0.1359 μM 0.05334 to 0.07376 μM 

KRJ-I 2.386 to 6.931 μM 0.003470 to 0.008452 μM 0.001668 to 0.006319 μM 
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Poly- (ADP-ribose)- polymerase (PARP) in the nuclei [53] . The western blot
only confirmed a slight upregulation of FADD (not significant), but verified
the significantly increase in caspase and PARP cleavage. The additional
cleavage of BID could be only demonstrated for KRJ-I, QGP-1 and LCC-18
cells (Supplementary Figure 2) 

The cell cycle-related effects of bortezomib were further explored by
western blot ( Figure 2 D). Here, we found a significant downregulation of
-phase Kinase Associated Protein 2 (SKP2). The FOXM1 target SKP2 is 
 subunit of the SCF E3 ubiquitin-protein ligase complex and a crucial 
ell cycle regulator, which recognizes phosphorylated p27 and is involved 
n regulation of G1/S transition [54] . Loss of p27 and overexpression 
f FOXM1 have been described as frequent events in GEP-NEN before 
31 , 55] . Following slightly reduced SKP2 expression, we demonstrated an 
pregulation of p27 and p21, independent from Rb (which can transactivate 
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p21 expression [56] and inhibit SKP2-mediated p27 ubiquitination [57] )
and without effect on Rb Serin-780 phosphorylation. In particular, the
phosphorylation of Rb did not change after bortezomib (and combined)
treatment, whereas the total protein abundance showed a tendency to
decrease (although not significantly), which could be due to the enrichment
of G2/M arrested cells (as demonstrated in Supplementary Figure 1).
Accordingly, the M-phase protein aurora kinase A (aurora A) was slightly
more abundant in the bortezomib or combination treated cells without
reaching significance. Comparable results can be shown for other GEP-NEN
cell lines and upon bortezomib-combined radiation therapy (Supplementary
Figs. 2 and 3). 

Bortezomib shows sensitizing effects to PRRT in a chicken egg-based in 

vivo model 

To adapt to a more clinically relevant pancreatic NEN model by exploiting
PRRT-induced signaling changes as therapeutic targets, we established a
short-term preclinical in ovo model by implanting a pancreatic, SSTR2-
positive cell line-derived 3D spheroid, sensitive to Lu-177-DOTATOC
PRRT, onto the chorioallantoic membrane (CAM) of fertilized chicken eggs
( Figure 3 A). Since native BON cells lack functional SSTR2 expression, we
used a human SSTR2-transfected BON cell line [32] . Those BON-SSTR2 +
were positive for anti-SSTR2 immunofluorescent staining and showed a
∼60-fold higher Lu-177-DOTATOC binding compared to native BONs
( Figure 3 B, C). 

To visualize SSTR2 expression in an in vivo setting we inoculated
the BON- SSTR2 + 3D spheroids onto the CAM of 7 d old fertilized
chicken eggs. Following an incubation time of 3 to 5 d, during which
BON-SSTR2 + spheroids connected to the embryonic vasculature while
the matrigel was degraded, we verified functional SSTR2 expression in
those vascularized microtumors by SPECT/CT imaging. In fact, we could
Figure 2. Gene expression after bortezomib, cisplatin and combinatory therapy 
bortezomib, 10 μM cisplatin or both versus saline for 24 h and analyzed by nCo
cisplatin, bortezomib and combination related to control. The directed analysis h
global significance statistics measure the extent to which a pathway’s genes are up- 
extensive over-expression upon treatment, blue denotes pathways with extensive un
of DNA repair and cell cycle regulation. After combined treatment, genes of all
analysis of apoptosis-related gene expression, color-coded as upregulated in the bo
bortezomib treatment affected three genes ( ENOG, BCL2, and NFKB1 ) in a negativ
manner. The combination of bortezomib and cisplatin changed the expression of el
PIK3R2, IL1RAP, PPP3CA and AKT2 ) negatively and upregulated nine genes ( CAS
und FAS ) . Although the resulting score would lead to the assumption that bortezo
the combination affected more antiapoptotic genes, including BCL2, AKT2 , subun
Therefore, the signaling changes result in a proapoptotic signaling. Significantly diffe
before detailed analysis. Gene expression raw data can be found in Supplementary T
cisplatin treatment. Visualization by KEGG ontology pathway system. Although t
the differential analysis of the distinct transcripts demonstrated pro-apoptotic mech
Fas, TRAIL-R, caspases 7 and 8, BID and NIK were upregulated (red), whereas pre
and genes of the PI3K pathway, were downregulated (green). This resulted in an ove
data analysis tool verified a strong modulation of gene expression affecting apopto
were treated with 25 nM bortezomib, 10 μM cisplatin, combination of both or con
induced massive DNA damage (DNA double stand breaks indicated by H2AX pho
arms presented death receptor-dependent extrinsic apoptotic signaling as detected b
The relative effects were stronger in the cells that were treated with the combination
repair associated protein SKP2 was reduced after bortezomib and combined therapy 
from Rb protein abundance (which is repressed upon bortezomib and combined t
CK2-alpha and aurora A were also upregulated upon bortezomib and the combina
statistically evaluated with Prism 8. Normal distribution of the data was assumed a
Kruskal-Wallis or one-way ANOVA analysis. Graphs show mean with SD. Apop, ap
TXmisReg, transcriptional misregulation; Bo, bortezomib; Cis, cisplatin, ctrl, contr
densitometric measurements); ∗P < 0.05; ∗∗P < 0.01; ∗∗∗P < 0.001; ∗∗∗∗P < 0.00
emonstrate an increased uptake (0.8%–2.2% ID) of Lu-177-DOTATOC 

 h post inoculation ( Figure 3 D). Multiparametric in vivo imaging using
ET/MRI allowed for monitoring individual tumor development of BON- 
STR2 + microtumors under treatment in a noninvasive manner. Five days
fter inoculation of the microtumors, treatment started with bortezomib, or
u-177-DOTATOC, or a combination of both or saline (vehicle treatment).
hile the size of vehicle-treated tumors increased by ∼35.2% within 7 d,

onfirming significant growth of the microtumors in the in ovo setup, all
reatment arms induced a shrinkage below the initial tumor volume at the
eginning of the treatment (day 0). Lu-177-DOTATOC and bortezomib 
onotherapy showed approximately 13% and 28% tumor volume reduction, 

espectively. The strongest effect was seen after combined treatment, as BON-
STR2 + microtumors not only stopped to grow, but decreased in volume
y approximately 50% ( Figure 3 F). Treatment effects were analyzed on
olecular level after tumor excision. 

ortezomib-dependent apoptosis is induced by DNA damage repair 
nsufficiency 

After demonstrating the induction of cell cycle arrest and apoptosis upon
ortezomib-combined DNA damaging therapy of NEN cells in vitro and
elay of tumor growth in vitro and when implanted “in ovo ” (CAM model)
e aimed to clarify what caused the induction of apoptosis in vitro and in the

hicken CAM model. Therefore, we reanalyzed the in vitro mRNA profiling
esults and determined effects of bortezomib plus cisplatin on DNA damage
esponse gene expression and subsequently analyzed the expression of major
andidate target proteins in vitro and in the bortezomib plus PRRT treated
hicken CAM model. 

In vitro , cisplatin alone caused the upregulation of a notable number of
NA damage repair associated genes in BON cells ( Figure 4 ; Supplementary
able 1). In contrast, bortezomib alone triggered the downregulation 
demonstrated induction of apoptosis: BON cells were treated with 25 nM 

unter gene expression array. (A) Gene set analyses of affected pathways after 
eatmap displays each treatment’s directed global significance scores. Directed 
or downregulated after treatment. Red denotes pathways whose genes exhibit 
der-expression. Cisplatin upregulated genes associated with positive regulation 
 analyzed pathways were found predominantly downregulated. The detailed 
rtezomib arm and downregulated in the combination arm, revealed that the 
e way and 5 genes ( CASP7, BID, IKBK, CAPN2, and MAP3K14 ) in a positive 
even genes ( ENDOG, PRKAR1B, BCL2, NFKB1, FASLG, PIK3CB, PPP3CB, 
P8, CAPN2, CASP7, BID, IKBKG, TNFRSF10A, MAP3K14, TNFRSF10D, 

mib regulates apoptosis in a more positive way than the combined treatment, 
its of NF-kappaB, PI3K, PKA and Bcl-2 (to a lower extent), in a negative way. 
rentially expressed genes have been filtered by minimum fold change ≥1.5-fold 
ables 1-3. (B) Pathway analysis of apoptosis-related genes after bortezomib plus 
he overall pathway score for apoptosis-related genes was determined negative, 
anisms: Genes of pro-apoptotic death receptor-mediated pathways, such as of 
dominantly crucial antiapoptotic genes, including those of Bcl-2, NF-kappaB 

rall negative pathway score. (C) GO enrichment analysis using the ENRICHR 

tic processes. (D) For verification of the gene expression profiling, BON cells 
trol for 24 h and analyzed by western blot. Bortezomib and combined therapy 
sphorylation), but did not induce internal apoptosis via BAX. Both treatment 
y FADD upregulation and cleavage of caspase 8, caspase 6 and finally PARP. 
 of both, cisplatin and bortezomib. Expression of the p27 regulator and DNA 

in association with an upregulation of the p27 cell cycle regulator. Independent 
reatment), p21 is upregulated following bortezomib or combined treatment. 

tion. Western Blot data was densitometrically quantified by use of ImageJ and 
fter passing Shapiro-Wilk test and according to the results, data was tested by 
optosis; CC, cell cycle; ChromMod, chromatin modifications; HH, hedgehog; 
ol; NA, not applicable (due to too little contrast of the signal and error-prone 
01. (Color version of figure is available online.) 
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Figure 3. In vivo analysis of protein expression after bortezomib-combined peptide receptor radionuclide therapy (PRRT) in the chicken chorioallantoic 
membrane (CAM) model: (A) Schematic depiction of the SSTR2 + chicken CAM model: cells were mixed with matrigel to form a tumor plaque and 
inoculated on the CAM of a fertilized, chicken egg on d6 of embryonal development. (B-D) Generation of SSTR2-positive NEN cell line and analysis for 
receptor functionality in vitro and in vivo : (B) BON cells were transfected with human somatostatin receptor 2 (SSTR2). Immunofluorescent staining of SSTR2 
of native and SSTR2 + - BON cells demonstrated a low native expression of SSTR2 in native BON cells und a positive membrane staining in the genetically 
modified cell line. Green: SSTR2 or pan-cytokeratin control; blue: DAPI. (C) Quantification of the functional SSTR2 expression using ligand binding assay: 
BON-SSTR2 + cells ∼60-fold higher than in native BON cells ( P < 0.0001; unpaired t test; n = 6). BON and BON-SSTR2 + cells were incubated in 
vitro with 0.0074 MBq/mL Lu-177-DOTATOC. After washing and cell lysis, the radiopharmaceutical uptake was measured using a gamma counter. Graph 
(bars indicate mean with SD) shows representative results of 3 independent experiments. (D) SPECT/CT of CAM model: tumor plaque was imaged 3 h 
after i.v. injection of 20 MBq Lu-177-DOTATOC showing a 1.6% uptake of the total injected dose. Representative image, left side: coronal SPECT/CT of 
Lu-177-DOTATOC, right side: coronal CT. (E) T2w MR imaging of SSTR2 + BON tumors. Tumors (circle) were either treated once with saline, 25 nM 

bortezomib, 20 MBq Lu-177-DOTATOC or a combination of bortezomib and Lu-177-DOTATOC on day 12 and tumor size measured before (d12) and 
after treatment (d18). Representative images of n > 3 independent experiments. (F) Statistical evaluation of the tumor plaque growth in the four treatment 
groups on d18. PRRT alone resulted in an overall 13% relative mass reduction related to baseline volume, bortezomib inhibited tumor growth with average 
28% mass reduction. The combined treatment reduced relative tumor mass significantly by 50% ( P = 0.041; ANOVA with Dunnett’s test). pos. ctrl., positive 
control; CK, cytokeratin; ∗P < 0.05; ∗∗P < 0.01; ∗∗∗P < 0.001; ∗∗∗∗P < 0.0001; SSTR2 + : SSTR2-transfected, d, day; MRI: magnetic resonance imaging, 
PET: positron emission tomography; T2w, T2 weighted; Bo, Bortezomib, Lu-177, Lu-177-DOTATOC; Bo + Lu-177, combination therapy bortezomib plus 
Lu-177-DOTATOC. (Color version of figure is available online.) 
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Figure 4. Regulation of DNA damage repair related genes by bortezomib- 
combined chemotherapy in vitro : BON cells were either treated with 25 nM 

bortezomib, 10 μM cisplatin, combination of both or control for 24 h in vitro 
and analyzed by nCounter mRNA expression array. (A) Cisplatin induced the 
upregulation of several DNA repair genes whereas (B) Addition of bortezomib 
reversed the effect and triggered the downregulation of identical genes and 
genes associated with the same repair pathways, respectively. Arrows exemplarily 
mark DDB2, RAD51, FEN1 , and BRCA1 . (C) BON cells were treated with 
25 nM bortezomib, 10 μM cisplatin, combination of both or control for 24 
h and analyzed by western blot. Crucial DNA damage repair proteins were 
downregulated after bortezomib and combined treatment. These include proteins 
of the HR (RPA, SKP2), FA (FANCA), MMR (RPA, RFC), BER (FEN1) 
and primarily of the NER (RPA, DDB2, XPA, XPD, ERCC1) pathways of 
DNA repair. These effects strongly induced DNA damage stress, indicated 
by histone H2A.X phosphorylation. Representative data of three independent 
experiments are shown. Corresponding data obtained from KRJ-I and LCC- 
18 cells are presented in Supplementary Figure 2. (D) Bortezomib affected 
important molecules of the human response to DNA damage: Alkylating agents, 
ionizing radiation (IR), ultra violet (UV) radiation, crosslinking agents (e.g., 
platin-based chemotherapeutics), inhibitors of topoisomerases (TOPOi), PRRT 

or nucleoside analogs induce different DNA lesions (list is not exhaustive). Major 
pathways of DNA repair, which depend on the type of damage and the cell 
cycle phase, are direct repair (e.g., by methyltransferases), base excision repair 
(BER), nucleotide excision repair (NER), interstrand crosslink repair (ICLR), 
nonhomologous end joining (NHEJ), homologous recombination (HR) and 
mismatch repair (MMR). Bolded proteins have been shown to be downregulated 
by the proteasome inhibitor bortezomib. BER, Base Excision Repair; FA, Fanconi 
Anemia; HR, Homologous Recombination; MMR, Mismatch Repair; NER, 
Nucleotide Excision Repair. 
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f identical or associated repair genes (Supplementary. Table 2). Under
reatment with both substances, the cells retained the bortezomib-controlled 
attern, resulting in a massive downregulation of DNA damage repair genes
including a large number of those upregulated by cisplatin) and a vast
ccumulation of DNA damage ( Figure 4 ; Supplementary Table 3). Under the
ombined bortezomib/cisplatin treatment, all common DNA damage repair 
athways were negatively affected in BON cells ( Figure 4 ; related data from
ther cell lines refer to Supplementary Figure 2). This indicates a versatile
NA repair inhibitory effect of bortezomib treatment letting us to assume

hat the combination of PRRT with DNA damaging treatment could have
ynthetic lethal effects irrespective from the source of the DNA damage. To
rove this theory, we analyzed the effect of combination with PRRT instead
f cisplatin on the DNA repair protein expression in the tissues obtained from
he chicken CAM model. 

Quantitative analysis of the respective protein expression upon 
ortezomib-combined PRRT in the tissues derived from the chicken 
AM in ovo model showed significant protein expression alterations for

everal DNA damage and apoptosis-related proteins according to western
lot densitometry data ( Figure 5 and raw data Supplementary Figure 4).
espite relatively high variances within the biological replicates of one

reatment arm––which reduced the statistical power on a single protein
evel––the overall protein expression revealed a general downregulation of 

NA repair related genes in the combined treatment group. Here, especially
he candidate effector proteins of the BER pathway were affected. 

While bortezomib predominantly repressed the expression of proteins 
cting in late stages of DNA repair, leaving the sensing and initiating
roteins unaffected or upregulated, PRRT reduced the expression of some
arly recognition proteins such as ATM. This effect might interfere with
poptosis induction since DNA lesion-sensing proteins are involved in 
poptosis regulation. However, in contrast to the in vitro data, we could not
learly distinguish whether an extrinsic or intrinsic induction of apoptosis
ccurred after the combined treatment, since proteins of both pathways were
ffected. This variability is most likely caused by the fact that bortezomib was
ropped onto the engrafted tumor plaques in ovo resulting in a heterogeneous
istribution of the pharmaceutical. 

he role of FOXM1 

The forkheadbox transcription factor FOXM1 is a crucial regulator of
2/M transition and mitosis and can be suppressed by proteasome inhibition

58 , 59] . In neuroendocrine tumors, we recently clarified the role of FOXM1
s frequently expressed proliferation marker [21 , 31] . FOXM1 has further
een attributed to the control of DNA damage response and resistance to
hemotherapy [60–63] . Taken together, we assumed that bortezomib might
xert its cell cycle regulatory and DNA damage preserving effect by inhibition
f FOXM1. 

We therefore treated GEP-NEN cell lines with bortezomib and analyzed
he FOXM1 expression by western blot and real time qPCR. All cell
ines responded with a downregulation of FOXM1 mRNA and protein
Supplementary Figure 5). To prove that bortezomib exerts its anticancer
ffect by inhibition of FOXM1, we silenced the FOXM1 translation by
NA interference in BON cells and compared the differential expression
pon bortezomib (25 nM for 24 h) with the expression upon FOXM1
nockdown (Supplementary table 4) by Nanostring nCounter pathway 
ene expression array. Knockdown efficacy was determined by qPCR 

Supplementary Figure 5E). We found 39 corresponding genes. Interestingly, 
hose genes were predominantly associated with cell cycle and apoptosis,
ccording to the PANTHER pathway overrepresentation analysis [49] . There
as no overrepresentation of DNA damage repair-related genes within the
9 corresponding genes indicating that FOXM1 is involved in the cell cycle
egulation upon bortezomib treatment rather than in DNA damage response.
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Figure 5. Regulation of DNA damage repair related proteins after bortezomib-combined PRRT in vivo : Chicken CAM xenografted tumors were treated i.v. 
with a single dose of ∼20 MBq 177-Lu-DOTATOC with and without 25 nM bortezomib versus saline control and explanted 6 d after treatment. Protein 
abundance of proteins involved in the sensing of DNA damage, initiation, signal transduction and execution of DNA repair and apoptosis was analyzed by 
western blot and densitometry was performed using Image J v1.53. Data was normalized to densitometric data of total protein stain (ponceau S). (A, B) We 
identified significant protein expression alterations in the combined treatment groups for DDB2, ERCC1, cleaved BID and p38, p41/p43 cleaved caspase 
8 (Fisher’s Least Significant Difference Test) and an overall downregulation of DNA repair-related genes, especially of the BER pathway (RNA polymerase 
II, DDB2, XPD, XPA, RPA, ERCC1, FEN1). (B) Heatmap shows mean of ≥3 independent experiments per treatment group normalized to total protein 
stain and relative to saline control. Raw data is shown in Supplementary Figure 4. BER, Base Excision Repair,; Bo, bortezomib; Lu-177, Lu-177-DOTATOC; 
Rpb1, RNA polymerase II subunit B1 c-terminal domain, ∗P < 0.05; ∗∗P < 0.01. 
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Addition of bortezomib to conventional lu-177-PPRT does not affect 
overall tumor volume or viable tumor cell mass according to in vivo 

FDG-PET/MRI analyses in an orthotopic mouse model 

To confirm the preliminary results obtained from the chicken CAM
model, we established an orthotopic xenograft mouse model bearing
intrapancreatic BON-SSTR2 + tumors [39] . When the tumors reached 100
mm 

3 , treatment was started according to the scheme presented in Figure 6
including 2 therapy cycles of 3 weeks. As preliminary in vivo studies had
hown that a single injection (i.e., one cycle) of Lu-177-DOTATOC induced 
 growth plateau of about 2 weeks, we designed the study in such a way that
he second cycle started once the tumor in the Lu-177 DOTATOC treated 
nimals commenced to progress again. As seen in Figure 6 , BON-SSTR2 +
umors responded to 177-Lu-DOTATOC monotherapy by showing a 
rowth delay of about 6.5 weeks compared to saline-treated BON-SSTR2 + 

enograft tumors, while bortezomib monotherapy delayed the growth by 
nly 3 weeks. Interestingly, the combined treatment (bortezomib 4 hours 
efore PRRT) delayed tumor growth by 4 weeks. Hence, the Kaplan-Maier 
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survival analysis of cumulative time to endpoint (defined by a tumor volume
of 1400 mm 

3 ) indicates that the combination of bortezomib and Lu-177-
DOTATOC does not result in a longer overall time to end point compared
to PRRT monotherapy (Supplementary Figure 6). 

Notably, 5 to 6 weeks after the second cycle, the treatment-induced,
reduced tumor growth terminated and a metabolically active tumor fraction
started to develop in all treatment groups as compared to the saline group.
This unexpected tumor outgrowth may be an indication that therapy-
resistant tumor clones are able to develop throughout the treatment. In order
to check whether the outgrowing tumor cells are actually vital, we performed
combined FDG-PET/MRI scans once tumors reached a tumor volume of
approximately 1000 mm 

3 . The T2-weighted MRI sequence used here was
established in such a way that viable tumor tissue results in hyperintense and
necrotic/degrading tissue in hypointense signal intensity (SI). This allowed
to perform a 3D-tumor texture analysis for this particular time point, in
hich FDG-PET identified viable tissue whereas T2w imaging identified 
rue necrotic regions by analyzing SI in each voxel ( Figure 6 ). The resulting
hird tumor section can be described as a mixture of different cellular states
ncluding cells in transition from viable to apoptotic and/or necrotic tissue
nder hypoxia or normoxia. 

When PBS and Lu-177-DOTATOC treated animals were compared, 
BS-treated animals showed far less tissue damage than Lu-177-DOTATOC 

reated tumors or those treated with bortezomib alone or in combination with
u-177-DOTATOC. This confirmed induction of necrosis as a secondary 
reatment effect. The reduced nutrient perfusion, which typically occurs in
he tumor center and thereby affects both treated and control groups, triggers
ncreased necrosis in the DNA-damaged tumor core. Visual inspection of
he T2w images clearly indicated that PRRT-treated tumors as well as tumor
reated with bortezomib in mono- or combined therapy showed large areas
f tissue damage. This tissue most likely consisted of necrosis, cell debris, and
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damaged of various intermediate states, varying from ∼21% to ∼33% of the
tumor mass in the three treatment arms compared to 11% in the control arm
( Figure 6 ). 

As expected, the saline treated tumors exhibited a high percentage
of viable tumor tissue and only small parts of necrotic tissue (mean of
45.6% and 11.4% respectively). The Lu-177-DOTATOC treatment group
showed in 26.8% viable and 32.5% necrotic tumor tissue, respectively.
The bortezomib and bortezomib/Lu-177-DOTATOC group showed almost
identical distribution of the individual tumor tissue states (approximately
28%–31% living tumor tissue versus approximately 21% necrosis). Here,
bortezomib monotherapy resulted in a slightly higher portion of viable
tumor tissue. The combination treatment resulted in less vital tumor tissue,
but a higher percentage of intermediate state tumor tissue at the time of
investigation. 

Immunohistochemical analysis of necrosis induction, proliferation, and
apoptosis markers such as nuclear assembly of 53BP1 and PARP cleavage
revealed no statistically significant differences between the treatment arms.
However, the histology results are strongly determined by the analyzed tumor
area and only reflect a snapshot. These variances indicate that biological
heterogeneity resulting from responsive and non-responsive tumor areas is
very high and that clonal selection after PRRT may cause disease relapse
( Figure 6 and Supplementary Figure 7). 

Discussion 

Targeting DNA-damage repair is an emerging therapy approach in
cancers that are characterized by a high mutational burden, impairing
genes responsible for DNA repair. Whereas PARP inhibitors induce
synthetic lethality in cancers with deleterious germline or somatic genetic
defects in homologous recombination (HR) repair, clinical development
of combination with DNA-damaging chemotherapy was limited by the
more-than-additive toxicity, in particular dose-limiting myelosuppression.
Multiple other DNA damage repair inhibitors have been developed and
entered preclinical and clinical testing in the last two decades [64] . However,
profound molecular knowledge of agent- or mutation-specific vulnerabilities
in DDR is crucial to stratify patients for DDR inhibitory regimens. 
Figure 6. Analysis of treatment efficacy of Lu-177-DOTATOC plus bortezom
xenotransplanted with BON-SSTR2 + cells and treated with either saline, Lu-17
volume reached ≥100 mm 

3 . (A) The therapeutic scheme was based on the human
treatment and one week pause). Mice received either a single dose of ∼30 MBq Lu
a combination of Lu-177-DTATOC and bortezomib on day 0 and d 21. For com
to ensure full absorption. Due to its rapid clearance, bortezomib treatment was re
the second cycle. During week 3 of the first cycle, the treatment was paused, be
bortezomib. (B) Representative high-resolution T2-weighted images of all treatm
morphologic heterogeneity due to treatment effects in the tumor tissue. Viable tum
while degraded, necrotic tumor tissue is represented by hypointense SI (white arr
fractions of a representative tumor per treatment group confirming the tumor tissu
tumor texture analysis, representative images of tumor center (PBS group): Based
based on threshold settings: red areas represent true necrosis, light blue areas livin
on threshold settings: red ROI represents FDG-avid tumor tissue. (D) The tumo
endpoint of 1400 mm 

3 in tumor size. The Lu-177-DOTATOC monotherapy a
lower living tumor tissue content in the treatment groups related to the control gr
tumor content comparison. One-Way ANOVA and Dunnett’s multiple compar
tendency to differences in vital tumor volume in the Lu-177-DOTATOC versus c
Ki-67, 53BP1, and cleaved PARP in formalin-fixed mice tumor rim tissue resulte
intratumoral heterogeneity. Kaplan-Meier plot and corresponding raw data are sh
MRI, magnetic resonance imaging; PET, positron emission tomography; ROI, R
white = necrotic/damaged tumor tissue; blue = kidneys/intestine; treatment arms
Lu-177-DOTATOC. (Color version of figure is available online.) 
Because of the specific molecular features of neuroendocrine tumors, 
hich is dominated by somatostatin (SST) signaling and overactivation of 
itogenic signal transduction (reviewed in [3] ), DDR inhibition has not 

een a focus of basic research in NENs so far. Furthermore, the relatively
ow mutational burden decreases the likelihood of presence of synthetic lethal 

utations. 
However, DDR plays a clinically relevant role in neuroendocrine tumors. 

 study published in 2017 found DDR defect-related gene signatures 
BRCA, MUTYH, and APOBEC) as well as biallelic mutations in the DDR 

enes MUTYH, CHEK2 or BRCA2 in 8% of pancreatic NETs [65] . Other
tudies demonstrated a considerably high prevalence of aberrant regulation 
f MMR genes by microsatellite instability, promoter hypermethylation and 
oss of heterozygosity in insulinomas and other pancreatic NENs [66 , 67] ,
lthough contradictory studies exist [68] . Furthermore, PTEN, which is 
requently lost in NENs due to epigenetic alterations or copy loss, is involved
n DDR (reviewed in [69] ). Finally, the expression of MGMT is predictive
f the response to temozolomide in pancreatic neuroendocrine tumors [70] . 

In contrast, predictive markers or broad mechanistic knowledge of DDR 

pon PRRT is rare (reviewed in [71] ). PRRT using Lu-177 as beta emitter
as been shown to induce mainly SSBs and, to a lower extent, DSBs
11 , 72 , 73] . SSBs are primarily repaired by components of base excision
epair (BER), nucleotide excision repair (NER) and mismatch repair (MMR) 
hereas DSB are cleared predominantly by non-homologous end joining 

NHEJ) or homologous recombination (HR), depending on the availablilty 
f homologous DNA material and genetic background. Although both kinds 
f lesions induce different ways of damage repair, DSB repair generates 
ntermediates, such as single-stranded DNA (ssDNA), which are present in 

MR, BER, and NER pathways of DNA repair (but not in direct repair).
ccordingly, common interacting proteins are recruited in specific steps of 

he repair pathways to protect ssDNA, polymerize second strands and control 
igation. Those versatile proteins, including PARP1, RPA, FEN1 are crucial 
o more than one pathway of DNA repair. 

Since there was no clear evidence, which of those components might 
e relevant to which extent in PRRT (and beyond that also targetable), we
ecided to use cisplatin as a model for our basic in vitro experiments. This
ecision was made on the fact that crosslink repair integrates a large number
f components of DSB repair and thus, in contrast to alkylating agents 
ib therapy in orthotopic pancreatic mice xenograft tumors: Mice were 
7-DOTAOC, bortezomib or Lu-177-DOTATOC/bortezomib when tumor 
 bortezomib treatment schedule, including 2 cycles of 3 weeks each (2 weeks 
-177-DOTATOC (i.v.), PBS (i.p.), i.p. injection of 0.5 mg/kg bortezomib or 
bined treatment, bortezomib was injected 4 h prior to Lu-177-DOTATOC 

peated on days 3, 7, and 10 in the first cycle and day 24, 28, and 31 during 
fore the second analogous cycle started in week 4 with a reduced dosage of 
ent groups (tumor center) 2 mo after the second cycle was finished, revealed 
or tissue is represented as hyperintense signal intensity (SI) within the tumor, 
ows). Fused FDG-PET/T2w tumor images clearly show reduced FDG-avid 
e heterogeneity seen in corresponding T2w images. (C) MRI-and PET-based 
 on T2w images a whole tumor ROI was defined. T2w MRI-analysis of SI 

g and intermediate tumor tissue. Fused MRI/PET: FDG-PET analysis based 
r growth was monitored by MRI once a week until the tumors reached the 

rm showed the strongest growth delay. (E) FDG-PET/T2w demonstrated a 
oup, without reaching significance in either the viable tumor or the necrotic 
isons test (after assuming normality by Shapiro-Wilk test) demonstrated a 
trl. Group ( p = 0.1042). (F) Immunohistochemical analyses of HIF1-alpha, 
d in no significant differences between the four treatment arms due to high 
own in Supplementary Figs. 6 and 7. d, day; FDG, 18F-fluorodeoxyglucose; 
egion of Interest; T2w, T2 weighted; Captions: arrows: red = tumor tissue; 
: B, bortezomib monotherapy; B + L, combined treatment; ctrl., control; L, 



Neoplasia Vol. 23, No. xxx 2021 Does the proteasome inhibitor bortezomib sensitize to DNA-damaging therapy F. Briest et al. 93 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

b  

i  

(
 

r  

s  

d  

[  

m
w  

B  

o
t  

b
 

2  

t  

t  

f
p  

c  

G  

e  

w  

g
 

d  

o  

u  

i  

D  

d  

c  

r
b  

o  

F
e  

e  

s  

i  

t  

i  

c
 

d  

u  

v  

t  

i
 

a  

o  

a
h
A  

p
o  

e  

t  

a  

h

and antimetabolites, platin-based chemotherapy might have considerable
functional overlaps with DNA damage response to PRRT. Platinum-induced
DNA crosslinks are repaired by NER or by interstrand crosslink repair,
which makes use of components of NER, DSB repair pathways such
as homologous recombination (HR), and translesion synthesis [74] . In
contrast, TEM- and STZ-induced DNA adducts are primarily repaired
through direct repair by methyltransferases such as O6-methylguanine DNA
methyltransferase (MGMT), ALKB family demethylases and BER [75] . Since
we wanted to focus specifically on PRRT-induced DNA repair mechanisms,
we excluded the more clinically relevant alkylating agents (TEM, STZ)
and antimetabolites (5-FU, CAP) from the study, despite the fact that our
preliminary experiments have demonstrated enhancement effects when we
combined them with bortezomib as well (unpublished). 

Not surprisingly, transcripts of BAX, CDKN1A, DDB2, FDXR,
GADD45A, MDM2, STAT5B and XPC showed time-dependent
upregulation in peripheral blood cells upon radionuclide exposure in a
recent study [76] . This indicates induction of apoptosis and cell cycle
arrest along with NER induction. In our study, we verified an activation
of NER components upon PRRT. Precisely, we demonstrated a significant
upregulation of the endonuclease ERCC1 upon Lu-177-DOTATOC
treatment in the chicken CAM model, along with postexcision features,
including upregulation of the Flap Endonuclease 1 (FEN1), which is
involved in the final ligation step of NER and BER, and of replication
protein A (RPA), which recruits protein complexes to ssDNA in various
processes where ssDNA is an intermediate structure [77] . 

In the last years, PARP inhibitors have been discussed as PPRT sensitizers.
PARP family proteins are multifaced repair proteins, involved in BER, NER,
NHEJ and HR pathways and thus play a role in both, SSB and DSB repair
[78] . Accordingly, preclinical studies, combining PARP1 inhibition with
PRRT, have shown promising results [72 , 79 , 80] . Concomitant inhibition
of PARP1, leads to a PARP1 trapping, stalling of the replication fork and
induction of DSBs [81] . However, in the context of HR deficiency (e.g.,
by BRCA1 or 2 mutations), which is present in a small fraction of NENs
[65] , this approach would induce synthetic letality [81] . In the case of HR
proficiency, the cells could bypass fork stalling by induction of HR and
therefore survive [81–83] . In our study we present further evidence that the
DDR upon PRRT is very complex and involves aspects of several pathways.
Hence, a versatile inhibiton of DDR might be necessary to reduce the
induction of bypassing processes. 

Therefore, we hypnotized that a major effect, which orchestrates the
complex interplay of repair proteins, such as posttranslational regulation,
could perturb DDR more efficiently than targeting specific components. So
far, multiple studies have demonstrated that the ubiquitin-proteasome-system
is involved in regulation of DNA-damage proteins [19 , 20] . Accordingly,
proteasome inhibition has been shown to sensitize tumor cells to DNA-
damaging therapy in vitro [22 , 84–87] . Although bortezomib monotherapy
has not been effective in phase II studies of metastatic neuroendocrine
tumors of different offspring [23] and for the treatment of neuroendocrine
SCLC [88] , the addition of a strong proapoptotic trigger, such as DNA
damage, presented encouraging results concerning response and tolerability
of bortezomib/chemotherapy combinations in a number of clinical studies
[89–98] . Recently, we have demonstrated a significant benefit from a
bortezomib/cisplatin regimen in neuroendocrine lung cancer therapy in vivo
models [21] . In the study presented herein, were able to to show that
bortezomib affects gene expression of all common DNA repair mechanisms,
including radiation/cisplatin-induced NER and SSB-repairing BER in vitro
and in vivo . Both cellular stress and apoptosis are induced in reponse
to unfolded protein and/or DNA damage accumulation. However, since
the molecular mechanisms induced by bortezomib are not completely
understood and presumably dependent on cellular context, we expected to
detect evidence of altered protein decay due to proteasome inhibition rather
than effect on gene transcription. Nevertheless, recent data suggests that
ortezomib targets Sp family transcription factors in cancer cells [99] , which
n turn regulate the expression of DDR genes following genotoxic stress
reviewed in [100] ). 

We further hypothesized that bortezomib could be beneficial to overcome
esistance to DNA damaging therapy in TP53 mutated and wildtype tumors,
ince bortezomib exerts its pro-apoptotic effect mainly by death receptor-
ependent pathways and thus, is fairly independent from TP53 mutations
101–103] . Therefore it might have applicability in both, rarely TP53 -
utated PRRT-treated G1/G2 NENs and frequently mutated G3 NECs 
hich qualify for platinum-based chemotherapy [65 , 104–106] . Accordingly,
ON cells which are TP53 mutated [16 , 107] showed a relative low induction
f primarily p53-driven intrinsic (mitochondrial) apoptosis and the major 
reatment effect of bortezomib in the analyzed NEN cell lines was induced
y extrinsic apoptotic pathways. 

Current data suggest that PRRT might be effective in the approximately
0% to 30% SSTR2-positive G3 NETs [108] , which is currently discussed as
herapeutic option for SSTR imaging-positive tumors [109 , 110] . However,
here is still a great need for treatment options for G3 NETs (which proliferate
ast and show better-differentiated morphology). As demonstrated in our 
reclinical study, bortezomib might be a novel approach to sensitize to
isplatin (which exploits high proliferation rates but with limited success in
3 NETs). It might also enhance the effect of PRRT (which targets SSTR

xpression, but requires more research in G3 NETs). In this preclinical study
e give detailed insight into common resistance-associated effects and provide
roundwork for subsequent translational considerations. 

Several groups have described FOXM1 as a crucial regulator of the DNA
amage reponse (reviewed in [60 , 111 , 112] ). This suggests that inhibition
f FOXM1 impairs DNA damage repair and that repression of FOXM1
pon bortezomib treatment mediates the DNA damage repair inhibition. For

nstance, FOXM1 was discussed as regulator of the HR proteins BRCA2,
NA polymerase delta, BRIP1 or Rad51 [60] . Surprisingly, we could

emonstrate that FOXM1 knockdown was associated with apoptosis and cell
ycle arrest, but we were not able to detect considerable effects on DNA
epair-related gene expression. As we could confirm sufficient knockdown 
y verification of FOXM1 decrease by western blot and real time PCR
f FOXM1 , we assume that these DNA repair genes are not regulated by
OXM1 directly, but follow the downregulation of interposed regulatory 
vents. Even FOXM1 knockdown in presence of cisplatin did not alter the
xpression of DNA damage-related genes compared to cisplatin plus mock
iRNA, suggesting that the inhibition of FOXM1 alone is not sufficient to
nterfere with DNA damage response (data not shown).Thus, we assume
hat FOXM1 is not involed in the DNA damage control upon proteasome
nhibition, but mediates some of it’s effects via apoptosis induction and cell
ycle arrest. 

The strength of our study is the broad, multimodel-based assessment of
etailed mechanistic data about therapies that have already entered clincial
se in NENs, but are still not fully charaterized from a molecular point of
iew. We provide further information about weaknesses in cellular response
o DNA damaging therapy that might be exploited for therapeutic purposes
n the future. 

However, our study also has some shortcomings. Most notably, the
vailability of proper preclinical models is limited in NEN research. In
ur study we used two different pancreatic cell line models: native BON
nd QGP-1 cells were generated from well-differentiated pancreatic NET, 
owever, their mutational pattern, lack in SSTR2 and Chromogranin 
 expression, their reduced SSTR5 expression and their relatively high
roliferation rates represent features, that are not completely representative 
f well-differentiated NETs [113] , but might be exploited for preclinical
valuation of therapy approaches that are attributed to less differentiated
umors. However, after re-expression of SSTR2 in BON cells, the model was
lso applicable for PRRT, which requires specific epitopes such as SSTR2 and
as limited applicability in poorly differentiated tumors [14] . 
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Despite encouraging results in short-term in vitro experiments and in the
3D CAM model, we failed to prove a bortezomib-induced PRRT-sensitizing
effect in the presented long-term mouse model. Two treatment cycles did
not result in an overall reduction of tumor volume in any of the treatment
arms, while tumor growth was delayed to some extent (depending on the
type of treatment) when compared to the control group. In summary, the
Kaplan-Meier survival curve revealed that the combination of bortezomib
with Lu-177-DOTATOC was not beneficial concerning the overall time to
the endpoint when compared to PRRT monotherapy. 

Interestingly, FDG-PET/MRI, performed when tumors reached an
average size of 1000 mm 

3 , allowed a basic total tumor texture analysis
separating the tumor into different metabolic states: the center of all tumors
did not accumulate FDG, indicating necrotic or degraded tumor tissue, while
the tumor margins were still metabolically active which could be best observed
on fused FDG-PET/T2w images. However, as demonstrated by fused images,
metabolically active tumor areas on PET images can considerably differ
from the actual total tumor volume which is in line with the definition of
metabolic tumor volume as a reliable parameter for tumor characterization
and prognosis by FDG PET [114 , 115] . The approach of tumor texture
analysis has been lately addressed in a few publications [116 , 117] , but so far
did not result in a generally suggested procedure. Nonetheless, simultaneous
FDG-PET/MR imaging of the tumor allowed for clear identification of the
viable tumor sections by FDG-PET and the nonvital/necrotic tumor areas
by T2w imaging (MRI signal intensity analysis) resulting in hypointense SI
versus hyperintense signals in viable or intermediate tumor tissue states. 

As the analysis of the in ovo experiments clearly indicated an increase
in apoptotic-related gene expression in the bortezomib/Lu177 DOTATOC
treatment group, we assume that the identified third fraction by tumor
texture analysis may consist of a higher percentage of cells already undergoing
apoptotic stress compared to both monotherapies. This would result in higher
percentages of dead cells at a later time point. CAM assay studies however
are methodologically limited to a period of approximately 10 to 15 d after
inoculation before the chicken hatch around day 21. However, as we did not
use a marker for apoptosis at this timepoint of the longitudinal study, this
hypothesis is rather speculative. 

The scattering of the imaging results regarding the percentages of
remaining viable tumor tissue or necrotic tumor volume was confirmed by
immunohistochemistry. Here, no significant differences between treatment
arms were shown. Especially the high variance of proliferation index,
DNA damage accumulation and apoptosis induction were confirmed by
anti-Ki67, anti-53BP1, and anticleaved PARP immunostaining. This effect
was considerably dependent on the localization of the tissue specimen
within the tumor. Since cell line-derived xenograft tumors usually represent
rather clonal tumors even when obtained from a bulk, the morphologically
and histologically variable patterns suggest a de novo acquired resistance.
Presumably, the microvasculature of the xenograft tumors caused an unequal
distribution of the treatment compounds throughout the tumors. 

To further investigate why the in vivo study did not clearly confirm the
beneficial effect of bortezomib plus PRRT that we showed in the short-
term experiments, we immunohistochemically stained HIF1-alpha, a marker
for hypoxia. High levels of hypoxia are known to trigger resistance to
radiotherapy (reviewed in [118] ). As bortezomib can increase hypoxia in some
tumor entities [119] , we assumed that bortezomib may induce hypoxia in the
combination treatment compared to bortezomib monotherapy. However, no
significant differences were identified in the treatment groups when compared
to each other. As HIF1-alpha was analyzed only on one tissue section of each
tumor, it does not reflect the whole tumor. 

Some studies describe severe side effects of bortezomib in terms of delayed
toxicity [120 , 121] . Nevertheless, in the study presented herein all animals
tolerated the treatments according to the expected course. The group treated
with either bortezomib alone or in combination with Lu-177-DOTATOC
also displayed no different health states or showed unexpected deaths. 
Concluding, the current study presents comprehensive data about the 
olecular effects of PRRT in neuroendocrine neoplasms. It gives also insight 

nto NEN-specific resistance to cisplatin therapy. Understanding unintended 
ffects of therapy is the basis of ascertaining how these might be overcome.
specially in NENs, broadening the applicability of both regimens might 
elp to fill the therapeutic gap for NET G3, which often do not qualify
erfectly for either therapy. However, while increased sensitivity to chemo-, 
adio-, and peptide radionuclide therapy was shown in bortezomib-combined 
egimens in short-term models, data generated in a long-term orthotopic 
ouse tumor model displayed highly variable effects on various analyzed 

evels including tumor size, tissue composition and protein expression. Some 
ffects were limited to certain tumor areas, indicating clonal heterogeneity 
nduced by development of resistant clones, which could not be encountered 
y combination therapy. Since detailed analysis of these resistant clones, for 
xample by use of single cell techniques, might provide valuable information 
f how cancer cells bypass DNA repair defects, this observation should be 
ddressed in an independent study. 
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